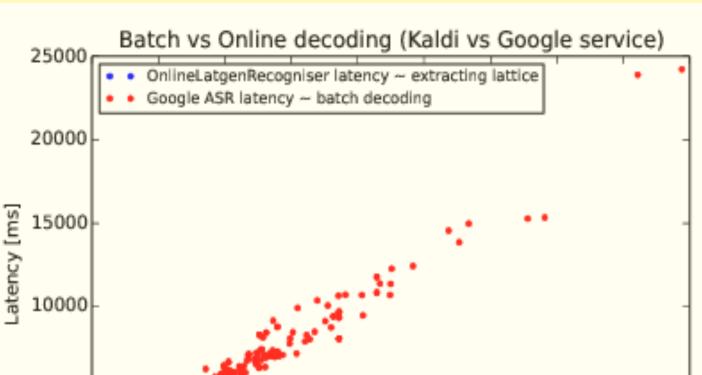
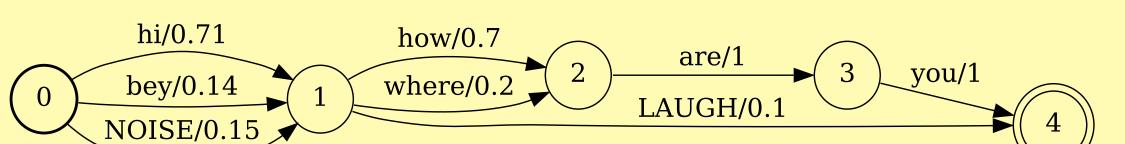
Free on-line speech recogniser based on Kaldi ASR toolkit producing word posterior lattices **Ondřej Plátek and Filip Jurčíček** {oplatek, jurcicek}@ufal.mff.cuni.cz


Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University in Prague

Motivation: Batch versus Online Decoding

Batch Decoding


- Waits for the end of the utterance to start decoding
- Latency increases linearly with the utterance length

Online Decoding

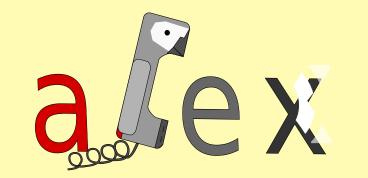
OnlineLatgenRecognizer Design

- Simple and responsive
- Robust
- Guaranteed latency
- Iterative decoding
- Supports LDA + MLLT, bMMI, MPE
- Straightforward C++ interface
- Python extension
- Outputs Word Posterior Lattices

- Incremental processing in small chunks
- Result: **low latency**

The Kaldi ASR Toolkit

- Based on Finite-State Transducers
- State-of-the-art acoustic modelling techniques
- Wave duration [s]
- Well maintained by an enthusiastic community


 Lacked support for online decoding

Motivation: Get Kaldi's high performance with low latency for use in a Spoken Dialogue System

Evaluation in a Spoken Dialogue System

 Tested in production environment in the Alex spoken dialogue system framework

Czech public transport information domain

C++API

AudioIn(audio) - Accepts audio.

Decode(max frames)

- Decodes at most max frames

PruneFinal() - prepares decoder for lattice extraction.

GetLattice() - extracts lattice

Reset() - prepare for new utterance

GetBestPath() - single output

Thin Python Wrapper

OnlineLatgenRecogniser rec; rec.Setup(...); size_t decoded_now = 0, max_decode = 10; char *audio array = NULL;

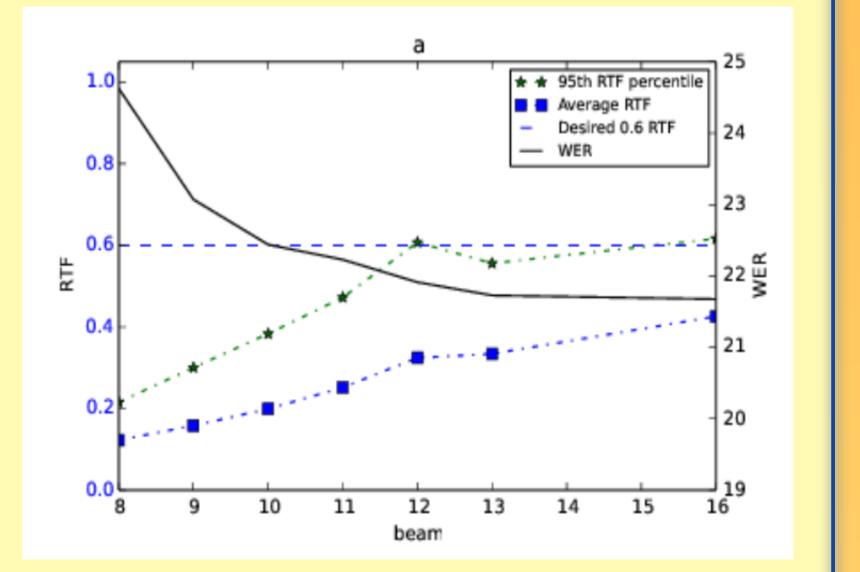
while (recognitionOn()){ size_t audio_len = getAudio(audio_array); rec.AudioIn(audio_array, audio_len); do { decoded_now = rec.Decode(max_decode);

} while(decoded_now > 0);

rec.PruneFinal(); double tot lik; fst::VectorFst<fst::LogArc> word post lat; rec.GetLattice(&word_post_lat, &tot_lik); rec.Reset();

class AsrSimplifiedInAlex: def rec_in(self, frame): self.decoder.frame_in(frame.payload) dec t = self.decoder.decode(max frames) while dec t > 0: frame total += dec t dec t = self.decoder.decode(max frames)

Parameter grid search


- **beam** controls a dynamic number of alternative ASR hypotheses
- max-active-states -

a threshold on the number of alternative hypotheses

• lattice-beam - level of approximation during phoneme lattice extraction

Evaluation

- On 1000 recorded utterances from the Alex system, from previously unseen dialogues
- Utterance length varies
- WER: 22%
- Decoder latency well below 200 ms in 95% cases
- Noisy utterances slow down the decoder
- Latency and decoding speed do not depend on utterance

def hyp_out(self): self.decoder.prune final() utt_lik, lat = self.decoder.get_lattice()

Training Scripts for Acoustic Modelling

- Speaker-independent models for Kaldi
- LDA+MLLT+bMMI
- Advanced acoustic models retrained based on simpler models, monophones trained from flat start


tri2a ,tri2b_mmi mono-tri1/-tri2b -tri2b bmmi tri2b_mpe

Training Data Sizes

audio[hour] # sentences # words dataset English

Results

Method	bigram WER
tri $\Delta + \Delta \Delta$	56.6
tri LDA+MLLT	53.9
tri LDA+MLLT+	MMI 49.5
tri LDA+MLLT+	bMMI 49.3
tri LDA+MLLT+	MPE 49.2

This poster is published under Creative Commons Attribution-ShareAlike 3.0 Unported License. Based on a poster template by Miroslav Jezek. Presented at the Sigdial 2014 conference, Philadelphia, PA, USA. This research was funded by the Czech Ministry of Education under the grant agreement LK11221 and by core research funding of Charles University in Prague. Language resources presented in this work are stored and distributed by the LINDAT/CLARIN project of the Czech Ministry of Education (project LM2010013).

training	41:30	47,463	178,110	Method	bigram WER
development	01:45	2,000	7,376		
test	01:46	2,000	7,772	\sim tri $\Delta + \Delta \Delta$	16.2
Czech				tri LDA+MLLT	15.8
training	15:25	22,567	126,333	tri LDA+MLLT+	-MMI 10.4
development	01:23	2,000	11,478	tri LDA+MLLT+	-bMMI 10.2
test	01:22	2,000	11,204	tri LDA+MLLT+	-MPE 11.1

Summary

- Apache 2.0 license
- Simple C++ API, easy to use Python thin wrapper
- Used in the Alex spoken dialogue system
- High quality word posterior lattices
- Training scripts for free acoustic data