Tagging, Tagsets, and Morphology

The task of (Morphological) Tagging

Formally: A"—> T
A is the alphabet of phonemes (A" denotes any non-empty
sequence of phonemes)
— often: phonemes ~ letters

T 1s the set of tags (the “ta@set”)

Recall: 6 levels of language description:

 phonetics ... phonology ... morphology ... syntax ... meaning ...

‘é
- a step aside: s@o
’0

Recall: AT —» 2L.C1.C2...Cn) 5 T
{m:)rphology tagging: disambiguation (~ “select”)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina

3

Tagging Examples

« Word form: At — 2LC1L.C2,...Cn) 5 T
— He always books the violin concert tickets early.
 MA: books — {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
 tagging (disambiguation): ... — (Verb,Sg,Pres,3)
— ...was pretty good. However, she did not realize...
« MA: However — {(however-1,Conj/coord,-,-,-),(however-2,Adv,-,-,-)}

* tagging: ... = (Conj/coord,-,-,-)

— [®end][g1v][1t] [tu:][ju:] (*and give 1t to you”)
« MA: [tu:] = {(to-1,Prep),(two,Num),(to-2,Part/inf),(too,Adv)}
* tagging: ... — (Prep)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 4

Tagsets

* General definition:
— tag ~ (¢4,Cys...,Cp))
— often thought of as a flat list
T={t}
with some assumed 1:1 mapping
T < (C,G,.,....C)
* English tagsets (see MS):
— Penn treebank (45) (VBZ: Verb,Pres,3,sg, JIR: Adj. Comp.)
— Brown Corpus (87), Claws ¢5 (62), London-Lund (197)

1=1.n

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 5

Other Language Tagsets

» Differences:
— size (10..10k)
— categories covered (POS, Number, Case, Negation,...)
— level of detail
— presentation (short names vs. structured (“positional”))

) ExamplGGFjNDER POSSN VAIR
POS PERSON
. CA§E1 ~NEG

~ CzechAGFS3-- - 1A-
“ee —‘-\VOICE

7 / p \ \\
SUBPOS OS5G | pcomp

NUMBER TENSE
2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 6

Tagging Inside Morphology

* Do tagging first, then morphology:
 Formally: A*—> T — (L,C,,C,,...,C,)
« Rationale:

— have |T| <|(L,C,,C,....,C,)| (thus, less work for the tagger)
and keep the mapping A" xT — (L,C,,C,,...,C,) unique.

* Possible for some languages only (“English-like™)

— mapping R : (C,,C,,....C) > T

reduced?

then (new) unique mapping U: A" x T, 4.ceqd — (L, T)

reduce

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 7

[Lemmatization

* Full morphological analysis:
MA: A+ —y 2(L.CLC2,..Cn)

(recall: alemmal €L 1is a lexical unit (~ dictionary entry ref)

* Lemmatization: reduced MA:
— L: A" > 2w > {I; (Lt t,,...,t) eMA(W)}
— again, need to disambiguate (want: A" — L)
(special case of word sense disambiguation, WSD)
— “classic” tagging does not deal with lemmatization

(assumes lemmatization done afterwards somehow)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 8

Morphological Analysis: Methods

Word form list
* books: book-2/VBZ, book-1/NNS

Direct coding
 endings: verbreg:s/VBZ, nounreg:s/NNS, adje:er/JJR, ...

 (main) dictionary: book/verbreg, book/nounreg,nic/adje:nice

Finite state machinery (FSM)

* many “lexicons”, with continuation links: reg-root-lex — reg-end-lex

« phonology included but (often) clearly separated

CFG, DATR, Unification, ...

* address linguistic rather than computational phenomena

« 1n fact, better suited for morphological synthesis (generation)
2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 9

Word Lists

Works for English

— “mput” problem: repetitive hand coding

* Implementation 1ssues:

— search trees

— hash tables (Perl!) a Art

— (letter) trie:
a Artv

and,Conj @ ant, NN

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 10

e Minimization?
at Prep

Word-internal'! Segmentation (Direct)

 Strip prefixes: (un-, dis-, ...)
* Repeat for all plausible endings:

— Split rest: root + ending (for every possible ending)
— Find root 1n a dictionary, keep dictionary information

* 1n particular, keep inflection class (such as reg, noun-irreg-e, ...)
— Find ending, check inflection+prefix class match

— If match found:

* Output root-related info (typically, the lemmac(s))
e Output ending-related information (typically, the tag(s)).

I'Word segmentation 1s a different problem (Japanese, speech in general)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 11

Finite State Machinery

* Two-level Morphology
— phonology + “morphotactics” (= morphology)

* Both components use finite-state automata:
— phonology: “two-level rules™, converted to FSA
e ¢e0< +Oleerr
— morphology: linked lexicons

 root-dic: book/’book” = end-noun-reg-dic
 end-noun-reg-dic: +s/”NNS”

* Integration of the two possible (and simple)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 12

Finite State Transducer

FST 1s a FSA where

— symbols are pairs (r:s) from a finite alphabets R and S.

“Checking’ run:
— 1nput data: sequence of pairs, output: Yes/No (accept/do not)
— use as a FSA
Analysis run:
— 1nput data: sequence of only s € S (TLM: surface);
— output: seq. of r € R (TLM: lexical), + lexicon “glosses”
Synthesis (generation) run:

— same as analysis except roles are switched: S <> R, no gloss
2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 13

FST Example

* German umlaut (greatly simplified!):
u <> U 1f (but not only 1f) ¢ h e r follows (Buch — Biicher)
rule: u:i«< c:ch:heerr
FST: oth

Buch/Buch:
uch/Buc oth ' F2; uu
F1 F3 F4 F5 T

th " uU yaoth 0-,0\

Bucher/Bucher: !

v C:C @
F1 F3 F4 F5 F6 N1 \woth @

:oth
Buch/Buck: oth m u:oth
F1 F3 F4 F1

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina

e oth

Parallel Rules, Zero Symbols

 Parallel Rules:
— Each rule ~ one FST
— Run 1n parallel
— Any of them fails = path fails

» Zero symbols (one side only, even though 0:0 o.k.)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 15

— behave like any other

The Lexicon

Ordinary FSA (“lexical” alphabet only)
Used for analysis only (NB: disadvantage of TLM):

— additional constraint:

* lexical string must pass the linked lexicon list

* Implemented as a FSA; compiled from lists of strings
and lexicon links “bank”

Example: “@—»6 NNS

book
2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 16

TLM: Analysis

1. Initialize set of paths to P = {}.

2. Read mput symbols, one at a time.

3. At each symbol, generate all lexical symbols possibly
corresponding to the 0 symbol (voilal).

4. Prolong all

| paths 1n P by all such possible (x:0) pairs.

5. Check eacl

h new path extension against the

phonological FST and lexical FSA (lexical symbols
only); delete impossible paths prefixes.

6. Repeat 4-5 until max. # of consecutive 0 reached.

2018/2019 UFAL MFF

UK NPFLO68/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 17

TLM: Analysis (Cont.)

7. Generate all possible lexical symbols (get from all
FSTs) for the current input symbol, form pairs.

8. Extend all paths from P using all such pairs.

9. Check all paths from P (next step in FST/FSA).
Delete all outright impossible paths.

10. Repeat from 3 until end of input.

11. Collect lexical “glosses™ from all surviving
paths.

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 18

TLM Analysis Example

o~ Bicher:

 suppose each surface letter corresponds to the same symbol at the lexical
level, just it might be i as well as u lexically; plus zeroes (+:0), (0:0)

* Use the FST as before.
» Use lexicons:
root: Buch “book” = end-reg-uml
Bilindni “union” = end-reg-s
end-reg-uml: +0 “NNomSg”
+er “NNomPI”

B:B = Bu:Bii = Buc:Biic = Buch:Biich = Buch+e:Biich0e = Buch-+er:BiichOer

u
2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 19

TLM: Generation

* Do not use the lexicon (well you have to put the
“right” lexical strings together somehow!)

 Start with a lexical string L.
* Generate all possible pairs 1:s for every symbol in L.

* Find all (hopefully only 1!) traversals through the FST
which end 1n a final state.

* From all such traversals, print out the sequence of
surface letters.

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 20

TLM: Some Remarks

Parallel FST (incl. final lexicon FSA)

— can be compiled into a (gigantic) FST
— maybe not so gigantic (XLT - Xerox Language Tools)

“Double-leveling” the lexicon:
— allows for generation from lemma, tag

— needs: rules with strings of unequal length

Rule Compiler
— Karttunen, Kay

PC-KIMMO: free version from www.sil.org (Unix,to0)

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 21

References

Manning-Schuetze:
— Section 16.2

Jelinek:

— Chapter 13 (includes application to LM)
— Chapter 14 (other applications)

Berger & DellaPietras in CL, 1996, 1997

— Improved Iterative Scaling (does not need 2., f:(y,x) =C)
— “Fast” Feature Selection!

Hildebrand, F.B.: Methods of Applied Math., 1952

2018/2019 UFAL MFF UK NPFLO068/Intro to statistical NLP Il/Jan Hajic and Pavel Pecina 22

