Introduction to Natural Language Processing I
[Statistické metody zpracování přirozených jazyků I]
(NPFL067)
http://ufal.mff.cuni.cz/courses/npfl067

prof. RNDr. Jan Hajič, Dr. / doc. RNDr. Pavel Pecina, Ph.D.
ÚFAL MFF UK
{hajic,pecina}@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/jan-hajic
Intro to NLP

• Instructors: Jan Hajič / Pavel Pecina
 – ÚFAL MFF UK, office: 420 / 422 MS
 – Hours: J. Hajic: Mon 10:00-11:00
 – preferred contact: {hajic,pecina}@ufal.mff.cuni.cz

• Room & time:
 – lecture: room S1, Tue 12:20-13:50
 – seminar [cvičení] room S1, Tue 14:00-15:30
 – Oct 2, 2018 – Jan 8, 2019
 – Final written exam (probable) date: Jan 15, 2019
Textbooks you need

- Manning, C. D., Schütze, H.:

- Jurafsky, D., Martin, J.H.:
Other reading

- **Charniak, E.**

- **Cover, T. M., Thomas, J. A.**:

- **Jelinek, F.**:

- **Proceedings of major conferences:**
 - ACL (Assoc. of Computational Linguistics)
 - EACL/NAACL/IJCNLP (European/American/Asian Chapter of ACL)
 - EMNLP (Empirical Methods in NLP)
 - COLING (Intl. Committee of Computational Linguistics)
Course requirements

• Grade components: requirements & weights:
 – Homeworks (1): 50%
 – Final Exam: 50%

• Exam:
 – approx. 4 questions:
 • mostly explanatory answers (1/4 page or so),
 • algorithms
 • only a few multiple choice questions
Homeworks

• Homework:
 – Entropy, Language Modeling

• Organization
 • (little) paper-and-pencil exercises, lot of programming
 • turning-in mechanism: see the web
 • no plagiarism!

• Deadline
 – Jan. 31, 2018
 – Late penalty: 5% of grade (0-100) per day (max. 50%)
Course segments

• Intro & Probability & Information Theory
 – The very basics: definitions, formulas, examples.
• Language Modeling
 – n-gram models, parameter estimation
 – smoothing (EM algorithm)
• Words and the Lexicon
 – word classes, mutual information, bit of lexicography
• Hidden Markov Models
 – background, algorithms, parameter estimation
NLP: The Main Issues

• Why is NLP difficult?
 – many “words”, many “phenomena” --> many “rules”
 • OED: 400k words; Finnish lexicon (of forms): ~2 . 10^7
 • sentences, clauses, phrases, constituents, coordination,
 negation, imperatives/questions, inflections, parts of speech,
 pronunciation, topic/focus, and much more!
 – irregularity (exceptions, exceptions to the exceptions, ...)
 • potato -> potato es (tomato, hero,...); photo -> photo s, and
 even: both mango -> mango s or -> mango es
 • Adjective / Noun order: new book, electrical engineering,
 general regulations, flower garden, garden flower, ...: but
 Governor General
Difficulties in NLP (cont.)

- ambiguity
 - books: NOUN or VERB?
 - you need many books vs. she books her flights online
 - No left turn weekdays 4-6 pm / except transit vehicles
 (Charles Street at Cold Spring)
 - when may transit vehicles turn: Always? Never?
 - Thank you for not smoking, drinking, eating or playing
 radios without earphones. (*MTA bus*)
 - Thank you for not eating without earphones??
 - or even: Thank you for not drinking without earphones!?
 - My neighbor’s hat was taken by wind. He tried to catch it.
 - ...catch the wind or ...catch the hat?
(Categorical) Rules or Statistics?

• Preferences:
 – clear cases: context clues: she books --> books is a verb
 – rule: if an ambiguous word (verb/nonverb) is preceded by
 a matching personal pronoun -> word is a verb
 – less clear cases: pronoun reference
 – she/he/it refers to the most recent noun or pronoun (?) (but
 maybe we can specify exceptions)
 – selectional:
 – catching hat >> catching wind (but why not?)
 – semantic:
 – never thank for drinking in a bus! (but what about the
 earphones?)
Solutions

• Don’t guess if you know:
 • morphology (inflections)
 • lexicons (lists of words)
 • unambiguous names
 • perhaps some (really) fixed phrases
 • syntactic rules?

• Use statistics (based on real-world data) for preferences (only?)

 • No doubt: but this is the big question!
Statistical NLP

• Imagine:
 – Each sentence $W = \{ w_1, w_2, ..., w_n \}$ gets a probability $P(W|X)$ in a context X (think of it in the intuitive sense for now)
 – For every possible context X, sort all the imaginable sentences W according to $P(W|X)$:
 – Ideal situation:

![Graph showing probability distribution]

- best sentence (most probable in context X)
- “ungrammatical” sentences

NB: same for interpretation
Real World Situation

• Unable to specify set of grammatical sentences today using fixed “categorical” rules (maybe never, cf. arguments in MS)

• Use statistical “model” based on **REAL WORLD DATA** and care about the best sentence only (disregarding the “grammaticality” issue)