
Tagging, Tagsets, and Morphology

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 3

The task of (Morphological) Tagging

• Formally: A+  T
• A is the alphabet of phonemes (A+ denotes any non-empty

sequence of phonemes)
– often: phonemes ~ letters

• T is the set of tags (the “tagset”)

• Recall: 6 levels of language description:
• phonetics ... phonology ... morphology ... syntax ... meaning ...

- a step aside:

• Recall: A+  2(L,C1,C2,...,Cn)  T
morphology tagging: disambiguation (~ “select”)



2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 4

Tagging Examples

• Word form: A+  2(L,C1,C2,...,Cn)  T
– He always books the violin concert tickets early.

• MA: books  {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
• tagging (disambiguation): ...  (Verb,Sg,Pres,3)

– ...was pretty good. However, she did not realize...
• MA: However  {(however-1,Conj/coord,-,-,-),(however-2,Adv,-,-,-)}
• tagging: ...  (Conj/coord,-,-,-)

– [æ n d] [g i v] [i t] [t u:] [j u:] (“and give it to you”)
• MA: [t u:]  {(to-1,Prep),(two,Num),(to-2,Part/inf),(too,Adv)}
• tagging: ...  (Prep)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 5

Tagsets

• General definition:
– tag ~ (c1,c2,...,cn)
– often thought of as a flat list

T = {ti}i=1..n

with some assumed 1:1 mapping
T  (C1,C2,...,Cn)

• English tagsets (see MS):
– Penn treebank (45) (VBZ: Verb,Pres,3,sg, JJR: Adj. Comp.)

– Brown Corpus (87), Claws c5 (62), London-Lund (197)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 6

Other Language Tagsets

• Differences:
– size (10..10k)
– categories covered (POS, Number, Case, Negation,...)
– level of detail
– presentation (short names vs. structured (“positional”))

• Example:

– Czech: AGFS3----1A----
POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG

VOICE

VAR

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 7

Tagging Inside Morphology

• Do tagging first, then morphology:
• Formally: A+  T (L,C1,C2,...,Cn)
• Rationale:

– have |T| < |(L,C1,C2,...,Cn)| (thus, less work for the tagger)
and keep the mapping A+ xT (L,C1,C2,...,Cn) unique.

• Possible for some languages only (“English-like”)
• Same effect within “regular” A+  2(L,C1,C2,...,Cn)  T:

– mapping R : (C1,C2,...,Cn) Treduced,
then (new) unique mapping U: A+  Treduced  (L,T)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 8

Lemmatization

• Full morphological analysis:
MA: A+  2(L,C1,C2,...,Cn)

(recall: a lemma l L is a lexical unit (~ dictionary entry ref)
• Lemmatization: reduced MA:

– L: A+  2L: w  {l; (l,t1,t2,...,tn) MA(w)}
– again, need to disambiguate (want: A+  L)

(special case of word sense disambiguation, WSD)
– “classic” tagging does not deal with lemmatization

(assumes lemmatization done afterwards somehow)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 9

Morphological Analysis: Methods

• Word form list
• books: book-2/VBZ, book-1/NNS

• Direct coding
• endings: verbreg:s/VBZ, nounreg:s/NNS, adje:er/JJR, ...
• (main) dictionary: book/verbreg, book/nounreg,nic/adje:nice

• Finite state machinery (FSM)
• many “lexicons”, with continuation links: reg-root-lex  reg-end-lex
• phonology included but (often) clearly separated

• CFG, DATR, Unification, ...
• address linguistic rather than computational phenomena
• in fact, better suited for morphological synthesis (generation)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 10

Word Lists

• Works for English
– “input” problem: repetitive hand coding

• Implementation issues:
– search trees
– hash tables (Perl!)
– (letter) trie:

• Minimization? t

t

a

n

d
at,Prep

a,Art

a,Artv

ant,NNand,Conj

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 11

Word-internal1 Segmentation (Direct)
• Strip prefixes: (un-, dis-, ...)
• Repeat for all plausible endings:

– Split rest: root + ending (for every possible ending)
– Find root in a dictionary, keep dictionary information

• in particular, keep inflection class (such as reg, noun-irreg-e, ...)

– Find ending, check inflection+prefix class match
– If match found:

• Output root-related info (typically, the lemma(s))
• Output ending-related information (typically, the tag(s)).

1Word segmentation is a different problem (Japanese, speech in general)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 12

Finite State Machinery

• Two-level Morphology
– phonology + “morphotactics” (= morphology)

• Both components use finite-state automata:
– phonology: “two-level rules”, converted to FSA

• e:0 _ +:0 e:e r:r

– morphology: linked lexicons
• root-dic: book/”book” end-noun-reg-dic
• end-noun-reg-dic: +s/”NNS”

• Integration of the two possible (and simple)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 13

Finite State Transducer

• FST is a FSA where
– symbols are pairs (r:s) from a finite alphabets R and S.

• “Checking” run:
– input data: sequence of pairs, output: Yes/No (accept/do not)
– use as a FSA

• Analysis run:
– input data: sequence of only s  S (TLM: surface);
– output: seq. of r  R (TLM: lexical), + lexicon “glosses”

• Synthesis (generation) run:
– same as analysis except roles are switched: S R, no gloss

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 14

FST Example
• German umlaut (greatly simplified!):

u ü if (but not only if) c h e r follows (Buch  Bücher)
rule: u:ü c:c h:h e:e r:r

FST:
Buch/Buch:

F1 F3 F4 F5
Bucher/Bucher:

F1 F3 F4 F5 F6 N1
Buch/Buck:

F1 F3 F4 F1

u:ü

u:oth c:c

h:h e:e

r:r

u:oth

u:ü oth

oth

oth

u:oth

u:oth u:oth

oth

oth

any

F1

F2

F3
F4

F5

F6

N1
oth

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 15

Parallel Rules, Zero Symbols

• Parallel Rules:
– Each rule ~ one FST
– Run in parallel
– Any of them fails  path fails

• Zero symbols (one side only, even though 0:0 o.k.)
– behave like any other

e:0

+:0

F5

F6

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 16

The Lexicon

• Ordinary FSA (“lexical” alphabet only)
• Used for analysis only (NB: disadvantage of TLM):

– additional constraint:
• lexical string must pass the linked lexicon list

• Implemented as a FSA; compiled from lists of strings
and lexicon links

• Example:

b o o k

ka n
+ s

“bank”

“book”

“NNS”

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 17

TLM: Analysis

1. Initialize set of paths to P = {}.
2. Read input symbols, one at a time.
3. At each symbol, generate all lexical symbols possibly

corresponding to the 0 symbol (voilà!).
4. Prolong all paths in P by all such possible (x:0) pairs.
5. Check each new path extension against the

phonological FST and lexical FSA (lexical symbols
only); delete impossible paths prefixes.

6. Repeat 4-5 until max. # of consecutive 0 reached.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 18

TLM: Analysis (Cont.)

7. Generate all possible lexical symbols (get from all
FSTs) for the current input symbol, form pairs.

8. Extend all paths from P using all such pairs.
9. Check all paths from P (next step in FST/FSA).

Delete all outright impossible paths.
10. Repeat from 3 until end of input.
11. Collect lexical “glosses” from all surviving

paths.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 19

TLM Analysis Example
• Bücher:

• suppose each surface letter corresponds to the same symbol at the lexical
level, just ü might be ü as well as u lexically; plus zeroes (+:0), (0:0)

• Use the FST as before.
• Use lexicons:

root: Buch “book”  end-reg-uml
Bündni “union”  end-reg-s

end-reg-uml: +0 “NNomSg”
+er “NNomPl”

B:B  Bu:Bü  Buc:Büc  Buch:Büch  Buch+e:Büch0e  Buch+er:Büch0er
 Bü:Bü  Büc:Büc

u

ü

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 20

TLM: Generation

• Do not use the lexicon (well you have to put the
“right” lexical strings together somehow!)

• Start with a lexical string L.
• Generate all possible pairs l:s for every symbol in L.
• Find all (hopefully only 1!) traversals through the FST

which end in a final state.
• From all such traversals, print out the sequence of

surface letters.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 21

TLM: Some Remarks
• Parallel FST (incl. final lexicon FSA)

– can be compiled into a (gigantic) FST
– maybe not so gigantic (XLT - Xerox Language Tools)

• “Double-leveling” the lexicon:
– allows for generation from lemma, tag
– needs: rules with strings of unequal length

• Rule Compiler
– Karttunen, Kay

• PC-KIMMO: free version from www.sil.org (Unix,too)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 22

References
• Manning-Schuetze:

– Section 16.2

• Jelinek:
– Chapter 13 (includes application to LM)
– Chapter 14 (other applications)

• Berger & DellaPietras in CL, 1996, 1997
– Improved Iterative Scaling (does not need i=1..N fi(y,x) = C)
– “Fast” Feature Selection!

• Hildebrand, F.B.: Methods of Applied Math., 1952

