Introduction to Natural Language Processing I
[Statistické metody zpracování přirozených jazyků I]
(NPFL067)
http://ufal.mff.cuni.cz/courses/npfl067

prof. RNDr. Jan Hajič, Dr. / doc. RNDr. Pavel Pecina, Ph.D.
ÚFAL MFF UK
{hajic,pecina}@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/jan-hajic
LM Smoothing
(And the EM Algorithm)
The Zero Problem

• “Raw” n-gram language model estimate:
 – necessarily, some zeros
 • !many: trigram model $\rightarrow 2.16 \times 10^{14}$ parameters, data $\sim 10^9$ words
 – which are true 0?
 • optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it’s probability vs. other trigrams
 • optimal situation cannot happen, unfortunately (open question: how many data would we need?)
 – \rightarrow we don’t know
 – we must eliminate the zeros

• Two kinds of zeros: $p(w|h) = 0$, or even $p(h) = 0$!
Why do we need Nonzero Probs?

• To avoid infinite Cross Entropy:
 – happens when an event is found in test data which has not been seen in training data
 \[H(p) = \infty: \text{prevents comparing data with } > 0 \text{ “errors”} \]

• To make the system more robust
 – low count estimates:
 • they typically happen for “detailed” but relatively rare appearances
 – high count estimates: reliable but less “detailed”
Eliminating the Zero Probabilities: Smoothing

- Get new $p'(w)$ (same Ω): almost $p(w)$ but no zeros
- Discount w for (some) $p(w) > 0$: new $p'(w) < p(w)$
 \[\sum_{w \in \text{discounted}} (p(w) - p'(w)) = D \]
- Distribute D to all w; $p(w) = 0$: new $p'(w) > p(w)$
 - possibly also to other w with low $p(w)$
- For some w (possibly): $p'(w) = p(w)$
- Make sure $\sum_{w \in \Omega} p'(w) = 1$
- There are many ways of smoothing
Smoothing by Adding 1

• Simplest but not really usable:
 – Predicting words \(w \) from a vocabulary \(V \), training data \(T \):
 \[
p'(w|h) = \frac{c(h,w) + 1}{c(h) + |V|}
 \]
 • for non-conditional distributions: \(p'(w) = \frac{c(w) + 1}{|T| + |V|} \)
 – Problem if \(|V| > c(h) \) (as is often the case; even >> c(h)!

• Example: Training data: \(<s> \) what is it what is small ? \(|T| = 8 \)
 • \(V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, . } \}, |V| = 12 \)
 • \(p(it) = .125, p(what) = .25, p(.) = 0 \) \(p(\text{what is it?}) = .25^2 \cdot .125^2 \approx .001 \)
 \(p(\text{it is flying.}) = .125 \cdot .25 \cdot 0^2 = 0 \)
 • \(p'(it) = .1, p'(\text{what}) = .15, p'(.) = .05 \) \(p'(\text{what is it?}) = .15^2 \cdot .1^2 \approx .0002 \)
 \(p'(\text{it is flying.}) = .1 \cdot .15 \cdot .05^2 \approx .00004 \)
Adding *less than* 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T:
 \[p'(w|h) = \frac{(c(h,w) + \lambda)}{(c(h) + \lambda|V|)}, \lambda < 1 \]

 - for non-conditional distributions: \[p'(w) = \frac{(c(w) + \lambda)}{|T| + \lambda|V|} \]

- Example: Training data: `<s>` what is it what is small ? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
 - p(it) = 0.125, p(what) = 0.25, p(.) = 0
 p(what is it?) = \(0.25 \times 0.125^2 \approx 0.001\)
 p(it is flying.) = \(0.125 \times 0.25 \times 0^2 = 0\)

 - Use \(\lambda = 0.1\):
 - \(p'(it) \approx 0.12\), \(p'(what) \approx 0.23\), \(p'(.) \approx 0.01\)
 - \(p'(what is it?) = 0.23^2 \times 0.12^2 \approx 0.0007\)
 - \(p'(it is flying.) = 0.12 \times 0.23 \times 0.01^2 \approx 0.000003\)
Good - Turing

• Suitable for estimation from large data
 – similar idea: discount/boost the relative frequency estimate:
 \[p_r(w) = \frac{(c(w) + 1) \times N(c(w) + 1)}{|T| \times N(c(w))}, \]
 where \(N(c) \) is the count of words with count \(c \) (count-of-counts)
 specifically, for \(c(w) = 0 \) (unseen words), \(p_r(w) = \frac{N(1)}{|T| \times N(0)} \)
 – good for small counts (< 5-10, where \(N(c) \) is high)
 – variants (see MS)
 – normalization! (so that we have \(\sum_w p'(w) = 1 \))
Good-Turing: An Example

• **Example:** remember: \(p_r(w) = \frac{(c(w) + 1) \times N(c(w) + 1)}{|T| \times N(c(w))} \)

 Training data: \(<s>\) what is it what is small ? \(|T| = 8\)

 \(V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, . } \}, |V| = 12\)

 \(p(\text{it}) = .125, \ p(\text{what}) = .25, \ p(.) = 0 \) \(\quad p(\text{what is it?}) = .25^2 \times .125^2 \cong .001 \)

 \(p(\text{it is flying.}) = .125 \times .25 \times .02 = 0 \)

• Raw reestimation \((N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0 \text{ for } i > 2)\):

 \(p_r(\text{it}) = \frac{(1+1) \times N(1+1)/(8 \times N(1))}{2 \times 2/(8 \times 4)} = .125 \)

 \(p_r(\text{what}) = \frac{(2+1) \times N(2+1)/(8 \times N(2))}{3 \times 0/(8 \times 2)} = 0: \) keep orig. \(p(\text{what}) \)

 \(p_r(.) = \frac{(0+1) \times N(0+1)/(8 \times N(0))}{1 \times 4/(8 \times 6)} \cong .083 \)

• Normalize (divide by \(1.5 = \sum_{w \in V} p_r(w) \)) and compute:

 \(p'(\text{it}) \cong .08, \ p'(\text{what}) \cong .17, \ p'(.) \cong .06 \) \(p'(\text{what is it?}) = .17^2 \times .08^2 \cong .0002 \)

 \(p'(\text{it is flying.}) = .08 \times .17 \times .06^2 \cong .00004 \)
Smoothing by Combination: Linear Interpolation

• Combine what?
 • distributions of various level of detail vs. reliability

• n-gram models:
 • use (n-1)gram, (n-2)gram, ..., uniform

 \[\text{reliability} \]

 \[\text{detail} \]

• Simplest possible combination:
 – sum of probabilities, normalize:
 • \(p(0|0) = .8, \ p(1|0) = .2, \ p(0|1) = 1, \ p(1|1) = 0, \ \ p(0) = .4, \ p(1) = .6: \)
 • \(p'(0|0) = .6, \ p'(1|0) = .4, \ p'(0|1) = .7, \ p'(1|1) = .3 \)
Typical n-gram LM Smoothing

• Weight in less detailed distributions using $\lambda=(\lambda_0, \lambda_1, \lambda_2, \lambda_3)$:

$$p'_\lambda(w_i \mid w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i \mid w_{i-2}, w_{i-1}) + \lambda_2 p_2(w_i \mid w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 / |V|$$

• Normalize:

$$\lambda_i > 0, \sum_{i=0..n} \lambda_i = 1$$ is sufficient ($\lambda_0 = 1 - \sum_{i=1..n} \lambda_i$) (n=3)

• Estimation using MLE:

 – fix the p_3, p_2, p_1 and $|V|$ parameters as estimated from the training data

 – then find such $\{\lambda_i\}$ which minimizes the cross entropy

 (maximizes probability of data):

 $$-(1/|D|) \sum_{i=1..|D|} \log_2(p'_\lambda(w_i \mid h_i))$$
Held-out Data

• What data to use?
 – try the training data T: but we will always get $\lambda_3 = 1$
 • why? (let p_{iT} be an i-gram distribution estimated using r.f. from T)
 • minimizing $H_T(p'_\lambda)$ over a vector λ, $p'_\lambda = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$
 – remember: $H_T(p'_\lambda) = H(p_{3T}) + D(p_{3T} \| p'_\lambda)$;
 • (p_{3T} fixed \rightarrow $H(p_{3T})$ fixed, best)
 – which p'_λ minimizes $H_T(p'_\lambda)$? ... a p'_λ for which $D(p_{3T} \| p'_\lambda) = 0$
 – ...and that’s p_{3T} (because $D(p \| p) = 0$, as we know).
 – ...and certainly $p'_\lambda = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).
 – ($p'_\lambda = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0 / |V|$)
 – thus: do not use the training data for estimation of λ!
 • must hold out part of the training data (heldout data, H):
 • ...call the remaining data the (true/raw) training data, T
 • the test data S (e.g., for comparison purposes): still different data!
The Formulas

• Repeat: minimizing $-(1/|H|)\sum_{i=1..|H|}\log_2(p'_\lambda(w_i|h_i))$ over λ

$$p'_\lambda(w_i|h_i) = p'_\lambda(w_i|w_{i-2},w_{i-1}) = \lambda_3 p_3(w_i|w_{i-2},w_{i-1}) + \lambda_2 p_2(w_i|w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 /|V|$$

• “Expected Counts (of lambdas)”: $j = 0..3$

$$c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p'_\lambda(w_i|h_i))$$

• “Next λ”: $j = 0..3$

$$\lambda_{j,next} = c(\lambda_j) / \sum_{k=0..3} (c(\lambda_k))$$
The (Smoothing) EM Algorithm

1. Start with some λ, such that $\lambda_j > 0$ for all $j \in 0..3$.
2. Compute “Expected Counts” for each λ_j.
3. Compute new set of λ_j, using the “Next λ” formula.
4. Start over at step 2, unless a termination condition is met.

- Termination condition: convergence of λ.
 - Simply set an ε, and finish if $|\lambda_j - \lambda_{j,\text{next}}| < \varepsilon$ for each j (step 3).

- Guaranteed to converge:
 follows from Jensen’s inequality, plus a technical proof.
Remark on Linear Interpolation Smoothing

• “Bucketed” smoothing:
 - use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 - e.g. for $h = \text{(micrograms, per)}$ we will have
 $\lambda(h) = (.999, .0009, .00009, .00001)$
 (because “cubic” is the only word to follow...)
 - actually: not a separate set for each history, but rather a set for “similar” histories (“bucket”):
 $\lambda(b(h))$, where $b: V^2 \rightarrow N$ (in the case of trigrams)
 b classifies histories according to their reliability (\sim frequency)
Bucketed Smoothing: The Algorithm

- First, determine the bucketing function \(b \) (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket (\(f_{\text{max}}(b) \))
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed \(f_{\text{max}}(b) \) (you might end up with slightly more than 1000 buckets)

- Divide your heldout data according to buckets

- Apply the previous algorithm to each bucket and its data
Simple Example

• Raw distribution (unigram only; smooth with uniform):
 \[p(a) = .25, \quad p(b) = .5, \quad p(\alpha) = 1/64 \text{ for } \alpha \in \{c..r\}, = 0 \text{ for the rest: s,t,u,v,w,x,y,z} \]

• Heldout data: baby; use one set of \(\lambda \) (\(\lambda_1 \): unigram, \(\lambda_0 \): uniform)

• Start with \(\lambda_1 = .5; \)
 \[p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27 \]
 \[p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14 \]
 \[p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02 \]

\[c(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times 0 / .02 = 2.72 \]

\[c(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28 \]

 Normalize: \(\lambda_{1,\text{next}} = .68, \quad \lambda_{0,\text{next}} = .32. \)

 Repeat from step 2 (recompute \(p'_{\lambda} \) first for efficient computation, then \(c(\lambda_i), \ldots \))

 Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).
Some More Technical Hints

• Set $V = \{\text{all words from training data}\}$.
 • You may also consider $V = T \cup H$, but it does not make the coding in any way simpler (in fact, harder).
 • But: you must never use the test data for you vocabulary!

• Prepend two "words" in front of all data:
 • avoids beginning-of-data problems
 • call these index -1 and 0: then the formulas hold exactly

• When $c_n(w, h) = 0$:
 • Assign 0 probability to $p_n(w|h)$ where $c_{n-1}(h) > 0$, but a uniform probability ($1/|V|$) to those $p_n(w|h)$ where $c_{n-1}(h) = 0$ [this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!]