
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Ond°ej Du²ek

Deep Automatic Analysis of English

Institute of Formal and Applied Linguistics

Supervisor: Prof. RNDr. Jan Haji£, Dr.

Study program: Computer Science

Study �eld: Mathematical Linguistics

2010

I would like to express my thanks to Prof. RNDr. Jan Haji£, Dr. for inspiring
and supervising this thesis.

I am also very grateful to my brother Pavel for his grammar corrections, to
my whole family for their support and to my dearest Jana for her love and care.

I certify that this diploma thesis is my own work, and that I only used the cited
literature. The thesis is freely available for all who can use it.

Prague, August 6th, 2010 Ond°ej Du²ek

3

Contents

Abstract 7

1 Introduction 9
1.1 The Problem of Deep Language Analysis 9
1.2 The Aims of This Work . 10
1.3 Structure of the Thesis . 11

2 Related Work 12
2.1 The CoNLL 2009 Shared Task . 12
2.2 Other Approaches to Deep Language Analysis 14

3 Data Used 15
3.1 Syntactic Annotation . 15
3.2 PropBank and NomBank Semantic Annotation 16
3.3 Comparison to Prague English Dependency Treebank Annotation 17
3.4 The CoNLL Corpus: Data Format and Statistics 18

4 The Used Machine Learning Environment 23
4.1 Splitting the Experiments into Subtasks 23
4.2 Wildcards and Task Expansion 25
4.3 Running the Tasks in Parallel . 26
4.4 Integration of Third-Party Libraries 27

5 Fundaments of Our Deep Analysis System 28
5.1 Basic Approaches . 28
5.2 Classi�ers . 29
5.3 Data Conversion . 32
5.4 Generated Features . 33
5.5 Feature Filtering and Selection 35
5.6 Measuring the Classi�er Performance 38

6 Predicate Disambiguation 40
6.1 Observations on the Data . 40
6.2 Selecting the Classi�er Setting . 42
6.3 Feature Selection Approaches . 46
6.4 The Predicate Disambiguation System 48

5

7 Argument Classi�cation 51
7.1 Argument Candidates . 51
7.2 Separate and Joint Argument Identi�cation 54
7.3 Di�erent Argument Types . 54
7.4 Classi�er Setting . 55
7.5 Merging Rare Predicates . 57
7.6 Post-Inference on Valency Arguments 59
7.7 Adverbial Modi�ers Labelling . 61
7.8 The Argument Classi�cation System 63

8 The Deep Analysis System: Structure and Performance 66
8.1 Overall Organization . 66
8.2 Features Evaluation . 67
8.3 System Performance on the CoNLL 2009 Evaluation Data 69
8.4 Comparison to CoNLL 2009 Shared Task Systems 72
8.5 Possible Sources of Errors . 73

9 Conclusions 75
9.1 Results . 75
9.2 Further Research . 76

List of Abbreviations 79

Bibliography 81

A List of Machine Learning Tasks Implemented 87

B Contents of the Enclosed CD 91

6

Title: Deep Automatic Analysis of English
Author: Ond°ej Du²ek
Department: Institute of Formal and Applied Linguistics
Supervisor: Prof. RNDr. Jan Haji£, Dr.
Supervisor's e-mail address: hajic@ufal.mff.cuni.cz

Abstract: This thesis contains an account of our studies of deep or semantic
analysis of English, particularly as described using predicate-argument structure
description. Our main goal is to create a system for automatic inference of se-
mantic relations between predicates and arguments � semantic role labeling.
We developed a framework for parallel processing of our experiments, integrat-
ing third-party machine learning tools and implementing well-known as well as
novel procedures. We investigated the current approaches to the problem and
proposed several improvements, such as new classi�cation features, separate han-
dling of adverbial modi�ers or special treatment for rare predicates. Based on
our research, we designed and implemented our own semantic analysis system,
consisting of predicate disambiguation and argument classi�cation subtasks. We
evaluated our solution using the CoNLL 2009 Shared Task English corpus.

Keywords: deep analysis, semantic role labeling, machine learning

Název práce: Hloubková automatická analýza angli£tiny
Autor: Ond°ej Du²ek
Katedra (ústav): Ústav formální a aplikované lingvistiky
Vedoucí diplomové práce: Prof. RNDr. Jan Haji£, Dr.
e-mail vedoucího: hajic@ufal.mff.cuni.cz

Abstrakt: Tato diplomová práce popisuje studii hloubkové, tj. sémantické ana-
lýzy angli£tiny, zejména na základ¥ teoretického popisu pomocí propozic a jejich
argumentové struktury. Hlavním cílem práce je vytvo°it systém pro automa-
tickou klasi�kaci sémantických vztah· mezi propozicemi a jejich argumenty �
zna£kování sémantických rolí. Vyvinuli jsme prost°edí pro paralelní zpracování
experiment·, p°i£emº jsme integrovali existující nástroje pro strojové u£ení a
implementovali jak jiº popsané, tak nové postupy. Prostudovali jsme známé p°í-
stupy k tomuto problému a navrhli n¥kolik vylep²ení, jako nap°. nové rysy pro
klasi�kaci, odd¥lené °e²ení pro p°íslove£ná ur£ení nebo zvlá²tní zacházení s °íd-
kými predikáty. Na základ¥ tohoto výzkumu jsme zkonstruovali vlastní systém
pro sémantickou analýzu, který sestává z modul· pro disambiguaci predikát· a
klasi�kaci argument·. Práce je zakon£ena testem na²eho systému na anglickém
korpusu ur£eném pro sout¥º CoNLL 2009 Shared Task.

Klí£ová slova: hloubková analýza, zna£kování sémantických rolí, strojové u£ení

7

1
Introduction

1.1 The Problem of Deep Language Analysis

Both in descriptive linguistic theories and in automatic natural language pro-
cessing (NLP) applications, the formalization of the language concept is usually
split into several linguistic layers, which di�er in the level of abstraction � from
the bare matter of spoken word or written text itself up to the cognitive content
of the utterance. The number and extent of those layers may vary across di�er-
ent approaches and theories, but their hierarchical structure remains. Language
descriptions most usually include phonetics or graphemics1, morphology, syntax,
semantics and pragmatics. Our work is mainly concerned with semantics, i.e.
with obtaining the linguistic meaning (Sgall et al., 1986, p. 35�.) of utterances2.
We consider the language analysis to be a sequence of analyses on the individ-
ual levels, successively climbing from the most concrete to more abstract layers.
Therefore, the deep or semantic analysis comes after the phonetic, morphological
and syntactic (i.e. shallower) analyses have taken place.

In some theoretical approaches, such as the Prague Functional Generative
Description (FGD) (Sgall et al., 1986), the description of linguistic meaning
is included in the deep syntax (tectogrammatical) layer. On the other hand,
most resources used in this thesis, such as the Proposition Bank (PropBank)
(Palmer et al., 2005), denote the analogical layer of annotation as semantic.
Nevertheless, both descriptions work with a labeled dependency structure, which
is the main object of the following work. Other meaning representations, such
as FrameNet (Baker et al., 1998), operate with comparable constructs.

1In NLP, the input text split to individual words or tokens is the �rst descriptive layer.
2Please note that linguistic meaning di�ers from the cognitive content, as it refers solely

to the content expressed by the language, without taking mental processes or pragmatics into
account.

9

While the FGD and the projects stemming from it, such as the Prague De-
pendency Treebank (PDT) (Haji£ et al., 2006) or the Prague English Dependency
Treebank (PEDT) (Cinková et al., 2009) use labeled dependency tree structure
on the tectogrammatical level, the PropBank annotation (Kingsbury and Palmer,
2003) employs a predicate-argument description of propositions � semantic pred-
icates, i.e. meaning representations of events that require or attract other objects,
their arguments, to complete situation in various ways.

The underlying notions of valency (the ability to bind depending elements)
and semantic roles (cf. e.g. Gildea and Jurafsky, 2002; Carreras and Marquez,
2005; Sgall et al., 1986, p. 123) (semantic types of the dependency relation) are
visible in both structures, though. In this thesis, we focus on the predicate-
argument approach to the description of these phenomena.

The task of deep analysis, also referred to as Semantic Role Labeling (SRL),
of an English sentence using predicate-argument structure may be then divided
into following sub-tasks:

1. Predicate Identi�cation (PI) � one must �rst identify all words that func-
tion as semantic predicates in the given sentence.

2. Predicate Disambiguation (PD) � the word sense of each predicate must
be determined.

3. Argument Identi�cation (AI) � for each predicate in the sentence, we have
to �nd all its arguments.

4. Argument Classi�cation (AC) or Argument Labeling � the particular se-
mantic role of each predicate needs to be identi�ed.

The output of automated semantic analysis may then �nd further applica-
tions in natural language processing, namely in information retrieval, question
answering or machine translation systems. Most of the current research in this
�eld concentrates on using statistical approaches � applying a machine learning
(ML) classi�er algorithm, such as a support vector machine (SVM) (Boser et al.,
1992) or a maximum entropy model (MaxEnt) (Jelinek, 1997), to estimate a set
of unknown parameters using features3 of the hand-annotated training data in-
stances (i.e. any characteristics of the individual instances, such as word forms,
parts of speech, syntactic features etc.) and then to use these parameters to
automatically classify further texts.

1.2 The Aims of This Work

The annual Conferences on Computational Natural Language Learning (CoNLL)
include usually a Shared Task � a competition of natural language processing
systems. In 2009, the Shared Task (Haji£ et al., 2009) featured syntactic parsing
and semantic analysis tasks in seven languages, including English. It was possi-
ble to take part either in both syntactic and semantic subtasks, or in semantic

3In statistics, features are usually called attributes.

10

analysis alone. The participants of the SRL task obtained a semantically anno-
tated corpus for each language to train their deep analysis systems, along with
a set of evaluation sentences that was used to compare and rank the individual
setups. The predicate identi�cation was not included in the task assignment �
the semantic predicates were marked in both training and evaluation data.

This competition provided us with an excellent source of inspiration. Since
the training and evaluation corpora are now available to us, we can use them for
further experiments. Our main goal is therefore to design and implement our
own statistical classi�er system for deep analysis of English and apply it to the
CoNLL 2009 Shared Task corpora.

In doing so, we combine and test various known approaches and include our
own ideas and settings in order to achieve better performance. We also evaluate
our system using the same standard metric that was employed in the last year's
competition, so that we may directly compare our system to other setups.

1.3 Structure of the Thesis

In Chapter 2, we discuss the related work in the �eld of semantic analysis, in-
cluding, but not limited to the CoNLL 2009 Shared Task participants' papers,
which describe the individual SRL system setups.

Chapter 3 is focused on the description of the CoNLL 2009 English corpus,
which we adopt for our own experiments. We summarize its original sources,
the annotation provided and the data format employed. A comparison to the
Prague tectogrammatical annotation (Cinková et al., 2009) is also included.

We have designed and implemented our own Java framework for processing
multiple machine learning tasks in parallel, which we then apply in our semantic
analysis system, in combination with third-party ML libraries. The description of
our framework and the integration of external libraries may be found in Chapter
4.

Chapter 5 then continues with a brief explanation of the knownML techniques
we adopted for our SRL system, using the integrated third-party libraries and
our own implementations: classi�er algorithms, feature generation, ranking and
selection. In addition, we describe several new features which we designed for our
system, as well as our own implementation of the required input data conversion.

An account of our own research � a detailed description of the particular ap-
plications of the adopted approaches and newly introduced improvements in our
own SRL solution then continues in Chapter 6, which concentrates on predicate
disambiguation, in Chapter 7 focused on argument identi�cation and classi�ca-
tion and �nally in Chapter 8, which contains the overall description of our setup
and a comprehensive analysis of its performance.

Chapter 9 then concludes the thesis with a summary of our results, followed
by improvement and further application proposals.

11

2
Related Work

Deep analysis in the form of automatic inference of abstract semantic roles, in-
troduced by Gildea and Jurafsky (2002), has been a very active �eld of research
in recent years. The application of supervised ML, i.e. estimating the unknown
parameters of a classi�cation model statistically from hand-annotated (gold stan-
dard) training data set, has been made possible with the emerging of semantically
annotated treebanks, such as the PDT (Haji£ et al., 2006) or PropBank (Palmer
et al., 2005). Since it also has been a subject of the last year's CoNLL Shared
Task, as we already described in Section 1.2, the proceedings of this contest con-
tain an up-to-date reference of various approaches to SRL, which we discuss in
Section 2.1. We also include a short account of other important research and
practice in the �eld of semantic analysis in Section 2.2.

2.1 The CoNLL 2009 Shared Task

The CoNLL 2009 Shared Task represents a project, part of which is most relevant
to the topic at hand1. Therefore, the participants' papers describing 18 of the
competing system setups comprise a voluminous source of information and ideas
regarding semantic analysis.

First, we will analyze the architecture of the CoNLL 2009 SRL systems in
order to consider some selected concepts in our own system later. In general,
all of the systems included a statistical learning algorithm and various feature
selection and data pruning techniques. However, the particular ML methods
applied vary dramatically, as do the overall organizations of the systems. Most
of the participants divided the whole task into subtasks (similar to our listing in
Section 1.1) and arranged the setup as a pipeline, each step of which solves one of

1Most of the systems are divided into the parsing and SRL subsystems. In the following,
we will omit the syntactic subtask and concentrate solely on methods applied for the semantic
analysis.

12

the subtasks. The individual steps could then make use of di�erent classi�cation
and feature selection techniques. The organization of the pipeline varies among
the systems: While most of them solve the PD task as the �rst step of the
semantic analysis process, several (Bohnet, 2009; Zhao et al., 2009) prefer to
solve the AI and AC tasks �rst. Some of the systems also combine the AI and
AC tasks into one (Che et al., 2009; Björkelund et al., 2009); Meza-Ruiz and
Riedel (2009) even created a system which joins all the subtasks into one.

Now let us take a look at the machine learning cores of the participating
setups: The approaches of Zhao et al. (2009), Che et al. (2009) and Dai et al.
(2009), as well as of several others, feature a MaxEnt classi�er, which is a very
common and successful practice in various NLP tasks. Björkelund et al. (2009)
apply logistic regression on the data, which is in a way similar to the MaxEnt
method2. Che et al. (2009) also use SVM classifers in the PD part of their system,
as does Täckström (2009). Other systems (Bohnet, 2009; Watanabe et al., 2009)
employ various maximum-margin algorithms, such as the margin-infused relaxed
algorithm (MIRA) (Crammer and Singer, 2003). There is also a group of systems
based on diverse logic devices: Meza-Ruiz and Riedel (2009) use Markov logic
networks in combination with the MIRA algorithm, while Moreau and Tellier
(2009) work with Conditional Random Fields and Gesmundo et al. (2009) utilize
the incremental sigmoid belief networks. Many systems included not one, but
multiple classi�ers, one for each predicate lemma or sense (Che et al., 2009);
(Björkelund et al., 2009). The results of the competition show that most of the
various machine learning approaches used are capable of reaching a comparable
quality level of results if trained properly3.

Most systems use very similar kinds of features that are extracted from the
training and evaluation data sets, exploiting the provided morphological and syn-
tactical annotations and combining it to describe the various relations between
the words4 in a sentence. Watanabe et al. (2009) use also �global features" (a set
of all arguments relating to one predicate) in their semantic labeler. Björkelund
et al. (2009) incorporate feature bigrams in order to enlarge the set of relations
indicated.

The applied feature selection techniques include the greedy search procedure
(Björkelund et al., 2009; Zeman, 2009, among others), as well as beam search
(Gesmundo et al., 2009; Björkelund et al., 2009, and others) and various ranking
approaches. Some authors chose to prune the semantic argument candidates to
reduce the amount of data that is needed be passed to the classi�er � both Zhao
et al. (2009) and Watanabe et al. (2009) describe very similar solutions to this
problem.

In addition, most of the authors introduced further enhancements into their
systems. The iterative approach, where the results of the semantic analysis are
used as an input for a repeated classi�cation, taken by Dai et al. (2009) is one

2We will discuss this similarity in Section 5.2.
3This becomes apparent also from our own classi�er selection and tuning tests (see Sections

5.2 and 6.2).
4Please note that in this and the following chapters, the term �word� refers not only to

words, but also to all other tokens in the input text, such as punctuation signs.

13

of them. Other researchers included global re-ranking of semantic argument
candidates (Björkelund et al., 2009) or other forms of post-inference, such as
integer linear programming (ILP) (Che et al., 2009).

The CoNLL 2009 Shared Task contest has provided us with a variety of
options to consider for building our own SRL system setup, as well as further
insights into the problem: Some of the competitors' papers, such as that of Zeman
(2009), also included a study of the data we intended to use and raised some
questions about its sparseness, i.e. how many training examples are available in
the individual subproblems.

2.2 Other Approaches to Deep Language Analysis

There are also many other works in semantic analysis and particularly in au-
tomatic SRL systems using machine learning techniques. The CoNLL Shared
Tasks of 2004, 2005 (Carreras and Marquez, 2004, 2005) and 2008 (Surdeanu
et al., 2008) have all been dedicated to semantic analysis of English using the
PropBank corpus5. The SRL solvers described in the proceedings of these con-
tests mostly follow the pipeline classi�cation scheme described in Section 2.1,
with MaxEnt and SVM as the most widely used machine learning techniques.
Some of the 2008 systems have been adapted for the 2009 competition, which
provides us with more information about the versions of both years, as well as
additional reports of gradual improvements (Che et al., 2008; Chen et al., 2008).

Further research concentrates on similar tasks: Jiang and Ng (2006) provide
an analysis of NomBank (Meyers et al., 2004) semantic annotation and a descrip-
tion of a MaxEnt deep analysis system. Punyakanok et al. (2004) introduced the
ILP technique into SRL and gave a detailed report. Giuglea and Moschitti (2006)
presented a system that retrieves its semantic annotation training data from three
di�erent resources � PropBank, NomBank and FrameNet. Loper et al. (2007)
are currently developing a project to link several annotated resources perma-
nently, which has been a valuable tool for our preliminary analyses of predicate
behavior.

5The 2008 contest also included syntactic parsing.

14

3
Data Used

The CoNLL 2008/2009 English corpus (Surdeanu et al., 2008; Haji£ et al., 2009),
which we adopted for the experiments with our deep analysis system, unites
data from di�erent sources to provide the deep level of annotation. It consists of
English articles from the Wall Street Journal with morphological and (thoroughly
modi�ed) syntactical annotation of the Penn Treebank (PTB) (Marcus et al.,
1993) (described in Section 3.1), combined with the semantic annotation of verbal
and nominal predicates from PropBank (Palmer et al., 2005) and NomBank
(Meyers et al., 2004), respectively. We provide an account of the semantic schema
applied (in Section 3.2) and compare it to the Prague FGD approaches in Section
3.3. Section 3.4 concludes this chapter with a detailed explanation of the original
CoNLL corpus format, including basic data statistics.

3.1 Syntactic Annotation

The Penn Treebank was one of the �rst large syntactically parsed corpora and is
still widely used as a standard English data set for various NLP tasks that require
syntactic information. The morphological annotation of this corpus features a
tagset (Santorini, 1990) with about forty mnemonic tag names that mark the
individual English parts of speech and their in�ectional subtypes. The data for
this linguistic layer has been used for the CoNLL 2009 corpus without changes.
However, the syntactic part of PTB has been adapted to re�ect the dependency
paradigm in syntactic and semantic description.

The original PTB employed a constituent parse tree schema (see Figure 3.1)
based on the theory of Government and Binding (Chomsky, 1981). Each inner
node of the tree corresponds to one or more immediately adjacent words in the
sentence � a phrase. An edge in the tree corresponds to the relation of immediate
constituency. The nodes in dependency trees (also displayed in Figure 3.1) by
contrast do not represent constituents, but only the individual words. Its edges

15

Figure 3.1: Syntactic representations of sentences

The top left picture shows a parse tree, the top right picture displays a dependency tree. The
bottom chart is a depiction of a non-projective sentence in a dependency paradigm (arrows
represent dependencies). The non-projectivity is indicated by crossing of arrows.

then show the syntactic dependency relation. Since there is no limitation on the
position of dependent nodes in the sentence as with constituent trees, one can
easily represent non-projective sentences, where one or more dependent nodes
are topologically separated from their head nodes by other nodes (an example is
shown in Figure 3.1). Such sentences, which pose a problem for the constituent
tree description (the phrases must not overlap), are not very common in English,
but occur very often in certain other languages.

Since dependency parsing algorithms have become more e�ective and can
handle non-projectivity (cf. McDonald et al., 2005), it is more convenient to use
dependency structures to describe syntactic relationships. Therefore, the PTB
corpus has been automatically converted to a dependency schema for the pur-
poses of CoNLL 2008/2009 (Johansson and Nugues, 2007; Surdeanu et al., 2008),
while its edge labels have been adapted to meet the new paradigm and further
enriched, so that they can serve to a better automatic semantic analysis1. The
modi�ed dependency labels also include named entity indication, which origi-
nates from the BBN Pronoun Coreference and Entity Type Corpus (Weischedel
and Brunstein, 2005).

3.2 PropBank and NomBank Semantic Annotation

The semantic information in the CoNLL English corpus incorporates annota-
tions from PropBank and NomBank, both of which feature a predicate-argument

1For details on the dependency labels and syntax in this corpus, see the �le format and the
description of the DEPREL �eld at http://yr-bcn.es/conll2008.

16

http://yr-bcn.es/conll2008

structure (cf. Section 1.1 and Kingsbury and Palmer, 2002). Not only the struc-
ture itself is very similar, they also use the same approach to semantic argument
labeling. They distinguish the following four kinds of semantic arguments2 3:

• (Valency) arguments, semantically required complements of the given pred-
icate, which are characteristic for a given predicate. The semantic labels
of arguments are numbered (A0...A5) and although there are some com-
mon prototypes, the number assignment is speci�c for each predicate, thus
creating predicate frames (see below).

• Argument modi�ers or adverbial modi�ers4, voluntary semantic modi�ca-
tions or complements of predicates, which are not speci�c to one predicate,
but may occur virtually in any sentence. They include e.g. the indication
of time, manner or other properties of the event or entity described by the
predicate.

• References, which carry out the same function as arguments or modi�ers
expressed elsewhere in the text. They are often represented by pronouns.

• Coreferences, which behave similarly to references, except for the fact that
they must occur only after the referenced argument in the same sentence.

There are indeed minor di�erences between the observed labels in NomBank and
PropBank, but their basic concepts remain the same.

As already mentioned, each predicate, i.e. each noun or verb in a given sense,
has its own argument number assignment or frame � even nouns and verbs with
the same base form (lemma) may use di�erent numberings. The frames describe
the individual arguments and their semantic properties, e.g. in most verbs, A0
refers to the semantic actor of the event. A lexicon of frames is provided for all
the predicates that occur in the corpus, thus completing its semantic description.

3.3 Comparison to Prague English Dependency Treebank

Annotation

As we mentioned in Section 1.1, the predicate-argument description is not the
only way of representing semantic information. The PEDT (Cinková et al.,
2009), a semantic resource which is currently being developed at the Institute of
Formal and Applied Linguistics, works with the same Wall Street Journal articles
as the CoNLL corpus and features a syntactic layer (called analytical in the
FGD-nomenclature) with dependency trees, which were also converted from the
constituent PTB trees. However, it also employs a semantic (tectogrammatical)

2For more details on PropBank annotation, see (Moreda and Palomar, 2006) or the instruc-
tions at http://verbs.colorado.edu/~mpalmer/projects/ace.html.

3The NomBank annotation is thoroughly described in the guidelines at:
http://nlp.cs.nyu.edu/meyers/nombank/nombank-specs-2007.pdf.

4For additional consequences of the distinction between valency arguments and adverbial
modi�ers for SRL tasks, please refer to Section 7.3.

17

http://verbs.colorado.edu/~mpalmer/projects/ace.html
http://nlp.cs.nyu.edu/meyers/nombank/nombank-specs-2007.pdf

dependency tree schema: rather than using predicates and arguments which
pertain exclusively to nouns and verbs, it organizes all the words that carry
semantic information into a hierarchy of dependencies. The words whose function
is mainly grammatical, such as articles, prepositions or function verbs5, do not
occur in the semantic tree as separate nodes, but are represented as features
of other nodes. In addition, there are also some nodes for words that are not
explicitly expressed in the utterance, but their presence follows from its semantic
content.

A comparison of both annotations is shown in Figure 3.26. It is apparent
that the PEDT annotation encompasses richer semantic information, because it
also contains semantic dependencies of adjectives and adverbs, as well as more
detailed structure when compared to the two-level structure of PropBank and
NomBank. The semantic role labels, which adhere to the FGD, are also di�er-
ent from the numbered arguments of PropBank and NomBank, even though the
PEDT valency lexicon EngVALLEX (Semecký and Cinková, 2006) is originally
based on PropBank and NomBank frames. While a wide labels remain semanti-
cally constant across di�erent predicates, the most frequent valency arguments
are subject to shifting with verbs, i.e. the �rst argument of any verb is always
called ACT and the second one PAT, even if they do not denote the semantic roles
of an actor and an a�ected object, as it should be in a prototypical case7. The
references are treated in a di�erent way as well: Additional links are inserted
into the tree structure to represent them.

It is however still possible to �nd some common grounds between the two
sources � both of them include labeled dependencies between noun and ver-
bal predicates and their required or voluntary arguments. The Czech part of
the CoNLL 2009 contest included the PDT data whose annotation schema is
also based on the FGD and uses the same dependency concept; therefore, it is
probably feasible to adjust a SRL system designed for the CoNLL annotation
for use with the PEDT data, as long as it remains within the limits of �nding
arguments of nominal and verbal predicates. Full semantic dependency parsing
would probably require more radical modi�cations.

3.4 The CoNLL Corpus: Data Format and Statistics

Since we have described the annotation schema and sources of the CoNLL 20098

corpus, we may now turn our attention to its technical implementation. The
data is pre-divided into three sets: training, development (tuning) and (�nal)
evaluation sentences. Each of the sets is included in a single text �le, which
contains all the plain text, morphological, syntactic and semantic information.

5This also pertains to punctuation tokens, which are usually included in syntax parse trees.
6The tree charts in this �gure were created by the TrEd tree editor

(http://ufal.mff.cuni.cz/~pajas/tred/).
7Cf. a detailed description in the annotation guidelines at:

http://ufal.mff.cuni.cz/~cinkova/TR_En.pdf, pg. 36�. and 107�.
8As the concrete data format di�ers slightly from the 2008 version, we will now refer solely

to the 2009 data sets used in this thesis.

18

http://ufal.mff.cuni.cz/~pajas/tred/
http://ufal.mff.cuni.cz/~cinkova/TR_En.pdf

Figure 3.2: A comparison of PEDT and CoNLL semantic annotation.
The top picture shows the CoNLL (both syntactic and semantic) annotation � semantic edges
between predicates and arguments are marked in color. The bottom picture is the PEDT
analytical (left) and tectogrammatical (right) tree for the same sentence.

The

NMOD DT

economy

NMOD NN

's

SUFFIX POS

temperature temperature.01

SBJ NN

will

ROOT MD

be

VC VB

taken take.01

VC VBN

from

ADV IN

several

NMOD DT

vantage

NMOD NN

points point.02

PMOD NNS

this

NMOD DT

week

TMP NN

,

P ,

with

ADV IN

readings reading.01

PMOD NNS

on

NMOD IN

trade

PMOD NN

,

P ,

output

COORD NN

,

P ,

housing

COORD NN

and

COORD CC

inflation

CONJ NN

.

P .

A1

 ()

A2 A1

AM-MOD

 ()

A2

A1

 ()

AM-TMP

AM-ADV

 ()

A1

E
n
g
lis

h
A

-w
s
j_

2
4
0
0
-s

1

A
u
x
S

T
h
e

e
c
o
n
o
m

y

's te
m

p
e
ra

tu
rew

illb
e

ta
k
e
n

*-1
fro

m

s
e
v
e
ra

lv
a
n
ta

g
e

p
o
in

ts
th

is

w
e
e
k

,
w

ith

re
a
d
in

g
s

o
n

tra
d
e

,
o
u
tp

u
t,

h
o

u
s
in

g

a
n
d

in
fla

tio
n

.

E
n

g
lis

h
T

-w
s
j_

2
4

0
0

-s
1

ro
o

t

e
c
o

n
o

m
y

A
P

P

c
o

m
p

le
x

te
m

p
e

ra
tu

re

P
A

T

c
o

m
p

le
x

ta
k
e

P
R

E
D

c
o

m
p

le
x

#
N

e
w

N
o

d
e

A
C

T

c
o

m
p

le
x

s
e

v
e

ra
l

R
S

T
R

c
o

m
p

le
x v

a
n

ta
g

e

R
S

T
R

c
o

m
p

le
x

p
o

in
t

R
E

G

c
o

m
p

le
x

th
is

R
S

T
R

c
o

m
p

le
x

w
e

e
k

T
W

H
E

N

c
o

m
p

le
x re

a
d

in
g

A
C

M
P

c
o

m
p

le
x

tra
d

e

P
A

T
m

e
m

b
e

r

c
o

m
p

le
x

o
u

tp
u

t

P
A

T
m

e
m

b
e

r

c
o

m
p

le
x

h
o

u
s
in

g

P
A

T
m

e
m

b
e

r

c
o

m
p

le
x

a
n

d

C
O

N
J

c
o

a
p

in
fla

tio
n

P
A

T
m

e
m

b
e

r

c
o

m
p

le
x

.
.

.

0

.

19

Each line in every text �le comprises all the knowledge about one word (or
punctuation sign), the individual types of inputs separated by tabs, forming
columns. The purpose of each column is described in Table 3.19. Di�erent
sentences are divided by empty lines.

Table 3.1: The data columns of the CoNLL Shared Task corpus format

No. Name Contents
1 ID Number of the token in the sentence
2 FORM The word form as it appears in the original text
3 LEMMA Gold standard dictionary lemma of the word form
4 PLEMMA Automatically predicted lemma
5 POS Gold standard part-of-speech
6 PPOS Automatically predicted part-of-speech
7 FEAT

(Not used for English)
8 PFEAT
9 HEAD ID of the syntactic head of this word (0 for root node; gold standard)
10 PHEAD Automatically predicted syntactic head ID
11 DEPREL Dependency relation label (gold standard)
12 PDEPREL Automatically predicted dependency relation label
13 FILLPRED Contains Y, if the word is a predicate
14 PRED The predicate name (lemma and sense number)

15+i APREDi Arguments of i-th predicate in the sentence

It is apparent from Figure 3.3 that the corpus data format is very economic
� no data is repeated � and easily human-readable. Manual analysis of corpus
sentences is further simpli�ed by the CoNLL 2009 Shared Task Extension for the
TrEd tool10. On the other hand, the APRED columns and their di�erent number
for di�erent sentences, as well as the fact that their order is only determined by
the order of predicates in the sentence, clearly implies that such a data format is
not well suitable as an input to the commonly used machine learning classi�ers,
since they require a constant data structure for the whole set, thus requiring a
data conversion. This topic will be discussed further in Section 5.3.

The CoNLL corpus covers virtually all of the original PTB texts, while the
vast majority of the data is designated for training purposes, as in most statistical
learning problems. Table 3.2 shows that most of the predicates and virtually all
predicates with more than one occurrence in the development or evaluation set
are covered by the training set, but a small group of unseen data will require to
be treated separately.

The average number of predicates per sentence is 4.55 in the training data
set. Therefore, if the system is set-up to classify the arguments of one predicate
at a time (which is the only straightforward option with classic machine learning
approaches), the amount of data will multiply by that number. This results in
e�ectively more training data instances and therefore possibly a higher classi�-

9Please see http://ufal.mff.cuni.cz/conll2009-st/task-description.html for addi-
tional explanation.

10http://ufal.mff.cuni.cz/~pajas/tred/extensions/

20

http://ufal.mff.cuni.cz/conll2009-st/task-description.html
http://ufal.mff.cuni.cz/~pajas/tred/extensions/

Figure 3.3: An example sentence from the CoNLL Shared Task Corpus

1 The the the DT DT _ _ 2 2 NMOD NMOD _ _ _ _ _ _
2 economy economy economy NN NN _ _ 4 4 NMOD NMOD _ _ A1 _ _ _
3 's 's 's POS POS _ _ 2 2 SUFFIX SUFFIX _ _ _ _ _ _
4 temperature temperature temperature NN NN _ _ 5 5 SBJ SBJ Y temperature.01 A2 A1 _ _
5 will will will MD MD _ _ 0 0 ROOT ROOT _ _ _ AM-MOD _ _
6 be be be VB VB _ _ 5 5 VC VC _ _ _ _ _ _
7 taken take take VBN VBN _ _ 6 6 VC VC Y take.01 _ _ _ _
8 from from from IN IN _ _ 7 7 ADV ADV _ _ _ A2 _ _
9 several several several DT DT _ _ 11 11 NMOD NMOD _ _ _ _ _ _
10 vantage vantage vantage NN NN _ _ 11 11 NMOD NMOD _ _ _ _ A1 _
11 points point point NNS NNS _ _ 8 8 PMOD PMOD Y point.02 _ _ _ _
12 this this this DT DT _ _ 13 13 NMOD NMOD _ _ _ _ _ _
13 week week week NN NN _ _ 7 7 TMP TMP _ _ _ AM-TMP _ _
14 , , , , , _ _ 7 7 P P _ _ _ _ _ _
15 with with with IN IN _ _ 7 7 ADV ADV _ _ _ AM-ADV _ _
16 readings reading reading NNS NNS _ _ 15 15 PMOD PMOD Y reading.01 _ _ _ _
17 on on on IN IN _ _ 16 16 NMOD NMOD _ _ _ _ _ A1
18 trade trade trade NN NN _ _ 17 17 PMOD PMOD _ _ _ _ _ _
19 , , , , , _ _ 18 18 P P _ _ _ _ _ _
20 output output output NN NN _ _ 18 18 COORD COORD _ _ _ _ _ _
21 , , , , , _ _ 20 20 P P _ _ _ _ _ _
22 housing housing housing NN NN _ _ 20 20 COORD COORD _ _ _ _ _ _
23 and and and CC CC _ _ 22 22 COORD COORD _ _ _ _ _ _
24 in�ation in�ation in�ation NN NN _ _ 23 23 CONJ CONJ _ _ _ _ _ _
25 _ _ 5 5 P P _ _ _ _ _ _

Table 3.2: Corpus size and coverage statistics for the CoNLL 2009 corpus used
in this thesis

Tokens Sentences
Predicates Coverage

Distinct All Distinct All
Training 958167 39279 9228 179014 - -

Development 33368 1334 2151 6390 94.9 % 98.2 %
Evaluation 57676 2399 2610 10498 95.6 % 98.8 %

The �gures shown are: the total number of tokens and sentences in the individual data sets,
the number distinct predicates with the total number of predicate instances and for the devel-
opment and evaluation data sets, the percentage of distinct predicates and their occurrences
covered by the training set.

21

cation precision. On the other hand, more computing resources will be needed
to process such a large input.

22

4
The Used Machine Learning

Environment

In order to achieve an easy con�gurability of experiments needed for the SRL sys-
tem setup and their fast parallel processing on multiple interconnected computers
in a computing grid or cluster, we have designed and implemented a special soft-
ware framework1. We have chosen the Java language for our program because of
code portability, high performance and simple debugging and maintenance with
the help of integrated development tools. We incorporated existing ML classi-
�ers and other NLP tools into our system, as many of the freely available utilities
feature a Java API. We will now describe the basic concepts we applied in our
implementation of the framework � the decomposition of an experiment into
subtasks (Section 4.1) and their batch processing (Section 4.2) in parallel (Sec-
tion 4.3). We also attach an account of our integration of third-party libraries
(Section 4.4).

4.1 Splitting the Experiments into Subtasks

As we described already in Section 1.1, the whole SRL process that is the subject
of this thesis consists of multiple subtasks. Having considered the pipeline ap-
proach to the system architecture and the implementation of multiple classi�ers
for di�erent lemmas or senses (see Section 2 for details), we realized that it will
be pro�table to divide the whole analysis into simple, compact subtasks and pro-
cess some of them in parallel. It is apparent that for multiple classi�ers or other
operations on independent parts of the data, parallelization is a possibility which
speeds up the whole process, thus allowing more time-consuming computation.

1Available online at http://code.google.com/p/en-deep/ or on the enclosed CD, see
Appendix B.

23

http://code.google.com/p/en-deep/

Figure 4.1: Subtask de�nition example

th i s i s a commentary
task s t t o a r f f ; # id o f the subtask

algorithm : # used Java c l a s s
en_deep . mlprocess . manipulat ion . StToArff ;

params : lang_conf=" st−en . conf " , # i t s s e t t i n g s
d iv ide_senses , one_f i l e , # parameters with no value (binary)
generate="Children , DepPath , HeadPos" , # parameters
c l u s t e r_ f i l e=" c l u s t e r s−p l a in . txt " ; # with va lue s s e t

in : " t r a i n . txt " ; # inputs l i s t i n g
out : " t r a i n . a r f f " ; # outputs l i s t i n g

end ;

We have considered employing the GNU Make utility2, but decided to create
our own, more speci�c application, which would allow us to de�ne our custom
description of the task with simpler subtask speci�cations3, as well as launching
the computation not only in multiple threads, but also in multiple processes
running on di�erent computers in a cluster.

We also decided to implement all the possible tasks as functions within a
single executable application in order to reduce the OS overhead for process
creation. The intended implementation in Java o�ered a simple concept which
makes this possible while still maintaining modularity and extensibility: Every
subtask is de�ned as a Java class derived from the base class called Task. In
order to enable con�gurability, the individual settings or parameters of all the
subtasks are then represented as name-value pairs handled by their concrete
implementations4. We divided all the tasks implemented in our system (See
Appendix A for a comprehensive list) into three groups for convenience: the
classi�cation, evaluation and data manipulation tasks.

Although many tasks may be processed in parallel without con�icts, there
will necessarily be dependencies among some of them � one subtask requiring
the output of another subtask as it input. The dependencies should further
be handled in such a way that it is still possible to use multiple machines in
a cluster for the computation. We have chosen the only straightforward way
to implement this, even if it poses a load on the interconnecting network: The
inputs and outputs of all tasks are always saved to �les. This further simpli�es
the description of the subtask dependencies � it is possible to determine the
necessary �ow of the SRL process only by examining the names of input and
output �les of the individual tasks.

This all yields a task description which consists of a Java class name, its
parameters and a list of inputs and outputs, which also de�ne its dependencies

2http://www.gnu.org/software/make/
3This also includes the task expansions described in Section 4.2.
4It is of course possible that some tasks do not need any parameters, which is regarded as

an empty list of parameters. Similarly, binary parameters are viewed as parameters with an
empty value.

24

http://www.gnu.org/software/make/

Figure 4.2: Task expansion example

Note that data-a.dat is not combined with setting-b.dat.

Work directory:
data-a.dat
data-b.dat
setting-a.conf
setting-b.conf

+

Original Task:

task sample ;
(. . .)
in : "data−∗. dat" ,

" s e t t i ng −∗. dat " ;

→

Expanded tasks:

task sample#a ;
(. . .)
in : "data−a . dat" ,

" s e t t i ng−a . dat" ;

task sample#b ;
(. . .)
in : "data−b . dat" ,

" s e t t i ng−b . dat" ;

and prerequisites. The whole experiment is then a list of such (sub)tasks. We
represent the descriptions in a simple con�guration �le called the scenario (see
Figure 4.1), which is parsed and topologically sorted (Kahn, 1962) to create a
to-do list or plan, used by the individual running processes (see Section 4.3) to
retrieve the next subtasks that need to be computed: Each subtask description
in the plan contains an indication whether all of its prerequisites have already
been completed.

4.2 Wildcards and Task Expansion

Since we planned on using multiple machine learning classi�ers or other opera-
tions which run multiple times on di�erent data sets, we needed to have some
means of describing that the same subtask should be launched in several variants.
Therefore, we introduced simple wildcards into the description of the inputs and
outputs of subtasks. An asterisk character (�*�) in a �le name within the input
or output speci�cations may stand for any string, thus forming a pattern. All the
�les from the current directory that match it are then transfered to the subtask
de�nitions in the following two modes determined by the number of asterisks in
the �le name:

• Expanding mode (�*�), which causes the subtask to expand to multiple
tasks, each taking one of the matching �les. If there are multiple expanding
mode patterns in the input speci�cations, only the corresponding ones, i.e.
those where the �*� stands for the same string, are put together to create
an expanded task (see Figure 4.2 for an example).

• Listing mode (�**�), which lets the subtask take all the matching �les as
its input, or create multiple matching �les on the output. The output
expansions are left up to the individual impelementations of the subtasks.

These basic patterns were then further improved to suit all the batch process-
ing needs during our experiments, so that they now allow for further speci�cation

25

enclosed in vertical bar (�|�) characters immediately following the asterisk. The
detailed speci�cations are ignored when determining the subtask dependencies,
which allows to select inputs from di�erent sources whose �le names do not match
(in contrast to the situation shown in Figure 4.2), which results in a cartesian
product. Further, it is possible to combine the two pattern modes, where at �rst,
the listing mode is applied and then the expanding mode to the results of the
�rst step.

The expansion of a task is also transferred to its dependencies, if they contain
the expanding mode patterns in their input speci�cations. This is done already
with the expansion of the prerequisite task, so that the individual computing
processes (see Section 4.3) may start working on some of the expansions of the
dependency even if other prerequisite expansions are not yet �nished. However,
the topological order of the whole plan is always preserved.

An important feature of our experiment framework is also the possibility that
the individual tasks assign further subtasks themselves, which then occupy the
immediately following position in the experiment plan. Inner dependencies of all
such subtasks must then always result in one single termination subtask, so that
the outer dependencies are left untouched. This allows for further parallelization
of such time-consuming operations as greedy feature selection (see Section 5.5).

4.3 Running the Tasks in Parallel

As we already mentioned in the previous sections of this chapter, our whole
experiment software is designed to run in several instances in parallel. The
number of working threads, i.e. the level of maximum possible parallelization
along with the maximum possible load on the CPUs and data �ow, is determined
by the user: The main executable may be launched in multiple copies on the
same machine, as well as on di�erent computers in a networked cluster. There is
also a possibility to start multiple threads within one program instance, which
simpli�es the usage with stand-alone multi-core machines.

The running threads are then completely independent of one another � the
only information exchange among them takes place in the plan �le (see Section
4.1). Each thread will automatically parse the experiment scenario con�guration
�le, if it does not �nd the plan �le in the working directory, i.e. the �rst thread
started will accept this duty. Consequently, all the working instances retrieve
the pending subtasks from the plan �le and remove the completed ones, while
indicating that any depending subtasks are no longer blocked. The number of
tasks retrieved at a time by one computing thread may be con�gured for the
particular experiment based on the complexity of its subtask, so that program
instances do not block each other and the input and output load on the plan �le
is not excessive.

If an error occurs within one of the subtasks, all the subtasks not depending
on it will continue to be processed, so that the user can correct the error and
relaunch only a part of the original plan. The logging feature with con�gurable
verbosity and the possibility to launch a separate scenario parsing simplify the
debugging of the experiment setup.

26

4.4 Integration of Third-Party Libraries

There is a wide variety of freely available NLP tools, such as classi�ers or data
�lters, on the Internet. We decided to pro�t from some of them, while still keep-
ing our experiment framework relatively independent. Therefore, the individual
implementations of various subtasks in our system use the integrated tools, but
the task descriptions, the scenario and plan �le format and the mechanisms that
launch them in the correct order are independent of any third-party tools5. It is
very simple to use additional Java libraries and programs with our system, since
for each tool, only one wrapper Java class which de�nes the subtask and calls
the particular tool with the correct parameters needs to be implemented.

We have chosen to integrate the Waikato Environment for Knowledge Anal-
ysis (WEKA, Garner, 1995)6 with most of the subtasks our system, since it
o�ers a very wide collection of ML classi�ers, feature selection algorithms and
data �lters with a uni�ed API and a transparent default data format � the
Attribute-Relation File Format (ARFF), which thus became the default format
for our classi�cation tasks.

As one of our classi�cation subtasks makes use of the integer linear program-
ming (ILP) technique (see 7.6), we also included the LP_Solve7 tool into our
system. Although the program is written in the C++ programming language
and called via a wrapper library using Java Native Interface (JNI), which makes
it less portable among di�erent computer platforms, this problem is bound solely
to the single subtask that uses this utility.

5Google Collections (http://code.google.com/p/google-collections/) and Java-
GetOpt (http://www.urbanophile.com/~arenn/hacking/getopt/) are the only exceptions
from this rule. They are invisible to the programmer who creates additional subtask algorithms,
though.

6Version 3.7.1, http://www.cs.waikato.ac.nz/~ml/weka/
7Version 5.5, http://lpsolve.sourceforge.net/.

27

http://code.google.com/p/google-collections/
http://www.urbanophile.com/~arenn/hacking/getopt/
http://www.cs.waikato.ac.nz/~ml/weka/
http://lpsolve.sourceforge.net/

5
Fundaments of Our Deep Analysis

System

We will now describe the basic strategy that we decided to pursue in the solution
of our SRL problem (Section 5.1), along with a brief explanation of the classi-
�cation algorithms (from publicly available ML libraries) that we tested in our
experiments (Section 5.2). As we already mentioned in Section 3.4, the original
data format of the used corpus is not well-suited for the operation of machine
learning procedures. In addition, the set of properties for each word in the cor-
pus does not describe the relations of the individual words. Therefore, we also
include an account of our implementation of the data conversion (Section 5.3),
as well as feature generation and selection (Sections 5.4 and 5.5), all of which is
required for proper classi�er function and high performance output. Our system
uses various generated features described by other authors and several additional,
which we originally designed for the purpose of this thesis. The feature selection
algorithms comprise our own application of well-known approaches, using rank-
ing algorithms provided by the WEKA framework and our own implementation
of the mRMR algorithm. We conclude this chapter with a description of the
standard comparison metrics we adopted and programmed for our experiments
(Section 5.6).

5.1 Basic Approaches

After careful consideration of the various machine learning solutions available
(most of which were already discussed in Chapter 2), we decided to use the
traditional supervised classi�ers, such as SVM, MaxEnt or logistic regression, in
our SRL system due to their competitive performance and simple con�guration.
The inclusion of many di�erent algorithms in one software package, WEKA, and

28

the extent of the available sources of information poses also an advantage of this
choice.

It follows from the selected machine learning methods that it is now necessary
to split the predicate disambiguation (PD) and argument classi�cation (AC) task.
The traditional classi�ers are only able to infer the values of one target parameter
at a time. Additionally, it is only needed to classify the predicates in the PD task,
whereas all words could possibly appear as arguments of some of the predicates
in the AC problem. The division among argument identi�cation and argument
labeling is then possible, but not necessary (please refer to Section 7.2 for this
particular topic).

The order in which these two subtasks will be processed is also not given.
Although the reports of Bohnet (2009) and Zhao et al. (2009) show that solving
the AC problem before the PD problem may lead to very good results, after a
preliminary analysis of the frame lexicons provided (see Section 3.2), we decided
to take the more usual approach of disambiguating the predicates �rst, since the
nature and number of arguments usually depends very closely on the predicate
sense.

5.2 Classi�ers

As we already pointed out in Chapters 1 and 2, the maximum entropy (MaxEnt)
models (Jelinek, 1997, p. 219�.) are one of the most used techniques in many
di�erent NLP tasks (Manning and Schütze, 2000, p. 607f.) including SRL (Jiang
and Ng, 2006; Zhao et al., 2009; Che et al., 2009; Dai et al., 2009). This is mainly
thanks to the fact that their base idea of �nding a conditional probability dis-
tribution with a maximum entropy (average uncertainty Manning and Schütze,
2000, p. 61) subject to given constraints, i.e. �the most uniform model subject to
our knowledge� (Berger et al., 1996, p. 41) is very straightforward and e�ective.
The basic form of the conditional probability model (Malouf et al., 2002), which
predicts a probability of target event (such as semantic class) y ∈ Y given a
context x, looks as follows:

qθ(y|x) =
exp(θTf(x, y))∑

y′∈Y exp(θTf(x, y′))
(5.1)

The function f represents an N -dimensional vector of features (see Section
5.4) and θ is the corresponding weight vector. The weights of the model are
then trained to satisfy the maximum entropy condition, which is equivalent to
minimizing the relative entropy (or Kullback-Leibler Divergence; Manning and
Schütze, 2000, p. 72) of the model qθ to the empirical distribution p observed on
the training data (expectation of the individual features' frequencies), or max-
imizing its a-posteriori probability (conditional probability given the training

29

data), which is usually expressed in terms of the log-likelihood function:

min
θ
D(p||qθ) = min

θ

∑
y,x

p(y, x) log
p(y|x)
qθ(y|x)

= max
θ
L(θ) = max

θ

∑
y,x

p(y, x) log qθ(y|x)
(5.2)

The techniques of �tting the model to the training data usually involve an iter-
ative approach to the zero gradient of the log-likelihood function.

The logistic regression (Hosmer and Lemeshow, 2000), another very common
classi�er type, is a variant of a generalized linear regression model (MacCullagh
and Nelder, 1991). The following model form is used to predict the binary1

target event y ∈ {−1, 1} given a feature vector x and a weight vector θ (Lee
et al., 2006):

p(y|x, θ) = 1

1 + exp(−yθTx)
(5.3)

The model is �tted to the training data xi, yi; i = 1 . . . p by maximizing its
a-posteriori probability � in a way analogous to MaxEnt (Equation 5.2):

max
θ
L(θ) = max

θ

p∑
i=1

log
1

1 + exp(−yiθTxi)
= min

θ

∑
log(1 + exp(−yiθTxi))

(5.4)
This optimization problem is also solved using iterative methods (Fan et al.,
2008). Blower (2004) provides a proof that the logistic regression is equivalent
to MaxEnt (for binary target events)2:

p(y = 1|x) = exp(θTf(x, 1)∑
y′∈Y exp(θTf(x, y′))

=
exp(θTf(x, 1))

exp(θTf(x, 1)) + exp(θTf(x,−1))

=
1

1 + exp(−θTf(x,−1))
=

1

1 + exp(−θTg(x))

(5.5)

This gives us two variants of the same basic idea. Given that logistic regression
is integrated into WEKA via the LibLINEAR3 package (Fan et al., 2008), we
decided to test the performance of this very classi�er for our experiments.

Another widely used approach to classi�cation is the support vector machine
(Boser et al., 1992). Its basic idea is representing the (training) data as points in
N+1-dimensional space4, whose coordinates are given by the function φ(x) of the
features and by the value of the target event y, and trying to separate the di�erent
target events with a hyperplane that has the maximum margin (distance to the
nearest point). If we assume that the target event y is binary5 � y ∈ {1,−1}, the

1It is, however, technically possible to classify multi-class target event using a binary clas-
si�er, e.g. by using multiple classi�ers, each predicting one of the classes.

2Cf. also the presentation by Pereira at:
http://www.cis.upenn.edu/~pereira/classes/CIS620/lectures/maxent.pdf.

3Version 1.51, http://www.csie.ntu.edu.tw/~cjlin/liblinear/.
4This means that each feature, and also the target class corresponds to one dimension.
5Most SVM libraries are also capable of solving a problem with multiple target classes.

30

http://www.cis.upenn.edu/~pereira/classes/CIS620/lectures/maxent.pdf
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

hyperplanes that are parallel to the maximum margin separator and touch the
nearest data points of both target classes (the support vectors) are then described
by the equations:

wTx+ b = 1 and wTx+ b = −1 (5.6)

Maximizing the distance 2
||w|| leads to minimizing ||w|| under the circumstances

that the hyperplane �ts the training data, which yields the following optimization
problem (Hsu et al., 2003), given training examples xi, yi; i = 1 . . . p:

min
w,b

1

2
wTw subject to yi(w

Tφ(xi) + b) ≥ 1 (5.7)

This may then be transformed using Lagrangian multipliers (Cristianini and
Shawe-Taylor, 2000):

min
w,b

max
α

1

2
wTw −

p∑
i=1

αi(yi(w
Tφ(xi)b)− 1) (5.8)

Now we may solve the equation using quadratic programming and get the solution
w =

∑p
i=1 αiyiφ(xi),

∑p
i=1 αiyi = 0, which �nally results in the optimization

problem:

max
α

=

p∑
i=1

αi−
1

2

p∑
i=1

yiyjαiαj(φ(xi)
Tφ(xj)) subject to

p∑
i=1

αiyi = 0, αi = 0 ∀i

(5.9)
The φ(xi)Tφ(xj) term is called the kernel function, with the most usual kernels
being linear6 (xTi xj) or radial (γx

T
i xj + r)d). We chose to test some variants of

SVMs in our experiments because of their reported high performance and usage
simplicity: many di�erent SVM types are integrated into WEKA through the
LibLINEAR and LibSVM7 (Chang and Lin, 2001) libraries.

Since in most real-life classi�cation problems, it is impossible to �nd a hyper-
plane that would separate both target event values for all training examples, a
regularization (Neumaier, 1998) term ξ is introduced into the Equation 5.7, which
penalizes classi�cation errors, transforming it to the following shape (Cortes and
Vapnik, 1995):

min
w,b

1

2
wTw + C

p∑
i=1

ξi subject to yi(w
Tφ(xi) + b) ≥ 1− ξi (5.10)

The C parameter is then interpreted as the penalty cost. There are several pos-
sible shapes of the regularization function for the SVM, most common being L1

(max(1−yiwTxi, 0)) and L2 (max(1−yiwTxi, 0)2) norms, both of them integrated
into LibLINEAR or LibSVM (Fan et al., 2008; Chang and Lin, 2001).

6In the CoNLL 2009 contest, Che et al. (2009) describe using SVM with this type of kernel.
7Version 2.91, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

31

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

As correct classi�cation of all the training examples may not be feasible with
logistic regression, too, regularization is applied to it as well (Ng, 2004; Fan et al.,
2008), which transfers the Equation 5.4 to the following form:

min
θ

∑
log(1 + exp(−yiθTxi)) +R(θ) (5.11)

A function of the weight vector is used as the regularization term � Ng (2004)
describe the application of L1 and L2 norms of θ, the LibLINEAR version of
logistic regression is L2-regularized.

Since WEKA in the combination of LibLINEAR and LibSVM libraries pro-
vides the described high-performance classi�ers out-of-the-box, we decided to
apply them for our experiments. We also performed some simple preliminary
tests with other traditional classi�ers implemented in WEKA libraries, such as
Decision Trees, Naive Bayes or Perceptron. However, their performance did not
indicate that they could possibly surpass the selected ones by a signi�cant mar-
gin and the need for other tests and (albeit minimal) recon�guration would delay
our work excessively.

5.3 Data Conversion

In Section 3.4, we described the advantages and drawbacks of the input corpus
data format. Since it is unsuitable for use with common ML classi�ers, such as
SVM or MaxEnt, in its original form, we needed to convert the sentences into
the required layout with one instance, i.e. one token relating to one predicate,
per line and a constant number of columns. We have designated the ARFF �le
format directly as the target of our conversion in order to easily use the generated
�les with WEKA classi�ers (cf. Section 4.4).

The conversion of each sentence looks as follows:

1. The sentence is loaded and a unique ID is assigned to it, so that its data
is easily recognized during the conversion process.

2. For each predicate in the sentence, the following is done:

(a) Each pre-selected word of the sentence (see below for data selection
options) is taken and all the input CoNLL corpus columns (see Section
3.4), excluding all the APRED values, are augmented with more gener-
ated features, mainly regarding the context of the word with respect
to the predicate (see Section 5.4) to generate one line of output.

(b) Only the value of APRED pertaining to the current predicate is added
to the output line8.

(c) The output lines for each pre-selected word in the sentence are written
into the output �le.

8At this point, it is also possible to separate the APRED values into two groups. For details,
see Section 7.3.

32

This means that if there are e.g. �ve predicates in the sentence, it appears
�ve times on the output, but always in relation to a di�erent predicate.

The precise character of the output �le(s) and depends on the pre-set mode of
operation. There are the following three settings regarding output �le creation:

1. An output �le is created for each predicate lemma, i.e. all sentences with
relation to the same predicate lemma are output into one �le. The nominal
and verbal predicates are also split, e.g. all sentences that contain the verbal
predicate �give� fall into the �le whose name contains �give.v�. This serves
the purpose of predicate disambiguation (see Chapter 6).

2. There is an output �le for each predicate sense, e.g. �give.01.v�. This is
used for argument labelling (see Chapter 7).

3. All the data from one input �le (e.g. the whole training set) are written into
one output �le. The predicates to which the data lines relate are indicated
in a special column. This mode is also used in the argument labelling
process.

The selection of words that appear on the output may be set-up in the four
following ways:

1. Each word is selected, nothing is left out. This is used for the argument
classi�cation subtask.

2. Only the predicates are selected. We use this setting for predicate disam-
biguation.

3. A syntactic pruning algorithm (Watanabe et al., 2009; Zhao et al., 2009)
is applied, so that only the �syntactic neighborhood� of the predicate is
selected. We also tested this mode for predicate disambiguation (see section
7.1).

4. Only tokens with the pre-selected part-of-speech values are selected. This
is a somewhat simpler method of pruning, which has also been tested for
predicate disambiguation (please refer to Section 7.1 for details).

This gives us a highly con�gurable tool that provides us with the input of all
the various subtasks of our SRL solution.

5.4 Generated Features

We will now turn our attention to the generated features already mentioned in
Section 5.3. Since all the classi�ers we used regard the training and testing in-
stances (that is words that may belong to the same sentence) as independent, the
input set of data columns (see Section 3.4) is insu�cient as a feature set for the
classi�cation of one word, since it does not provide any information about other
words in the sentence, which often co-determine its semantic characteristics.

33

Therefore, additional features must be introduced that describe the particular
word, its syntactical and topological neighborhood and the relations to other
words in the sentence.

Our system is able to generate several types of features from the input data.
To begin with, there are various qualities of the syntactical neighborhood of the
given node and its relation to the predicate. The following types of features have
been described by Björkelund et al. (2009), among others:

• Siblings �word form, lemma, part-of-speech (POS) and coarse POS (CPOS)
(�rst character of the POS-tag; Che et al., 2009) of the nearest syntactical
siblings of the given word, if there are some.

• Dependency relation path �a string consisting of �/� (�up�) and �\� (�down�)
characters which describes the syntactic path from the given word to the
predicate, interleaved with word forms, lemmas, POS, CPOS or the DE-
PREL labels (see Section 3.4) of the nodes encountered on the path, or left
as such.

• Children �word forms, lemmas, POSs and CPOSs of the syntactic children
of the given word.

There are further syntactic features, already reported by Zeman (2009), Dai
et al. (2009) and Watanabe et al. (2009), and others:

• Syntactic Dependence on Predicate � the value of this feature is �1�, if the
given word depends syntactically (even indirectly) on the predicate, �0�
otherwise.

• Sibling or Child � �1�, if the given word is a sibling or a direct child of the
predicate, �0� otherwise.

• Head Position � the topological position relative to the syntactic head
(Before, After).

• Head � word form, lemma, POS and CPOS of the syntactic head of the
given word.

• Predicate � the same properties of the predicate; also in a bigram with
the properties of the given word.

In addition to the listed syntactic features, we introduced the following feature
type, which is, to our knowledge, new:

• Children Types � this lists the word forms, lemmas, POSs and CPOSs
and the total number of the children that belong to a word class. We
distinguish the following word classes for the sake of this feature:

� Nominal POSs (nouns, adjectives and pronouns)

� Verbs (including modal verbs)

� Open POSs (nouns, adjectives, pronouns and verbs)

34

� Prepositions

� Particles

We also include the following features that describe the topological neighbor-
hood and morphological features of the given word:

• Voice � the voice of the verb (Che et al., 2009), inferred from its POS and
the POS of its head node.

• Left. . .Right � morphological features (form, lemma, POS, CPOS) of the
�rst three words to the left and right of the given word, including a bigram
for the �rst two in each direction.

• Position � the topological position relative to the predicate (Before, After,
On) (Björkelund et al., 2009).

• Word Distance � the topological distance from the predicate (absolute
value, number of words separating the predicate and the given word) (Watan-
abe et al., 2009).

The last type of features generated by our system, Cluster, is our original
concept, based on the technique of word clustering(Pereira et al., 1993), which
tries to select and group together words that usually appear in similar contexts,
thus automatically creating classes of words that share similar semantic proper-
ties. We used the SenseClusters9 tool (Kulkarni and Pedersen, 2005) to generate
clusters on word forms and lemmas as they appear in the original corpus sen-
tences, also in combination with POS, thus creating a group of features that
involve the di�erent cluster types for topological and syntactical neighbors10 of
the given word.

5.5 Feature Filtering and Selection

Given such a large set of features as described in Section 5.4 (consisting of up to
150 features), it is very probable that some of them will be irrelevant or redundant
for the inference of the target class (John et al., 1994), or even introduce noise
that increases the classi�cation error (Manning et al., 2008, p. 251). Therefore,
we needed to implement some feature �ltering and selection techniques.

As to the feature �ltering, we implemented and apply these two simple tech-
niques in our system:

1. Filtering irrelevant attribute values � for most features with multiple
string values, such as Children, Dependency path or Left. . . Right, we �lter
all the values that do not occur very often in the training data and unify
them under a new single value, �other�. This removes all values that would
otherwise be ignored by the classi�er or introduce noise. This is analogous
to frequency-based selection described by Manning et al. (2008, p. 257).

9Version 1.01, http://senseclusters.sourceforge.net/.
10In particular, they are analogous to the Left. . . Right, Dependency path, Head, Siblings

and Children features.

35

http://senseclusters.sourceforge.net/

2. Filtering irrelevant attributes � we �lter all the attributes that are, in the
given case, obviously irrelevant, i.e. they either do not contain any value
which would repeat in the training data, or are constant across the whole
training set.

In addition to �ltering, one must select a subset of features that yields the
optimal performance. For this purpose, the usual approach is to train the clas-
si�er iteratively for di�erent feature subset and evaluate its performance on the
development data set (see Section 3.4), thus obtaining the best performing sub-
set. Since it is not computationally feasible to try every possible combination
of features, we have to apply faster algorithms that may produce a suboptimal
solution. We employ our own implementation of two di�erent basic techniques
in our SRL setup, applying parallelization:

1. Feature ranking � the features are ordered according to a given criterion
(see below) and the N best are selected (Manning et al., 2008, p. 251�.).
In our system, we usually gradually increase the N in a certain range and
then select the best value. All trials for di�erent N may be launched in
parallel.

2. Greedy algorithm � this iterative algorithm keeps a set of features and
tries to add all the remaining features in each step, then selects the best
one (Caruana and Freitag, 1994). In our setting, we either start with one
feature, or try all possible combinations in a small subset of features (with
the best ranking). Of equally performing features, we always select the one
that has been rated as the best one in the ranking. Each round trying to
add all remaining features may be processed in parallel.

Our system contains the following feature ranking criteria:

• χ2-Criterion (Manning et al., 2008, p. 255) � this evaluates the features
using the χ2-statistics against the target feature, which is computed as∑

f∈F
∑

t∈T
(Nft−Eft)

2

Eft
, where f, t are all possible values of the feature F

and the target T , respectively, and E,N are the expected and observed
frequencies of the values occurring together.

• Mutual Information (MI) (Manning and Schütze, 2000, p. 583), or Infor-
mation Gain (Manning et al., 2008, p. 264) � this computes the di�erence
of the entropy of the target feature alone and the conditional entropy of the
target feature given the ranked feature, that is how much the knowledge of
this feature lower the entropy of the target one.

• Symmetric Uncertainty (Witten and Frank, 2005, p. 291f.) � this statistics
is de�ned as 2I(F,T)

H(F)+H(T)
, where H is the entropy, I is the MI and F, T stand

for the evaluated and target feature, respectively.

• ReliefF (Kira and Rendell, 1992; Kononenko, 1994) � this is an algorithm
that ranks the features depending on how well they distinguish between
the values of the target event: In a pre-set number of iterations, it selects

36

random instances and then searches for the �nearest hit� (nearest instance,
based on the value of the ranked feature, that has the same target event
class) and �nearest misses� with di�erent classes. The worth of the feature
is then a sum of distance di�erences between the hits and misses weighted
by the probability of possible target feature values.

• Signi�cance (Ahmad and Dey, 2005) � this algorithm is based on a similar
assumption to the previous one, namely that a �valuable� feature should
di�erentiate between the values of the target event. Given the training data
statistics, it computes the average probability of the most probable set of
target classes (the �support set�) for each value of the evaluated feature,
then a symmetric value describing the most probable sets of the evaluated
feature values for each target class. The average of the two values is then
returned as the �nal rank.

• Minimum Redundancy-Maximum Relevance (mRMR) (Peng et al., 2005)
� using the concept of MI, this technique maintains a set of features, start-
ing with an empty set, and greedily selects a feature that is most relevant
to the target event, but not too redundant with respect to the already
selected features. This feature is a solution to the following optimization
problem (where Sm−1 is the currently selected set of features):

max
Fj 6∈Sm−1

I(Fj, T)− 1

m− 1

∑
Fi∈Sm−1

I(Fi, Fj)

 (5.12)

All the criteria but mRMR were integrated into the WEKA framework; we im-
plemented the mRMR ranking algorithm (including our own implementational
variant of MI, which we also use in the rankings) for the purpose of this work.
We also made performed tests with averaging the rankings � either all the rank-
ings or only mRMR and ReliefF, following the ideas of Zhang et al. (2008) in a
simpli�ed way, so that the average is less prone to possible failures of one of the
ranking algorithms.

Our decision to apply or combine the various rankings or to employ the
greedy algorithm in the individual subtasks in our system (see Chapters 6 and
7) depends on the complexity and data volume in the particular case and is a
trade-o� between computation speed and �nal classi�er performance.

Moreover, we always convert the multiple-valued string features to a set of
binary features, each indicating the presence of one possible value, as the classi-
�ers used in our experiments interpret all features as numeric11. The values of
numeric attributes are then normalized (Witten and Frank, 2005, p. 56f.) to lie
within the [0, 1] interval, so that the classi�ers may use them as a metric.

11We chose to perform the binarization only after feature selection, since this reduces the
computation time needed. Selecting the binarized features would probably improve the per-
formance, but also retard the process on the other hand.

37

5.6 Measuring the Classi�er Performance

In order to compare the di�erent subtask con�gurations of our system, we adopted
the standard metrics used in NLP tasks (Manning and Schütze, 2000; Manning
et al., 2008; Witten and Frank, 2005, p. 268�., p. 142�., p. 171�., respectively)
� accuracy, precision and recall and F -measure (F1)12.

Accuracy is the most straightforward one of them; it is computed as the
percentage of correctly classi�ed (true) data instances.

A =
t

t+ f
(5.13)

In the equation, t stands for true examples and f for false (wrongly classi�ed)
instances. It is obvious that this measure can be used for multi-class problems,
such as the PD problem (see Chapter 6 for its application in our system).

The other measures of comparison are based on the concept of negative and
positive data instances. It relates to a binary classi�cation problem situation
where a part of the data is relevant and needs to be retrieved. Such data exam-
ples are called positive, whereas the rest of the input is referred to as negative.
Precision and recall lay a greater focus on the positive examples, since their
number is usually much smaller than that of the negative ones, which could lead
to all instances being classi�ed as negative if the ultimate goal was to maximize
accuracy.

The formulas for computing precision and recall are de�ned in the following
way (tp, tn being true positive and negative instances and fp, fn false positive
and negative instances, respectively):

P =
tp

tp+ fp
, R =

tp

tp+ fn
(5.14)

Maximizing precision thus means improving the system, so that it does not
retrieve irrelevant data, while maximizing recall means striving to retrieve as
much relevant data as possible, regardless of false positives. In many situations
including SRL, it is important for the optimum performance of a solution that
both precision and recall stay high. Therefore, an additional metrics has been
introduced, which makes a compromise between them � the F -measure. The
most usual variant, F1, which weighs precision and recall equally, computes as
the harmonic mean of the two values:

F1 =
1

1
P
+ 1

R

=
2PR

P +R
(5.15)

In the CoNLL 2009 contest, a labeled variant of precision, recall and F1 (Haji£
et al., 2009) was used in addition to the standard versions to compare the results
of the competing SRL systems. It uses the same notion of positive and negative
examples, while e�ectively counting correctly retrieved, but wrongly labeled data
instances as both false positive and false negative. We adopted this approach

12We implemented a simple evaluation subtask that is able to compute all four of them.

38

for our AC system (see Chapter 7), since it both measures the correctness of the
semantic labeling and focuses on the positive instances, i.e. semantic arguments.

For the total evaluation of the whole system, we used the original CoNLL
2009 scorer13, which computes labeled and unlabeled precision, recall and F1

scores, while combining predicate senses with semantic arguments.
We also needed to measure the relevance of a performance di�erence between

two variants of a subtask con�guration in terms of one of the above metrics.
For this purpose, we adopted and implemented the bootstrap technique (Efron,
1979; Witten and Frank, 2005, p. 152), which is very fast to compute and ren-
ders reliable results. We chose not to use other commonly applied approach, the
cross-validation (Hastie et al., 2009, p. 241�.), due to its higher computational
requirements. The bootstrap is calculated in the following way: By iteratively
selecting random subsets of the original output and determining the classi�er
performance on these subsets, we obtain an estimate of the probability distri-
bution for the classi�er output, whose percentiles give the desired con�dence
interval (90 % is used in this thesis). In conclusion, if the con�dence intervals for
two classi�er variants do not overlap, one of them performs signi�cantly better.

13http://ufal.mff.cuni.cz/conll2009-st/scorer.html

39

http://ufal.mff.cuni.cz/conll2009-st/scorer.html

6
Predicate Disambiguation

This chapter contains the technical description of our own implementation of the
predicate disambiguation, the �rst part of our SRL system. We have split the PD
problem into several parts, according to the nature of the particular predicates
(see Chapter 6.1), and applied various ML techniques described in Chapter 5.
An account of our approach to classi�er parameter tuning (using the third-party
classi�er libraries selected in Section 5.2) is given in Section 6.2, followed by the
feature selection techniques (employing our own implementations of well-known
algorithms, together with library-supplied feature rankings) in Section 6.3. We
will then include an overview of the whole PD solution (Section 6.4).

6.1 Observations on the Data

The �rst and most signi�cant observation we made on the data is that as all pred-
icate labels consist of a lemma and a sense number, it is evident that predicate
senses for di�erent lemmas are completely independent of each other. Further,
since the numberings for nouns and verbs overlap, nominal and verbal pred-
icates must be treated as separate problems. This implies that splitting the
data according to the lemma and training a separate classi�er for each lemma is
pro�table, since this prevents the machine learning algorithm from selecting an
incorrect lemma at all times, even with rare predicates. We therefore adopted
this practice, similarly to Che et al. (2009) and Björkelund et al. (2009). Our
data-conversion algorithm (introduced in Section 5.3) thus produced only the
predicate words as the input for the entire PD task, split into individual �les
according to the predicate lemma1.

1We will henceforth consider predicate lemmas to be distinct for nouns and verbs, which is
technically insured by the conversion process, appending the POS indication after the predicate
lemma (e.g. �progress.v�).

40

As we already mentioned in Section 3.4 and depicted in Table 3.2, a very
broad range of predicates occurs in the CoNLL 2009 corpus, with a small subset
of them appearing only in one or two of the data sets. Additionally, Table 6.1
shows the numbers of predicate lemmas and their coverage. We must therefore
distinguish among the following cases:

1. There are training and development instances of the given predicate lemma.
This is by far the most common case, not only regarding the number of
the unique lemmas, but mainly with respect to the number of instances.
We are able to tune the classi�er setting on the development set for such
predicates.

2. Only training instances are available.
In that case it is possible to train the classi�er, but no tuning can be done.

3. There are no training data for the particular predicate lemma.
With no training data, only a dummy classi�er that assigns always the
same value is possible.

This division does not take the evaluation data into consideration, apart from the
fact that it is ready for previously unseen predicates. We can solve the individual
cases and prepare the best possible classi�er setting, which is then used only for
those predicates that actually occur in the evaluation data.

Table 6.1: Predicate lemma statistics for the CoNLL 2009 corpus

Predicates Lemmas Coverage (Lemmas)
Training 9228 7639 -

Development 2151 1946 95.5 %
Evaluation 2610 2337 96.2 %

The values shown are the total numbers of distinct predicates and distinct predicate lemmas,
followed by the percentage of predicate lemmas in the development and evaluation sets covered
by the training set.

There is another distinction that must be done prior to the actual classi�er
training, namely based on the number of senses for each predicate lemma. As
is evident from Table 6.2, a vast majority of the lemmas has a unique sense (we
will refer to them as unary). In total, a larger part of all predicate occurrences,
although not as predominant, falls within this group. This renders the classi�-
cation of those lemmas trivial; we will therefore always assign the only observed
sense to them.

However, still a large number of predicate lemmas are not unary. We have
divided them into three groups, which we treat di�erently. Most lemmas sport
only two or three senses; we denote such lemmas simple, for their classi�cation
problems are not very complicated (as the number of instances is also not very
high on average). This makes the classi�er tuning less important and shifts the
stress on the speed of the solution, so that all of the lemmas can be processed
within a reasonable amount of time.

41

Table 6.2: Number of senses for the individual predicate lemmas as observed in
the training data set

Senses
Predicate Lemmas Number of occurrences
Total % Group Total % Group

1 6541 85.6 6541 112994 63.1 112994
2 773 10.1

961
27395 15.3

41801
3 188 2.4 14406 8.0
4 66 0.8

120

7726 4.3

16291
5 24 0.3 3571 2.0
6 13 0.2 1745 1.0
7 13 0.2 2522 1.4
8 4 0.0 727 0.4
9 3 0.0

17

883 0.5

7928

10 3 0.0 929 0.5
11 3 0.0 882 0.5
12 2 0.0 1638 0.9
13 1 0.0 141 0.0
14 2 0.0 1105 0.6
15 - - - -
16 - - - -
17 1 0.0 585 0.3
18 1 0.0 809 0.5
19 - - - -
20 1 0.0 956 0.5

The Group column contains the total numbers of lemmas assigned to the individual groups
(unary, simple, harder, tough).

Another, smaller group of predicate lemmas subsumes a greater number of
senses (four to eight, labeled harder). There are still considerably many such
lemmas � therefore, the adjustment of the classi�er must be more sophisticated,
but still fast enough, so that our system can cope with many lemmas of this kind.

The last, but important group of lemmas is highly ambiguous (we will refer
to them as tough) � in most cases it is functional verbs and verbs that serve as
the base element of multiple phrasal verbs, such as �go�, �take�, �get� etc. Only
very few nominal lemmas belong to this group, all of them representing very
abstract and vague terms � �line�, �way�, �place�, �hand�. We believe that for
such a small subset, a more time-consuming, but very accurate tuning algorithm
should be applied.

6.2 Selecting the Classi�er Setting

We have decided to use the same ML classi�er with a constant set of parameters
for the whole task, because selecting the best algorithm and con�guration for
each predicate lemma would complicate the training process and increase its
duration excessively. Therefore, we needed to obtain a classi�er and a set of
parameters with the highest performance in an average case. We thus created
an experiment that would test several classi�er types from the LibLINEAR and

42

LibSVM packages (as indicated in Section 5.2) with many di�erent settings and
compare them to each other. We used accuracy as the measure of comparison
for the individual con�gurations, since the PD task is a multi-class problem with
no well-de�ned �positive� and �negative� data instances, which are needed for all
other standard metrics described in Section 5.6.

Since the size of the input corpus is too great to test each pre-selected al-
gorithm and con�guration on the whole development set, we created a smaller
subset of both training and development data for our experiments (referred to
as PD Experimental Subset), selecting 100 predicate lemmas with the biggest
development data sets. Since most of the plentifully represented predicates are
also more ambiguous than the average, such a selection shows convenient for
�nding a con�guration that would suit best to the harder and tough lemmas,
where the parameter tuning is of highest importance.

We planned to apply feature selection to the training algorithms and hence
took it into account for this experiment as well2: Our system used the �ltering
and all the feature rankings discussed in Section 5.5 and tried to �nd the optimal
number of features in the range3 4−30 by consecutively trying to add the next one
in the order given by the particular ranking, then selected the best result of the
individual rankings4. We then averaged the results of each classi�er setting for
all the lemmas in our subset and established an estimate of con�dence intervals
using the bootstrap method (see Section 5.6).

We discovered in our preliminary experiments with no feature selection that if
the regularization penalty cost parameter is set higher than 10, the performance
of all classi�ers is lowered and training duration becomes much longer. Addi-
tionally, lower termination criterion for the iterative �tting step of LibLINEAR
classi�ers than 0.001 does not change the algorithm output. We have there-
fore pre-selected the parameter values accordingly and examined the following
classi�er setups:

• L2-regularized logistic regression from the LibLINEAR package, with the
penalty cost parameter C ∈ {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10} and the termina-
tion criterion E = {0.001, 0.01, 0.1, 1}.

• L2-SVM primal and dual problem, L1-SVM dual problem and multi-class
SVM from the LibLINEAR package, with the same penalty cost and ter-
mination criterion parameters as previous.

• C-SVM with a linear kernel from the LibSVM package, with the penalty
cost parameter C ∈ {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.

• C-SVM with a radial basis kernel from the LibSVM package, with the same
regularization cost and the parameter γ ∈ {0.001, 0.01, 0.1, 1}.

2Feature �ltering and selection preliminaries are described in detail at the beginning of
Section 6.3.

3If less features remain after the �ltering, all of them are examined in the same fashion.
This also applies to the following feature selection variants.

4We apply the same feature selection technique to harder lemmas in our PD system. Cf.
Section 6.3 for details.

43

Table 6.3: Classi�er performance on the PD Experimental Subset with feature
ranking

Software Classi�er Parameters Acc. 5 % 95 %

LibLINEAR

L2-Log. Regression

C = 2; E = 0.001 92.9 91.3 94.5
C = 5, 10; E = 0.001 92.8 91.1 94.5
C = 1; E = 0.001 92.7 91.0 94.4
C = 5; E = 0.01 92.7 91.0 94.4

Multiclass SVM

C = 2; E = 0.001, 0.01, 0.1 92.9 91.3 94.5
C = 0.05; E = 1 92.8 91.0 94.4
C = 0.1; E = 0.001, 1 92.8 91.2 94.2
C = 2; E = 1 92.8 91.3 94.4
C = 5; E = * 92.8 91.1 94.6

L1-SVM (Dual)

C = 2; E = 0.001, 0.01, 0.1 92.9 91.2 94.4
C = 0.05; E = 1 92.8 91.2 94.4
C = 0.1; E = 0.001, 1 92.8 91.1 94.4
C = 2; E = 1 92.8 91.1 94.5
C = 5; E = * 92.8 91.1 94.4

L2-SVM (Dual)

C = 2; E = 0.001, 0.01, 0.1 92.9 91.1 94.4
C = 0.05; E = 1 92.8 91.2 94.4
C = 0.1; E = 0.001, 1 92.8 91.2 94.5
C = 2; E = 1 92.8 91.1 94.4
C = 5; E = * 92.8 91.1 94.5

L2-SVM (Primal)

C = 2; E = 0.001, 0.01, 0.1 92.9 91.1 94.5
C = 0.05; E = 1 92.8 91.2 94.4
C = 0.1; E = 0.001, 1 92.8 91.2 94.4
C = 2; E = 1 92.8 91.2 94.5
C = 5; E = * 92.8 91.1 94.4

LibSVM
Linear Kernel

C = 2, 5 93.1 91.4 94.6
C = 1, 10 92.8 91.2 94.5

Radial Kernel
C = 2, 5; γ = * 93.1 91.5 94.6
C = 1, 10; γ = * 92.8 91.1 94.4

The listed values are: accuracy percentage on the whole experiment set, bootstrap 5 %-
percentile and bootstrap 95 %-percentile. Only up to �ve best performing con�gurations
for each classi�er are listed; if the performance on the whole set is identical, the �gures are
merged and only the outermost bootstrap values are shown. An asterisk (�*�) in the parameters
speci�cations signi�es that any of the tested values is possible.

44

The list of the best-performing classi�er algorithms and parameter settings, along
with their results, is given in Table 6.3. It is now apparent that the various
classi�ers perform very similarly; the results of the individual SVM variants
from the LibLINEAR package are almost identical. The con�dence intervals
estimated by bootstrap overlap for all the algorithms, and thus higher accuracy
on the experiment data set cannot be considered a decisive criterion for selecting
one of them.

However, the results of the test also show that all of the classi�ers are rela-
tively sensitive to parameter settings. The logistic regression stays under 87 %
accuracy with the termination criterion set at 1, independent of the cost value;
however, its results remained at the top level as long as this this variable was
set at 0.01 or lower. Both LibSVM classi�ers reach only approximately 90 % ac-
curacy with inadequate con�guration. The LibLINEAR SVM methods are less
prone to miscon�guration, their worst outputs rate at 91.8 %. It is also apparent
from Table 6.3 that the regularization penalty C set at 2 proves to be optimal
for all the machine learning techniques, albeit by a very narrow margin.

Table 6.4: Classi�er performance on the PD Experimental Subset with no feature
selection

Software Classi�er Parameters Acc. 5 % 95 %

LibLINEAR

L2-Log. Regression
C = 0.1; E = 0.1 91.5 89.5 93.1
C = 0.1, 0.5; E = 0.001 91.4 89.7 93.1
C = 0.1; E = 0.01 91.4 89.7 93.1

Multiclass SVM
C = 0.05; E = 0.1, 0.01, 0.001 91.1 89.3 92.8
C = 0.1; E = 0.01 90.6 88.9 92.4

L1-SVM (Dual)
C = 0.05; E = 1 91.5 89.8 93.3
C = 0.05; E = 0.001 91.4 89.5 93.2

L2-SVM (Dual)
C = 0.05; E = 1 91.2 89.4 93.0
C = 0.05; E = 0.1,0.01,0.001 91.1 89.3 92.8

L2-SVM (Primal)
C = 0.05; E = 0.001 91.4 89.5 93.1
C = 0.05; E = 0.01 91.2 89.4 92.8

LibSVM
Linear Kernel

C = 0.1, 0.2 86.7 84.5 88.9
C = 1, 2 86.3 84.2 88.4

Radial Kernel
C = 2; γ = 0.001 89.1 87.2 91.1
C = 5, 10; γ = 0.001 88.9 86.9 90.8

The format of this table is the same as in Table 6.3. Only a maximum of three best settings
is listed.

In order to test classi�er sensitivity to irrelevant features, we performed a
variant of the above experiment with the same software and con�guration, but
no feature selection, i.e. all the �ltered generated features were present in the
classi�er inputs. Table 6.4 lists the results of this trial, which showed that the
performance of the LibSVM classi�ers depends very strongly on the relevance
of the input features. All the LibLINEAR methods proved superior, with the
results of logistic regression performing slightly better than the SVM algorithms.
In addition, the results of all LibLINEAR models and the LibSVM linear kernel
SVM for di�erent parameters do not vary nearly as much as with feature selection

45

(the highest interval between the best and the worst result was 1.1 % with L1-
SVM). The LibSVM radial kernel SVM is very sensitive to the parameter values
� their proper setting yields as much as 5 accuracy percent points di�erence.

As a result of this experiment, we have chosen to perform the PD task classi-
�cation with the L2-regularized logistic regression from the LibLINEAR package,
for it reaches very high performance with most con�gurations, provided the ter-
mination criterion parameter is low enough. Therefore, this variable was set at
0.001 for all subtasks, and the penalty cost remained at 2.

6.3 Feature Selection Approaches

Having selected the classi�er settings, we focused on perfecting the feature selec-
tion techniques for the individual groups of predicate lemmas identi�ed in Section
6.1. In our preliminary experiments on small data sets, we found it pro�table
to �lter out all feature values that occur in less than 1 % of training instances
and less than three times, we therefore use the �ltering methods as described
in Section 5.5 in this particular con�guration. We also learned that using more
than about 30 features is not likely to improve the classi�er performance, as
for every individual lemma, many features are irrelevant. It also must be noted
that with the �ltering techniques applied before feature selection, it is possible
that a set of even less than 30 features remains and the rest is omitted, since it
does not promise an asset to the system. Additionally, the binarization that is
required before classi�cation (cf. Section 5.5) raises the total number of features
that occupy the machine learning algorithm up to thousands.

We decided to use feature ranking with the search for the appropriate number
of features with the simple lemmas, since this method is very fast and yields rel-
atively good results. However, we needed to select a ranking algorithm from the
ones listed in Section 5.5 that would give the best results on average. Therefore,
we designed another experiment on our PD subset from Section 6.2, which com-
pares the results of the same classi�er con�guration when coupled with varying
feature rankings. We used a logistic regression model with the settings described
in Section 6.2 and measured its accuracy on our experiment set with all feature
rankings, each time with the best number of features possible within the range
4 − 30 (obtained by consecutively adding features to the subset of used ones in
the order given by the ranking), and estimated the con�dence intervals using the
bootstrap method.

The results of this experiments are listed in Table 6.5. We can see that all
the results are comparable, with mRMR, ReliefF and their average on the top,
but only by a very narrow margin. The bootstrap estimates indicate that no
ranking algorithm performs signi�cantly better than the others. Nevertheless,
we decided to use the mRMR-ReliefF average as a feature-ranking algorithm for
the simple predicate lemmas since its results appear slightly better than that
of the other rankings. Similarly to the previous experiments with ranking, our
system searches for the best feature subset by consecutively adding features in
the order given by the ranking, thus selecting a subset of 4− 30 features that is
saved for later use on evaluation data.

46

Table 6.5: Results of the ranking test experiments on the PD Experimental
Subset

Ranking Acc. 5 % 95 %
χ2 92.8 91.1 94.4
MI/Information Gain 92.8 91.1 94.2
MI (mRMR version) 92.8 91.1 94.2
Symmetric Uncertainty 93.3 91.7 94.9
ReliefF 93.6 92.0 95.0
Signi�cance 92.8 91.3 94.5
mRMR 93.4 91.9 94.7
Average (all) 93.3 91.9 94.9
Average (mRMR + ReliefF) 93.6 92.0 95.2

Similarly to Tables 6.3 and 6.4, the listed values are: accuracy percentage on the whole exper-
iment set, bootstrap 5 %-percentile and bootstrap 95 %-percentile.

With the harder predicate lemmas, more stress must be laid on the quality
of the used feature subset. Therefore, we decided to employ all our ranking
algorithms in combination with the consecutive adding approach and select the
ranking and feature subset that gives the best results on the development data
set, thus exploring a greater number of feature subsets, but still processing the
individual predicate lemmas much faster than with the use of greedy selection.
This is the same technique that was used for our classi�er parameter selection
test in Section 6.2.

We also apply ranking to predicate lemmas with multiple senses which do
not occur in the development corpus. Since it is not possible to select the best
performing number of features with no data examples to test the di�erences, we
always take the 30 top-ranked ones.

We decided to use the greedy feature selection algorithm (see Section 5.5)
with the tough lemmas, since this procedure, albeit lengthy, promises better re-
sults than the above ones. With such a small number of lemmas in this group as
17 and several machines computing in parallel, the processing time was not ex-
cessive. Our preliminary experiments showed an improvement if we �rst applied
the following two di�erent variants of the greedy selection and then selected the
more successful one:

1. The system starts with no features selected and selects one at a time.
From several equally performing features, it always selects the one with
the higher mRMR-ReliefF ranking average. It �nishes if all not yet used
features degrade the performance, or if the size of the feature set reaches
30.

2. The system starts examining all the possible groups of four features out
of the top ten mRMR-ReliefF ranked ones. Then it continues adding one
feature at a time in the same way as above.

This will lead to very plausible feature subsets as the output of PD training,
which are saved for later use in PD evaluation.

47

6.4 The Predicate Disambiguation System

We will now give an account of the whole organization of our PD system, which
is split into the training phase and evaluation phase5. The former serves for
obtaining the best classi�er settings, i.e. feature sets, which are then used as the
input to the latter. The training part then consist of the following steps (for a
detailed schema, please refer to Figure 6.1):

1. Conversion from the CoNLL 2009 corpus format to the ARFF data for-
mat (as described in Section 5.3), with the generation of new features (see
Section 5.4). Individual data �les are created for all predicate lemmas.

2. Separation of �les that do not have any development data instances (re-
ferred to as orphans), selection of lemmas with multiple senses, then their
�ltering and ranking, which results in the list of best features. Filtering
settings and the selected feature set are stored for later use.

3. Filtering of the lemmas with development instances (for details on �ltering,
see Section 5.5). List of the attributes and attribute values that are to be
�ltered is saved for application in the evaluation phase.

4. The predicate lemmas are divided into groups according to number of senses
� unary, simple, harder and tough. The �rst group is no longer needed
for training.

5. The most favorable feature set is selected for each predicate lemma (refer
to Section 6.3 for a thorough description):

(a) Features for the simple lemmas are ranked using the mRMR and Re-
liefF average, the optimal number of top ranked features (between
4− 30) is then determined by subsequent addition trials.

(b) The same technique applies to harder lemmas as well, except for the
fact that multiple rankings and selections are performed, which yields
several candidates for the best feature set. The system then picks the
best-performing candidate.

(c) The tough predicate lemmas have their features ranked by the mRMR-
ReliefF averaging algorithm as well. The features list is then used
as an input into two di�erent setups of the greedy feature selection
algorithm, which produce candidate feature sets. The better one is
chosen in the end.

6. All the resulting feature sets are saved, so that they may be applied in the
evaluation phase.

The ML models examined in the training stage are not stored in order to
reduce disk usage � we train the classi�ers anew in the evaluation phase. Ready

5The tasks description used in our batch processing framework is provided on the enclosed
CD (see Appendix B).

48

Figure 6.1: A chart of our PD system, training phase
The computation steps are depicted as colored rectangles, the conversion and �ltering subtasks
are represented by ovals. Grey diamonds stand for selection tasks and �nally, white rectangles
with black borders contain the outputs of this phase.

49

Figure 6.2: A chart of our PD system, evaluation phase
This schema has the same form as the one in Figure 6.1.

trained models could certainly be stored and used for evaluation as well, but
since the training of a single model is not very time-demanding given the already
preselected set of features, we decided not to save all the models examined during
the training stage in order to save disk space. We thus have the best feature sets
and the �ltering settings as the input to the evaluation stage, which then proceeds
as follows:

1. Data conversion, same as in the training phase.

2. Separation of lemmas that do not have any training data instances (also
denoted orphans). We use a dummy classi�er for these lemmas, which takes
the lemma and appends �.01� to it, thus creating the usual representation
of the �rst and most common sense.

3. We select the predicate lemmas with multiple senses; the others are as-
signed the only sense observed on the training data.

4. The system now �lters the predicates according to the settings saved from
the training stage and classi�es them using appropriate the sets of viable
features.

5. The results of the classi�cation, as well as the two kinds of pseudo-classi�cation,
are collected back to the original �le format.

A chart depicting the data �ow in the evaluation stage is shown in Figure 6.2.
The PD results are then used as one of the inputs for the second part of our
system, the argument classi�cation.

50

7
Argument Classi�cation

We will explain the technical properties of our own AC solution in this chap-
ter. Within our implementation of the data conversion from the original corpus
format, we conducted several experiments with selecting only the most viable
argument candidates, including syntactical approaches by Zhao et al. (2009) and
Watanabe et al. (2009) and our own POS-based method, which are all described
in Section 7.1. We have also examined the merits of splitting the AC solution
into the identi�cation (AI) and labeling parts or taking the joint approach, both
of which featured in the CoNLL 2009 contest SRL systems (see Section 7.2). In
addition, based on our linguistic knowledge of English, we originally propose a
di�erent approach to adverbial modi�ers and co-references in opposition to va-
lency arguments. An account of our tests regarding this topic is given in Sections
7.3 and 7.7.

Similarly to the PD approaches described in Sections 6.2 and 6.3, we searched
for the optimal classi�er con�guration and feature selection techniques, which we
describe in Section 7.4. Since a greater part of the predicates occurs extremely
rarely, we designed a new method of dividing the independent data instances
while still maintaining enough training examples (cf. Section 7.5). Our system
also includes a post-inference on the classi�er output (ILP as reported by Pun-
yakanok et al. (2004) and our own, simpler approach), in order to adhere to
global constraints for whole sentences (see Section 7.6). The �nal design of our
AC system is then summarized in Section 7.8.

7.1 Argument Candidates

The �rst decision that we needed to make in our PD system concerned the format
of the data conversion output. As we described in Section 5.3, our conversion
algorithm either separates data relating to di�erent predicates (or lemmas) into
individual �les, or outputs the whole data set into one large �le. We considered

51

either feeding all the data to a single classi�er, which would mix di�erent predi-
cate frames together, or using a di�erent classi�cation model for each predicate,
which would separate data instances relating to distinct predicate frames, but
thin the amount of training instances available considerably. Separating predi-
cate lemmas includes both of the above drawbacks, therefore we eliminated this
choice.

We created an experiment that would test the merits of both approaches. In
order to reduce computation complexity, we created a smaller subset of the data
(referred to as AC Experimental Subset), which we used for our experiments. We
selected 100 predicates at random from training and development data sets, thus
including data relating to frequent predicate senses as well as that of the rare ones
and maintaining representativity of the whole data. We then trained the same
classi�er in the same con�guration (L2-regularized logistic regression from the
LibLINEAR package with the cost parameter set to 1 and a termination criterion
of 0.001, using all features �ltered in the same way as in the PD experiments
described in Section 6.3) to classify the following joint AC multi-class problems1:

1. On the data split for di�erent predicates, creating a separate model for
each one of them.

2. As a single model on the whole AC Experimental Subset.

We chose to use labeled F -measure as the means of comparing the di�erent out-
puts (see Section 5.6 for explanation). The results of this experiment are shown
in Table 7.1. It is apparent that splitting the data for di�erent predicates yields
slightly better results, although the di�erence is not signi�cant in terms of the
bootstrap 90 % estimates (please refer also to Section 5.6 for a description of
bootstrap). Nevertheless, we decided to split the data for the individual pred-
icates, since it o�ers much wider space for parallelization and the sparse data
problem can be handled in a di�erent way (an account of our solution will be
given in Section 7.5).

Table 7.1: Splitting the predicates vs. using one classi�er

Setting F1 5 % 95 %
Using one classi�er on the whole subset 70.1 65.8 74.5
Separate classi�ers for each predicate 71.4 67.2 75.3

The �rst value shown is the labeled F1 percentage, followed by 5 % and 95 % percentiles of
the bootstrap estimate.

Since the amount of data to be processed is very large if the conversion system
produces all the instances (see Sections 3.4 and 5.3), we also implemented and
tested two di�erent pruning algorithms for argument candidates in a preliminary
experiment.

1The decision to use a single AC task instead of splitting it into identi�cation and labeling
subproblems has been made for the sake of simplicity here, since the main goal was to compare
the e�ects of splitting data in the same settings. We will review this option in Section 7.2.

52

The �rst one of them, described by Watanabe et al. (2009) and Zhao et al.
(2009), is based on syntactic dependencies. It selects only the words that de-
pend on one of the nodes syntactically superordinate to the predicate (i.e. on
the dependency path from the predicate to the syntactic root of the sentence;
including the predicate itself). Watanabe et al. state that this approach keeps
97.3 % of the arguments in the candidate set, while reducing the data amount
by 63.1 % for English.

Observing our PD Experimental training subset, we discovered that some of
the POSs, mainly punctuation2, occur only seldom as arguments. Therefore,
we developed an algorithm that selects instances based on their POS. This is a
less aggressive approach in comparison to the previous one, as it leads to much
smaller data reduction, but is still valid.

In order to compare these methods, we applied them to our set of predicates
using the same classi�er setting as above (with the data split for individual pred-
icates) and evaluated their results using the CoNLL 2009 scorer3 and labeled F1

(see Section 5.6). We did not use our own implementation of the metrics, since
it depends on the total number of instances, which di�ers across the individ-
ual settings. We therefore wrote the classi�cation results back to the original
format, using only the part of development data where our selected predicates
appear, preserving the golden values for predicate senses and other predicates'
arguments. Although the values itself do not tell anything about the total sys-
tem performance, they still provide an insight into the merits of the particular
methods.

Table 7.2: Application of pruning algorithms

Setting F1

No pruning 88.48
Syntactic pruning 87.97
POS �ltering 88.39
Syntactic + POS pruning 87.75

The value shown is the labeled F1 percentage as computed by the CoNLL 2009 Scorer, using
a set of development data sentences where the selected predicates appear, including golden
predicate senses and arguments of other predicates.

As is apparent from Table 7.1, none of the pruning techniques improves the
overall results. In addition to that, we expected the di�erences to expand if
classi�er output for all predicates is used, which would a�ect the performance
even more negatively. Therefore, we decided not to use any pruning technique
in our �nal AC system, even if the computation speed is a�ected.

2The �ltered POSs are: � () , . : � EX HYPH LS NIL POS.
3As the scorer does not output con�dence intervals estimation, we do not include it for this

experiment.

53

7.2 Separate and Joint Argument Identi�cation

Many of the SRL systems described in literature, including the CoNLL 2009
competing setups of Dai et al. (2009), Bohnet (2009) and others, divide the AC
task into two subtask: �rst, the arguments are identi�ed by a binary classi�er
and then a label is assigned to each of the selected candidates. Another possible
option is to combine both subtasks into one, creating an �empty� label and adding
it to the set of possible SRL labels in a single classi�cation task. This approach
has also been reported to render high quality results (Che et al., 2009; Watanabe
et al., 2009).

Table 7.3: A comparison of the joint AC and two-step AI-AC approaches

Setting F1 5 % 95 %
Separate AI and labelling 68.6 64.7 72.5
Joint AC task 71.4 67.2 75.3

The values listed are in the same format as in Table 7.1, the labeled F1 percentage and the
5 % and 95 % bootstrap percentiles.

We therefore conducted an experiment on our PD Experimental Subset, com-
paring the performance of the two system variants, so that we could decide for
one of them. We used the same classi�er con�guration as for our experiments
described in Section 7.1. The results listed in Table 7.2 show that in our setting,
the joint AC task performed better than the two-step identi�cation-classi�cation
solution in terms of labeled F -measure. Although the results di�erence is not
signi�cant with 90 % con�dence according to the bootstrap test, it is consider-
ably larger than in our previous experiments. We thus chose to use the joint AC
approach, as it shows to be more e�cient, but also due to its simplicity.

7.3 Di�erent Argument Types

In many linguistic theories that describe semantic (or deep syntactic) dependen-
cies among the words of a sentence, a distinction is made between the valency
arguments or actants and the adverbial modi�ers or circumstantials (Sgall et al.,
1986, p. 100�.). While a speci�c set of the former is required by each predicate,
each of its members being unique to the sentence, the latter are generally not
limited to any certain group of predicates and can occur freely and repeatedly
with most predicates. This distinction is, however, not absolutely clear, and thus
some predicates may also require speci�c adverbial modi�ers, whereas some of
the arguments may be voluntary with certain predicates. It is also necessary to
note that the situation is di�erent for nouns and verbs and varies to some extent
across di�erent theories (Rambow et al., 2003), even if the fundamental idea is
constant.

The PropBank (Kingsbury and Palmer, 2002; Palmer et al., 2005) and Nom-
Bank (Meyers et al., 2004) annotations used in the present thesis (cf. Section

54

3.2) also take this concept into account and specify a set of numbered arguments
A0...A5 for each nominal or verbal predicate (frames), while the sets of possible
arguments, as well as their semantic functions change across di�erent predicates.
In addition to that, the semantic annotation contains labeled adverbial modi�ers
AM-, not limited to speci�c predicates and semantically constant. This applies
also to reference labels R- and C-. Only a very small set of verbal frames contains
adverbial modi�ers as well4.

Considering such a setting, it becomes apparent that while an individual
approach to classi�cation of di�erent predicates is favorable (as discussed in
Section 7.1), only the valency arguments bene�t from this division in principle,
whereas modi�ers and references will pro�t more from a greater training data
set. We thus designed an experiment on our PD Experimental Subset to support
or disprove this hypothesis: using the same classi�er settings as in Sections 7.1
and 7.2, we trained a two-stage system that �rst assigns arguments labels for
each predicate individually and then uses a single classi�er trained on the whole
training set to label the adverbial modi�ers. A comparison of this setting to a
system which assigns all semantic labels in a single step is given in Table 7.3.

Table 7.4: A comparison of the joint AC and two-step AI-AC approaches

Setting F1 5 % 95 %
Single step for all labels 71.4 67.2 75.3
Separate AM-,C-,R- labels 75.5 71.7 79.1

The format of this table is identical to Tables 7.1 and 7.2.

Although the results di�erence is not signi�cant with 90 % con�dence, the
experiment has shown that assigning all the labels which do not depend on
the nature of the particular predicate using a separate classi�er tuned on the
whole training data is capable of improving the performance of the whole system.
Therefore, we decided to use this method in our PD system. We will explain
further technical issues of this approach in Section 7.7.

7.4 Classi�er Setting

In the same way as with our PD system (see Section 6.2), we chose to use
one classi�er con�guration for all the classi�cation tasks of the AC system.
Therefore, it was necessary to �nd the settings that would perform best in
an average case. We thus conducted a series experiments with di�erent clas-
si�ers and parameter settings, using one joint AC step and the PD Experiment
Subset data split for individual predicates. The set of examined ML methods
and individual parameter values is analogous to our PD experiment described
in Section 6.2, i.e. logistic regression and various SVM implementations from
the LibLINEAR package and radial and linear kernel SVM from the LibSVM

4For the sake of simplicity, we decided to ignore these modi�ers in our experiments for the
present time.

55

Table 7.5: Classi�er con�guration test on the AC Experimental Subset

Software Classi�er Parameters F1 5 % 95 %

LibLINEAR

L2-Log. Regression

C = 5 84.5 81.4 87.6
C = 2 84.1 81.1 87.1
E = 0.01,0.001 84.1 80.8 87.1
E = 0.1 84.0 80.7 86.9

Multiclass SVM

C = 0.5 83.7 80.8 86.8
C = 0.1,0.2,5 83.6 80.2 86.7
E = 1 83.8 80.8 86.8
E = 0.001,0.01,0.1 83.3 79.7 86.6

L1-SVM (Dual)

C = 1 84.2 81.2 87.4
C = 0.5,5 83.8 80.7 86.8
E = 0.001 83.8 80.6 86.9
E = 0.01 83.6 80.7 86.7

L2-SVM (Dual)

C = 0.2,2 84.2 81.0 87.3
C = 1 84.0 80.9 86.9
E = 0.001,0.01 84.2 81.0 87.2
E = 0.1 84.1 81.2 87.0

L2-SVM (Primal)

C = 0.2,5 84.3 81.2 87.2
C = 2 84.2 81.0 87.0
E = 0.01 84.5 81.6 87.3
E = 0.001 84.2 81.0 87.0

LibSVM

Linear Kernel
C = 5 84.5 81.5 87.3
C = 2 84.1 80.7 87.2

Radial Kernel
C = 5 84.5 81.3 87.5
C = 2 84.1 81.0 87.1
γ = * 84.1 80.7 87.2

The listed values are: labeled F1 percentage on the whole experiment set, bootstrap 5 %-
percentile and bootstrap 95 %-percentile. Only two best values for each parameter are listed.
An asterisk (�*�) in the parameters speci�cations signi�es that any of the tested values is
possible.

library have been tested, along with many di�erent settings of the termina-
tion criterion E ∈ {1, 0.1, 0.01, 0.001} (LibLINEAR), regularization penalty cost
C ∈ {0.05, 0.1, 0.2, 0.5, 1, 2, 5} (all methods) and the second parameter for the
radial kernel SVM γ ∈ {1, 0.1, 0.01, 0.001, 1

feats.}.
However, since the AC task proved to be much more computationally expen-

sive than the PD task, we decided not to use every possible combination of the
two classi�er parameters, but, assuming their independence, gradually change
one of the parameters while �xating the other one5, thus obtaining a possibly
suboptimal (if the independence premise is not valid), but still near-optimal pa-
rameter setting by examining the values separately. Due to performance issues,
we also used a very simple feature selection algorithm � for each feature ranking
(please refer to Section 5.5 for a complete description), a set of the top 10, 20
or 30 features was examined, and the best result was selected6. This limits the

5We chose to �xate the parameters in the following way: C = 2, γ = 1

#feats. , E = 0.001.
6We apply the same feature selection technique in the �nal system, but examine more

candidate feature sets.

56

computational requirements needed to a minimum.
Table 7.5 shows the best observed values on our AC Experimental Subset.

It shows that the logistic regression and both LibSVM methods outperformed
the LibLINEAR SVMs, although not nearly by a signi�cant margin. Therefore,
performance is not the most important criterion of selection. Since LibLINEAR
has reportedly smaller memory and CPU requirements (our experiments were
not designed to measure this, cf. Fan et al., 2008), we decided to use this library.
The logistic regression was then the �rst choice, along with the best parameters
found: C = 5, E = 0.001. An advantage of this choice is also the possibility
to generate probability estimates (see Section 7.6 for application), which is not
available for the other algorithms contained in this package.

Table 7.6: Results of the ranking test experiment on the AC Experimental Subset

Ranking Acc. 5 % 95 %
χ2 79.9 76.3 83.4
MI/Information Gain 80.2 76.6 83.4
MI (mRMR version) 79.9 76.5 83.1
Symmetric Uncertainty 78.7 75.0 82.0
ReliefF 79.5 75.8 82.8
Signi�cance 79.3 75.7 82.4
mRMR 78.6 74.6 81.9
Average (all) 78.6 75.2 82.2
Average (mRMR + ReliefF) 78.2 74.5 81.9

Similarly to Table 7.5, the listed values are the labeled F1 percentage on the whole experiment
set, followed by the bootstrap percentiles.

In order to choose the default feature ranking, we performed an experiment
analogous to the one described in Section 6.3. We applied the classi�er con-
�guration selected in the previous experiment to our AC Experimental Subset,
selecting the best set of the top 10, 20 or 30 features for each ranking and then
comparing the results, which are shown in Table 7.6. Although the di�erences
are rather minor, it is apparent that the mRMR method and both the averages
do not perform well in this setting, while MI/Information Gain turns out to be
slightly better than the average. We thus selected this method as the default
ranking for our AC experiments.

Following the above trials and the subsequent manual analysis of the outputs,
we discovered that the previously used feature �ltering techniques (keeping only
the values that occur in more than 1 % of the cases) are rather coarse. We
therefore resorted to �ltering out the top 100 most frequent values for each
feature, acknowledging the need for a broader analysis of this problem.

7.5 Merging Rare Predicates

As we described in Section 7.1, splitting the input corpora into individual clas-
si�cation problems for di�erent predicates causes extreme data sparsity in some
cases. The distribution of predicate frequencies follows the Zipf's law (Manning

57

and Schütze, 2000, p. 23�.), which implies that there are only very few train-
ing sentences for most predicates (see Table 7.7). A classi�er trained on such a
small data set as the words of one or two sentences cannot solve the complex AC
problem with high reliability. Therefore, a method must be found to prevent the
extreme training data scattering.

Table 7.7: Predicate occurrence frequency on the whole training data set

Occurrence count N Occurrence count N
101 and above 333 10 155

51 - 100 412 9 167
31 - 50 393 8 208
21 - 30 387 7 240
11 - 20 852 6 333

5 429
4 556
3 781
2 1315
1 2667

N stands for number of predicates with the given occurrence count in the training data.

The ideal approach to this situation would be to merge the training data of se-
mantically similar predicates, as the arguments they bind often correspond. Even
the PropBank annotation re�ects this fact � Kingsbury and Palmer (2002) state
that the annotation strives to maintain the same valency argument numbering for
synonymous predicates. However, there is no data resource reliably linking the
PropBank/NomBank predicate senses to any kind of semantic clustering, such
as the verb classes by Levin (1993), VerbNet classes (Kipper-Schuler, 2005),
which are based on them, or the FrameNet frames (Baker et al., 1998; Baker
and Ruppenhofer, 2002). SemLink, a project linking PropBank with VerbNet
(Loper et al., 2007)7, is currently in development and provides a great resource
for semantic research, but as of today, many PropBank predicates, mainly the
rare ones, are not yet assigned to any of the semantic groups, which hinders
automated usage of this database in the present work.

Since there is no way of merging predicates automatically based on their
semantic similarity, we resorted to using the sole presence or non-presence of
the individual arguments in the predicate frame. This also might suggest some
degree of similarity or at least distinguish a subset of roles that the classi�er
should assign. In order to test the merits of this rather coarse approach, we
performed a test on our AC Experimental Subset. We implemented a script that
extracted the frames from PropBank and NomBank framesets and applied the
same classi�er con�guration to the following variants of the data set:

1. Data split for each individual predicate

2. Data merged for predicates which occur less than 10 times in the training
data and have the same predicate frames

7Available online at http://verbs.colorado.edu/semlink/.

58

http://verbs.colorado.edu/semlink/

3. Same as previous, for predicate occurring less than 20 times in the training
data

4. Same as previous, for predicate occurring less than 30 times in the training
set

The classi�er setup was the same as for the experiments described in Sections 7.1
and 7.3 � logistic regression with regularization cost set at 1 and a termination
criterion of 0.001 with no feature selection.

Table 7.8: Results of the predicate merging experiment

Setting F1 5 % 95 %
Individual predicates 71.4 67.2 75.3
Identical frames merged for N <= 10 72.4 68.3 76.4
Identical frames merged for N <= 20 73.3 69.2 77.1
Identical frames merged for N <= 30 74.3 70.4 77.9

The �gures listed are in the same format as in Tables 7.1 and 7.2, N stands for number of
occurrences of the individual predicates in the training data.

The results of our experiments are displayed in Table 7.5. It shows that
merging rare predicates with identical sets of frame arguments helps improve the
classi�cation performance, albeit not with 90 % con�dence, and further that the
improvement is visible even in predicates with 20�30 occurrences in the training
data. We decided not to merge more frequent predicates in order to prevent
unifying too many semantically unrelated predicates and also due to performance
reasons. It is, however, possible that merging even more common predicates with
the same frames will yield even better results.

7.6 Post-Inference on Valency Arguments

As we mentioned in Section 7.3, the valency arguments are not only distinct
for each predicate, but also not repeatable in the same sentence. It is, however,
obvious that an ML method which classi�es the words individually is not capable
of adhering to such global constraints as uniqueness of the arguments. Therefore,
post-inference methods have been developed that modify the classi�er output so
that it is compliant to the linguistic rules.

Punyakanok et al. (2004) presented a post-inference solution using integer lin-
ear programming (ILP), which is also employed in the CoNLL 2009 competition
system by Che et al. (2009). Given classi�er probability estimates for each word
and each semantic role, it tries to maximize the total probability under the con-
straints that each word is only assigned one semantic role and that the valency
arguments may occur only once8. This transfers to an ILP task as follows:

8The original system of Punyakanok et al. (2004) featured additional constraints on argu-
ment references, which we do not include in our system for the sake of simplicity.

59

• Each semantic role of each word is a binary variable, whose coe�cient is
the probability estimate given by the classi�er.

• The total sum of variables pertaining to one semantic role must be 1.

• The total sum of variables related to each valency argument must be lower
or equal to 1 (i.e. 0 or 1).

• The target is to maximize the total sum of all variables with the given
coe�cients.

An additional threshold parameter may be introduced: If the probability of a
semantic role for a given word is lower than the threshold, it is set to zero.

We also designed our own, much simpler post-inference algorithm, which
proceeds in the following way:

• For each valency argument role, it �nds the word for which this role has
the greatest probability in the whole sentence.

• If the probability value found is above a given threshold, the particular role
is assigned to the selected word and its probability is set to zero for all the
other words.

• If all the valency roles (with su�ciently probable candidates) are selected,
the most likely remaining role is assigned for each word that does not
already have one.

Table 7.9: Post-inference experiment results

Setting F1 5 % 95 %
No post-inference 71.4 67.2 75.3

Simple post-inference

T = 0.3 72.7 68.8 76.6
T = 0.2 72.3 68.4 76.3
T = 0.1 72.0 68.1 75.9
T = 0.05 70.2 66.2 74.3
T = 0.01 66.8 62.5 70.7

ILP post-inference

T = 0.3 71.7 67.7 75.9
T = 0.2 71.9 68.0 75.7
T = 0.1 72.1 68.3 76.1
T = 0.05 71.8 67.1 75.7
T = 0.01 71.8 67.8 75.7
T = 0 71.8 67.8 75.9

The �gures listed are in the same format as in Tables 7.1 and 7.2, T stands for the threshold
parameter.

We then tested the bene�ts of both post-inference approaches on our AC Ex-
perimental Subset. We programmed the LP_Solve library into our ML frame-
work (see Section 4.4 for technical details) to solve the ILP problem and imple-
mented the simple algorithm on our own. We trained the same classi�er as in

60

Section 7.1 with the same settings, with data split for individual predicates and
no feature selection. We then used either no post-inference, or one of the above
algorithms with several di�erent threshold values. The results of the experiment
are shown in Table 7.6. We can see that keeping the valency arguments unique
can bring improvements to our AC system, although only modest (and not sig-
ni�cant in terms of the bootstrap test), whereas the simple inference algorithm
reached slightly better results. The most viable threshold settings are 0.3 for
the simple algorithm and 0.1 for ILP. We decided to employ both variants of
post-inference in the �nal system and compare them to the baseline, since this
approach does not require a separate training process and promises performance
improvements, albeit small.

7.7 Adverbial Modi�ers Labelling

We have explained the reasons for our intention to split the AC task into ar-
gument and adverbial modi�er classi�cation subtasks in Section 7.3. The latter
subtask, retrieving free adverbial adjuncts and argument co-references, should
then use the whole training set to tune the ML model. We discovered that even
using up to 16 GB of RAM, which is the maximum for some of the machines
in the computer cluster used, it is impossible to train the classi�er on such a
large data set. Therefore, instead of selecting machines with greater RAM ca-
pacity, we decided to make use of the concepts of ensemble learning (Opitz and
Maclin, 1999; Hastie et al., 2009, p. 605�.), or boosting (Witten and Frank, 2005,
p. 321�.) in particular, even if in a simpli�ed version. Such a choice also allows
for more parallelization.

The method itself is analogous to bootstrap and is usually applied to increase
classi�cation performance on smaller training data sets � several training sets
are sampled from the original one at random, thus �tting a group of models, the
outputs of which are then uni�ed by voting : Each model votes for one of the
classes for each evaluation instance and the class that gets the majority of all
votes is selected as the �nal decision.

We implemented a somewhat di�erent variant of the boosting method. In
our setting, a very large input data set is available, which gave us the opportu-
nity not to create random samples where some instances may repeat and others
may not be chosen at all, but rather split the whole training set into subsets
sequentially and use each one of them to train a di�erent model, which is also
technically simpler. Our own version of classi�er output uni�cation also added
a minor improvement in case that there is a tie among several classes: In that
case, our algorithm decides in favor of the classi�er that performed best on the
development data set.

61

Figure 7.1: An overall schema of our AC system, training phase
The meaning of the individual shapes and colors is the same as in Figures 6.1 and 6.2.

62

7.8 The Argument Classi�cation System

Bearing all of the above results in mind, we will now present an overview of
our AC setup9. Similarly to the PD system (see Section 6.4) and any machine
learning method in general, it consists of two phases � training and evaluation.
The �rst phase is depicted in Figure 7.1 and consists of the following steps:

1. The input corpora are converted to the ARFF with no pruning applied
(see Section 7.1). Separate ARFF �les for the classi�cation of valency
arguments and adverbial modi�ers are created (as described in Section 7.3),
while in the �rst case, the data are split into di�erent �les for the individual
predicates, whereas the adverbial modi�ers classi�cation consists of a single
�le. The target class (the semantic label) is split accordingly.

2. Valency argument classi�cation:

(a) The adverbial and reference semantic labels are removed from the
training data set, as they will not be present for evaluation.

(b) The data examples of predicates that bear the same valency frame are
merged if their number of training sentences is 30 or less (cf. Section
7.5).

(c) The predicates with no development data10 (denoted as �orphans�,
similarly to the PD system described in Section 6.4) are separated
and their features �rst �ltered and then evaluated using the MI/In-
formation Gain method (cf. Section 7.4). First 30 of them are selected
as the optimal subset and saved for later use, along with the �ltering
settings.

(d) The remaining (possibly merged) predicate data are �ltered and the
�ltering settings stored. All feature ranking algorithms (see Section
5.5) are applied and the top 10, 15, 20, 25 or 30 according to each rank-
ing are tested, the best result of which is saved as the selected feature
set. Due to the high computational complexity of the task, only such
limited feature selection algorithm is employed (cf. also Section 7.4).

3. Adverbial modi�ers and references classi�cation:

(a) The training data is split into 22 parts, 250000 instances each (the
reasons are given in Section 7.7).

(b) Each part is then �ltered (with the �ltering settings saved for later
use) and undergoes all feature rankings described in Section 5.5.

(c) The same simple feature selection technique as for the valency argu-
ments is applied; its results are then stored for the evaluation phase.

9The corresponding con�guration �les for our software framework are included on the en-
closed CD, see Appendix B.

10There are 212 predicates that have 31 or more training sentences, but no development
senteces.

63

Figure 7.2: A chart of our AC system, evaluation phase
This schema has the same form as the ones in Figures 6.1 and 7.1.

The setting is analogous to the PD setup insofar as the �ltering settings
and feature sets are the inputs from the training stage into the evaluation stage
(the evaluation models are trained anew using these data, see Section 6.4 for
explanation). The latter then proceeds as follows (see also Figure 7.2 for the
detailed data �ow):

1. The evaluation data with predicates disambiguated (as output by the PD
evaluation phase, see Section 6.4) are converted to the ARFF format, in
the same two variants as in the training phase. The argument values are
now missing.

2. Valency argument classi�cation:

(a) All the rare predicates are merged. Since the merging criterion is the
number of occurrences in the training set, this also guarantees that
there are no unknown separate predicates.

(b) The data are �ltered according to the settings from the training stage.

(c) The data are classi�ed, using the best feature sets saved (creating
probability estimates for each one of the roles, if post-inference will
be used).

(d) (Optionally) a post-inference algorithm is applied.

3. The results of the valency argument classi�cation are written into the ad-
verbial modi�ers evaluation �le, so that they can be used by the classi�er
in this stage.

4. Adverbial modi�ers and references classi�cation:

(a) The evaluation set is copied 22 times and �ltered each time according
to the di�erent settings.

(b) The classi�cation proceeds using the individual feature sets selected
in the training stage.

(c) The classi�cation results are uni�ed, using voting.

5. All the semantic roles are merged to a single data column. The results are
written back into the original CoNLL corpus format.

64

The output of our system is thus the original evaluation data �le, with all the
predicates and semantic arguments �lled.

65

8
The Deep Analysis System: Structure

and Performance

After we discussed the two main parts of our own SRL system in particular in
Chapters 6 and 7, we will now provide a brief summary of its overall implementa-
tion, connecting the PD and AC subtasks together (in Section 8.1). We include
an insight into the feature sets selected in the training phase of both subtasks
(Section 8.2) and a detailed analysis of the results of our system on the CoNLL
2009 evaluation data set (see Section 8.3). We attach a short comparison to the
other systems competing in the last year's contest (as Section 8.4) and attempt
to identify the most probable error sources (Section 8.5).

8.1 Overall Organization

The two main units of our setup, the PD and AC systems, are completely in-
dependent of each other in their respective training stages, which allows for
parallel computation. They both use the training and development data sets of
the CoNLL 2009 corpus, converting them to the ARFF data format (see Section
4.4) with di�erent settings for each unit. The results of the both training stages
are the feature �ltering settings, along with a set of selected features (see also
Section 5.5 for basic details). These are then used to train the models anew in
the evaluation stage, thus being its only inputs from the training (please refer
to Section 6.4 for explanation). The evaluation phase therefore uses the training
data as one of its inputs as well.

By contrast to the training, the evaluation stages of both subtasks depend
directly on each other, forming a pipeline. The CoNLL corpus data without
PRED and APREDi columns (predicates and arguments speci�cation, see Section
3.4) is �rst input to the PD system, along with the best features and �ltering
settings from the PD training stage. The PD evaluation output is then the same

66

Figure 8.1: The overall organization of our SRL system
The data in CoNLL format are displayed in rectangles with round borders. The system output
is marked grey.

�le in the original data format, but with all the PRED values �lled in. We use the
conversion into the original format at this point, since it is easier to implement
adding the predicates back to the single original �le than to append the predicate
information into the native AC data format split for di�erent predicates. Since
the AC task uses conversion settings di�erent to the PD solution, it is also
not possible to use the PD output data directly. The AC evaluation stage then
outputs the full data (containing the predicted arguments) in the original format.

The whole con�guration is depicted in Figure 8.1, including the �nal system
evaluation, which is done using the original CoNLL 2009 Scorer, so that the
result is comparable to other systems enrolled to this contest (see Section 8.4).
We will concentrate on the labeled variants of all metrics, since they re�ect the
performance more accurately, indicating problems with incorrect labeling, too.
We include the non-labeled measure outputs only for comparison.

8.2 Features Evaluation

As the output analysis of the training phase, we include an overall account of the
most bene�cial features chosen for both PD and AC subtasks, since they might
provide an insight useful for further enhancements of the SRL system, even if
the results are partly in�uenced by the �ltering and selection techniques and a
more individual inquiry would also be desirable. Our expectation was that the
list of frequently selected features would di�er greatly for the both tasks, which
proved to be true.

We have excluded the predicate lemmas that did not undergo any tuning on
the development data (the �orphans�), because the features selected rest solely
on the ranking output. The number of features used in the remaining 525 PD
models is very small, with an average of 5.43. This is probably due to the small

67

Table 8.1: Top 10 most frequently used features in predicate disambiguation

Feature U
Children Types (prepositions) 120
1st word to the right � word form 116
1st word to the right � lemma 78
Form 75
Children Types (particles) 63
Children Types (nominal POSs) 63
Children Types (number of particles) 60
Children lemmas 59
Voice 53
Cluster (form + POS) of the 1st word to the right 52
CPOS of the 1st+2nd word to the right 52
Cluster (lemma + POS) of the 1st word to the right 52
Children types (number of prepositions) 52

The value shown is the total number of classi�cation models that use the given feature, out of
525, i.e. the most often used feature was selected in approx. 38 % of cases.

number of training instances in most cases. The top ten list of popular features
is given in Table 8.1. It shows that feature types newly introduced in our system
(see Section 5.4) have been rather successful, especially the Children Types.
The utility of the features based on word clustering varies greatly with their
particular type, with the semantic clusters of the word directly to the right of
the predicate being chosen most often. The exact word form of the predicate and
of the following word is also chosen very frequently, i.e. some very straightforward
features proved to be quite useful.

The AC models favored di�erent groups of features, which varied further
for the classi�cation of arguments and adverbials. Some of these features could
not be applied to PD at all, since they re�ect relations between the predicate
and argument candidates. Their number was greater than in the PD task with
11.27 for arguments and 13.41 for modi�ers on average, which is probably partly
caused by the coarser feature selection techniques. Table 8.2 displays the list of
top features for both AC subtasks.

The most useful features for the classi�cation of the valency arguments are
thus the ones describing the dependency relation between the predicate and the
argument candidate, with the Sibling or Child indication at the top. The ad-
verbial modi�ers and references show a somewhat di�erent picture, with several
morphology-related features used in all of the partial models (cf. Sections 7.7 and
7.8 for details). The di�erence re�ects the typical real language use relatively
closely, as adverbial modi�ers tend to occur as distinct adverbs (e.g. �Friday�)
or prepositional phrases (e.g. �in Chicago�), which are denoted by their syntactic
head � the preposition. The valency arguments, however, are recognized rather
by their syntactic relation to the predicate. The both above statements hold
in a typical case, which corresponds well to the expected output of a statistical
learning method: The classi�cation is trained to be applicable mainly to the
most frequent phenomena.

68

Table 8.2: Top 10 most frequently used features in argument classi�cation

Valency arguments Other
Feature U Feature U
Sibling or Child (of the predicate) 827 Lemma (predicted) 22
Dependency Path (POS) 520 Dependency Path (dep. relation) 22
Dependency Path (dep. relation) 457 Dependency relation (predicted) 22
Dependency Path (CPOS) 457 CPOS of predicate + current word 22
Head Position (before or after the word) 412 Dependency relation 22
Syntactic Dependence on Predicate 411 POS 22
Head word CPOS 377 Lemma 22
Dependency relation 347 Dependency path (direction) 22
Position (relative to predicate) 271 POS (predicted) 22
Dependency relation (predicted) 258 Form 21

The value shown is the total number of classi�cation models that use the given feature, out of
993 for arguments and 22 for adverbial modi�ers and references.

8.3 System Performance on the CoNLL 2009 Evaluation

Data

The �nal results of our SRL system on the CoNLL evaluation data set for the
SRL-only task1 are displayed in Table 8.3. The numbers indicate only a limited
success of our solution, with our simple post-inference algorithm ranking best. It
shows that the ILP post-inference technique strongly improves precision, while
lowering recall, but still increasing F1 in total. This behavior was also reported by
Che et al. (2009). The simple post-inference method on the other hand brings
smaller gains in both precision and recall, which add up to a better overall
F -measure score. We will therefore focus on the results of the latter in the
following, but since the gap between the individual versions is not very wide, the
detailed �gures are very similar for all of them.

Table 8.3: The results of our SRL solution on the CoNLL evaluation data

System variant
Labeled Unlabeled

P R F1 P R F1

No post-inference (base) 82.91 66.31 73.73 91.61 73.34 81.47
ILP post-inference 85.19 65.90 74.32 93.30 72.18 81.40
Simple post-inference 84.46 67.46 75.00 92.47 73.85 82.12

The listed values are: labeled and unlabelled precision, recall and F1 percentage, respectively.

As the scorer �gures include the performance in both predicate disambigua-
tion and argument classi�cation, we have created several scripts for further au-
tomatic analysis, both a direct one of the system output and an indirect one of
the results given by the CoNLL scorer. We present the relevant �gures in Tables
8.4, 8.5 and 8.6.

1This evaluation data set contained predicted syntactic relations, which we copied to be
used as the golden ones for the generation of other features, as well as for classi�cation.

69

Table 8.4: Detailed performance of the PD subtask

Predicate lemmas N A
All lemmas 10498 95.06
Multiple senses 3834 86.86
�Simple� (2-3 senses) 2420 89.67
�Harder� (4-8 senses) 943 85.37
�Tough� (more than 8 senses) 480 75.63
Nominal lemmas with multiple senses 1452 86.98
Verbal lemmas with multiple senses 2391 86.78

The listed values are: the total number of predicates of the given type and the total accuracy
percentage on these predicates (see Section 6.2 for explanation). The PD part of the system is
identical for all variants.

It is now apparent that the PD subtask is able to achieve considerably high
accuracy, but partly due to the fact that many lemmas are not ambiguous. There
is still a margin for possible further improvement (see Table 8.4 for details).
With highly ambiguous lemmas, the performance is markedly weaker than for
the simpler problems, even if much broader range of candidate feature subsets
has been explored. The classi�cation of nominal and verbal predicate lemmas is
almost equally successful.

The output of the AC solution is much more problematic. The semantic la-
beling precision still remains relatively high in all variant, but the recall �gures
show the major di�culty � the system does not recognize a considerably large
portion of the arguments. If we observe the more detailed numbers in Table 8.5,
we can see that this problem pertains to all types of labels: valency arguments
as well as adverbial modi�ers and references. However, the arguments (A0...A5)
feature considerably better results than the rest of the labels. The lower �gures
for adverbial modi�ers are caused mainly by an inferior performance in nominal
predicates � most of their modi�ers are not identi�ed at all. The classi�cation
of verb modi�ers is signi�cantly more successful, while still not as accurate as
with valency arguments. On the other hand, the attainment in negation particles
and modal verbs as arguments of the verbal predicates exceeds 90 % F -measure,
which is probably thanks to the fact that these modi�er types are mostly iden-
ti�ed by the word form itself.

Our results also indicate a slightly greater e�ciency in verbal predicates (cf.
Table 8.6), which is possibly also caused by the problems with adverbial modi�ers
of nouns. Further, if we look at the performance for di�erent predicates shown
in Table 8.6, it becomes apparent that in our setting, the correct output of the
PD subtask seriously in�uences the AC performance. This only re�ects the fact
that disparate word senses often bind unequal argument types.

We also examined how the system performance depends on the frequency of
the predicates. It appears that the overall e�ciency in terms of F -measure grows
slightly for more frequent predicates, but stagnates with very common ones,
which could be expected. The higher value for the most plentiful predicates is
caused by a very successful classi�cation of two of them, �say.01.v� and �%.01.n�.
The F -measure growth with more common predicates is mainly brought about

70

Table 8.5: Detailed performance of the AC subtask by argument type
The values listed are: the total numbers of instances of the given type (in the gold standard
data) and labeled precision, recall and F -measure percentages of the simple post-inference
version, respectively. Other POSs as predicates and very rare kinds of adverbial modi�ers are
omitted in particular, but included in the total numbers.

Subset Size P R F1

All predicates 23286 77.71 55.01 64.42
Valency arguments 17760 79.65 59.30 67.98
Adverbial modi�ers 4838 70.79 42.97 53.48
References 205 100.00 1.95 3.83
Co-references 483 60.75 40.37 48.51

Nominal pred. + A0 2339 79.20 50.79 61.89
Nominal pred. + A1 3757 79.38 55.74 65.49
Nominal pred. + A2 1537 72.93 53.29 61.58
Nominal pred. + A3 349 67.10 59.03 62.81
Nominal pred. + A4 18 62.50 55.56 58.83
Nominal pred. + A5 1 - 0.00 -
Nominal pred. + AM* 1186 62.79 4.55 8.49
Nominal pred. + C-* 2 - 0.00 -
Nominal pred. + R-* 2 - 0.00 -
Verbal pred. + A0 3509 81.02 61.44 69.88
Verbal pred. + A1 4844 86.40 66.78 75.33
Verbal pred. + A2 1085 68.55 59.26 63.57
Verbal pred. + A3 169 54.14 57.99 56.00
Verbal pred. + A4 99 72.28 73.74 73.00
Verbal pred. + A5 5 100.00 80.00 88.89
Verbal pred. + AA 0 0.00 - -
Verbal pred. + AM* 3630 71.07 55.76 62.49
Verbal pred. + C-* 202 100.00 1.98 3.88
Verbal pred. + R-* 481 60.75 40.54 48.63

Nominal pred. + AM-ADV 32 100.00 3.12 6.05
Nominal pred. + AM-CAU 2 100.00 50.00 66.67
Nominal pred. + AM-EXT 33 - 0.00 -
Nominal pred. + AM-LOC 232 40.00 0.86 1.68
Nominal pred. + AM-MNR 344 - 0.00 -
Nominal pred. + AM-MOD 7 100.00 28.57 44.44
Nominal pred. + AM-NEG 35 100.00 22.86 37.21
Nominal pred. + AM-TMP 492 57.97 8.13 14.26
Verbal pred. + AM-ADV 488 43.34 34.02 38.12
Verbal pred. + AM-CAU 70 67.50 38.57 49.09
Verbal pred. + AM-DIR 81 66.67 2.47 4.76
Verbal pred. + AM-DIS 315 63.35 44.44 52.24
Verbal pred. + AM-EXT 32 54.55 18.75 27.91
Verbal pred. + AM-LOC 355 53.70 49.01 51.25
Verbal pred. + AM-MNR 335 60.65 28.06 38.37
Verbal pred. + AM-MOD 539 94.15 89.61 91.82
Verbal pred. + AM-NEG 227 93.56 96.04 94.78
Verbal pred. + AM-PNC 113 52.24 30.97 38.89
Verbal pred. + AM-TMP 1068 75.61 63.58 69.08

71

Table 8.6: Detailed performance of the AC subtask by predicate type

Subset Size P R F1

All predicates 23286 77.71 55.01 64.42
Nominal predicates 9191 77.09 47.56 58.83
Verbal predicates 14024 78.05 60.13 67.93
Correctly disambiguated predicates 22017 78.69 56.23 65.59
Wrong predicate sense 1269 57.10 33.88 42.53

Merged predicates 5054 68.21 18.34 28.91
Predicates classi�ed individually 18232 78.56 65.18 71.25
Occurence count in training data = 0-10 2438 64.53 15.67 25.22
Occurence count in training data = 11-20 1406 67.53 18.49 29.03
Occurence count in training data = 21-30 1090 72.39 19.72 31.00
Occurence count in training data = 31-40 1038 79.05 61.08 68.91
Occurence count in training data = 41-50 830 73.56 53.98 62.27
Occurence count in training data = 51-100 3603 77.75 60.92 68.31
Occurence count in training data = 101-200 3443 78.04 64.71 70.75
Occurence count in training data = 201-500 5013 77.79 65.97 71.39
Occurence count in training data = 501-1000 2314 76.57 64.69 70.13
Occurence count in training data > 1000 2111 85.80 77.88 81.65

The format of this table is the same as in Table 8.5.

by the increase in recall. A very problematic �nding is that recall stays very low
especially for the predicates that were merged according to their frames due to
lack of training data (as described in Section 7.5).

8.4 Comparison to CoNLL 2009 Shared Task Systems

Since the outputs of all setups competing in the CoNLL 2009 Shared Task are
publicly available2, we may analyze them and compare them to our results. If we
look at the �nal overall SRL results for English (cf. tables in Haji£ et al., 2009),
our system performance is average; it would rank fourth out of eight SRL-only
solutions (including our system). Compared to all competing setups, including
the ones that solve both the syntactic and semantic subtasks, it would receive
the 15th place out of 21.

A more detailed examination of all competing systems results has shown
that our PD solution ranks fourth best, after the setups of Täckström (2009),
Björkelund et al. (2009) and Brown3, which reached 95.62 %, 95.59 % and 95.32 %
accuracy, respectively. Several other systems have passed the barrier of 94 %, but
many of them classify predicate senses with around or less than 90 % con�dence.
This shows that several setups, including the best one for English by Dai et al.
(2009), perform better on the whole, even if their PD part is less accurate than
our solution. The in�uence of the PD part on the accuracy of the AC part varies
greatly, from only 3 % drop in F -measure experienced by the setup of Li et al.
(2009), up to 20 % or 28 % decrease that may be observed in the classi�cation

2Downloadable at http://ufal.mff.cuni.cz/conll2009-st/results/results.php.
3The authors of this particular SRL system did not provide a description paper.

72

http://ufal.mff.cuni.cz/conll2009-st/results/results.php

outputs of Björkelund et al. (2009) and Lin4, respectively. Most solutions display
a drop of approximately 10 %. Our �ndings show a comparatively greater depen-
dence between the two subtasks, given by the separate classi�cation of di�erent
predicates.

If we compare the AC subtask results, it shows that while the best ranking
setups (Björkelund et al., 2009; Zhao et al., 2009) produce a very balanced output,
with a comparable performance for nominal and verbal predicates and also for
valency arguments, adverbial modi�ers and references, most solutions achieve
a better F -measure score with verbs and their arguments, which apparently
follows from the fact that verbal arguments are often more closely syntactically
bound than the nominal ones. Possibly due to the same cause, most systems
classify adverbial modi�ers and references with less con�dence than the valency
arguments. These �ndings are very similar to our experience.

A majority of the setups also behaves very similar to ours with respect to
the precision-recall ratio: it is very usual that a classi�er attains higher precision
than recall in this particular task, mostly by a few percent points, with the top
systems being better balanced, but even 10 % in the case of Meza-Ruiz and
Riedel (2009). There are also some exceptions from this rule (Morante et al.,
2009). However, the gap between precision and recall �gures reached by our
system, which stems both from generally lower recall �gures and extremely low
recall in adverbial modi�ers of nouns, is even wider.

8.5 Possible Sources of Errors

The performance analysis and comparison given in Sections 8.3 and 8.4 have
identi�ed the weaknesses of our SRL setup. We will now attempt to provide
their most probable causes for both PD and AC subtask and suggest possible
improvements.

Concerning the former, the data sparsity is most probably among the main
error sources: For many predicate lemmas, there are only very few or none
training data examples or none at all, which leads to a trivial model assigning
the most frequent sense. Apart from using more sophisticated features and more
detailed �ltering, which could lead to a greater e�ciency of simple modes with
only few variables, there are not many remedies to this problem � since the
number and frequency of the individual senses is speci�c to each lemma, there is
no straightforward way of grouping the rare ones. In more common predicates,
which also tend to be the more ambiguous ones, we believe that employing a
more exhaustive feature search, e.g. applying the greedy algorithm to a wider set
of predicates or using beam search (Aha and Bankert, 1995), could contribute to
at least partial recti�cation of the classi�cation errors.

The PD subtask results pose a more signi�cant problem, especially the low
recall �gures in some cases. They indicate that particularly for very large and
inhomogeneous training sets, such as the adverbial modi�ers classi�cation (see
Section 7.7), but also some of the merged problems for rare predicates (delineated

4There is also no paper describing this CoNLL 2009 contest system.

73

in Section 7.5), the feature �ltering and selection techniques are not powerful
enough to suggest arguments reliably and show themselves too coarse for diver-
gent information sources. Therefore, a �ner feature �ltering and ranking, and
also a more exhaustive feature space search in the selection phase should most
probably improve the system performance regarding such phenomena. More
sophisticated features could also contribute to a greater accuracy in argument
identi�cation.

As the adverbial modi�ers of verbs were classi�ed more successfully than the
ones of nouns by our system, we believe that additional features describing the
syntactic relations independent of POS could also yield further progress. Another
option regarding adverbial modi�ers is to separate their classi�cation model for
verbs and nouns. Since the recall �gures for (co-)references are also very low, it
could (although the proportion of such events is not very high in the CoNLL 2009
corpus) prove bene�cial to solve the reference classi�cation individually and use
special features tailored for this task, building upon usual anaphora resolution
approaches (Soon et al., 2001; Ng and Cardie, 2002).

74

9
Conclusions

We will conclude the thesis with a brief summary of our SRL system results
and an account of our contributions to the deep analysis (Section 9.1). We will
also suggest some possibilities of further performance improvement and introduce
additional applications of our setup in Section 9.2.

9.1 Results

Using our original software framework for e�ective batch parallel processing of
machine learning (ML) tasks, which features a space-saving description of multi-
ple analogous subtasks and our own implementations of data conversion, �ltering
and feature selection tools, combined with third-party classi�er, ranking and data
storage libraries, we have developed a deep analysis solution for English, apply-
ing the predicate-argument structure approach to semantic description used in
the CoNLL 2009 Shared Task contest (Haji£ et al., 2009, introduced in Chapter
3). Being very abstract and extensible, our ML framework is also applicable to
many other problems consisting of subtasks depending on each other.

We conducted and evaluated series of experiments with various semantic ana-
lysis subproblems within our framework in order to �nd the optimal setting. Our
setup, consisting of the predicate disambiguation (PD) and argument classi�ca-
tion (AC) subtasks, therefore includes several novel improvements to the present
deep analysis solution: new data feature types, di�erent approach to PD prob-
lems depending on their complexity, using di�erent classi�cation models for indi-
vidual predicates in the AC subtask in combination with rare predicate clustering
based on their valency frames, a separate global solution for adverbial modi�ers
and the application of a new simple post-inference algorithm guaranteeing the
uniqueness of valency arguments.

We have evaluated our apporach using the CoNLL 2009 Shared Task English
corpus, achieving the overall F -measure of 75.00 %, with PD accuracy of 95.06 %

75

and AC F1 of 64.42 %. A detailed analysis and a comparison of our results to the
�ndings of the CoNLL 2009 competition show that our semantic classi�cation
solution can compete with other contestants' systems and is able to achieve top
performance in PD and relatively high precision for the AC task in most cases,
but shows lower recall values, especially for valency arguments of rare predicates
and adverbial modi�ers of nouns. We have identi�ed the most probable error
sources and propose possible paths leading to their compensation.

The evaluation has further shown that for the PD task, our newly introduced
data features are one of the most often selected. Our simple post-inference
algorithm in the AC part of the setup also proved to be a contribution to the
overall better performance. Our experiments with separate adverbial modi�er
classi�cation suggest possible improvements using this approach, but the results
of our system do not yet match the top ranking approaches in this respect.

9.2 Further Research

As our error analysis has shown comparably lower recall values for the PC sub-
task, especially in large inhomogeneous classi�cation models, we assume that
better feature �ltering and selection will improve the results. Therefore, we pro-
pose examining more individual approaches to feature �ltering, depending on
the size of the given classi�cation model, and analyzing the possibility of using
more exhaustive feature space search. We also consider applying a two-stage fea-
ture selection, before and after feature binarization, which would lead to much
higher computational complexity, but promises certain improvements. Inferring
the most viable feature subset based on the outputs of various feature rankings
should also be tested.

Adding a wider variety of generated features, possibly including feature bi-
grams and global features (Björkelund et al., 2009) or special features for di�erent
argument types, also invites further research. We are also interested in separate
classi�cation models for adverbial modi�ers of nouns and verbs and a di�erent
approach to (co-)references. Another improvement possibility could be tuning
the classi�er parameters more precisely for di�erent variants of the AC problem.

Since our system is based on statistical learning methods, which are highly
language-independent, and the CoNLL 2009 contest included semantically anno-
tated corpora for seven di�erent languages, all using predicate-argument struc-
ture and the same basic input format, our system can be easily modi�ed to be
applicable to the other data sets provided. Several details in our solution are
speci�cally tailored for our English corpus (e.g. the generated features make use
of its morphological tag set), but a modi�cation for another language or anno-
tation is not very complicated.

We have already mentioned the theoretical possibility of modifying the system
designed for the CoNLL 2009 English semantic description in order to use it with
a di�erent English corpus � the Prague English Dependency Treebank (Cinková
et al., 2009). The conversion of the annotation format remains the most di�cult
prerequisite task, but its solution may be analogous to the CoNLL 2009 Shared

76

Task conversion of the Prague Dependency Treebank (Haji£ et al., 2006, 2009),
which uses a similar annotation schema.

77

List of Abbreviations

AC Argument Classi�cation

AI Argument Identi�cation

API Application Programming Interface

ARFF Attribute-Relation File Format

CoNLL Conference on Computational Natural Language Learning

CPOS Coarse Part-of-Speech (�rst letter of the part-of-speech tag)

FGD Functional Generative Description

ILP Integer Linear Programming

JNI Java Native Interface

MaxEnt Maximum Entropy model, Maximum Entropy classi�er

MI Mutual Information

MIRA Margin-Infused Relaxed Algorithm

mRMR Minimum Redundancy-Maximum Relevance

NLP Natural Language Processing

PD Predicate Disambiguation

PDT Prague Dependency Treebank

PEDT Prague English Dependency Treebank

PI Predicate Identi�cation

POS Part-of-Speech

PropBank The Proposition Bank

PTB Penn Treebank

SRL Semantic Role Labeling

SVM Support Vector Machine

WEKA Waikato Environment for Knowledge Analysis

79

Bibliography

D. W Aha and R. L Bankert. A comparative evaluation of sequential feature
selection algorithms. Learning from Data: Arti�cial Intelligence and Statistics
V, page 199�206, 1995.

A. Ahmad and L. Dey. A feature selection technique for classi�catory analysis.
Pattern Recognition Letters, 26(1):43�56, 2005.

C. F Baker and J. Ruppenhofer. FrameNet's frames vs. Levin's verb classes. In
Proceedings of the 28th Annual Meeting of the Berkeley Linguistics Society,
page 27�38, 2002.

C. F Baker, C. J Fillmore, and J. B Lowe. The Berkeley Framenet project. In
Proceedings of the 17th international conference on Computational linguistics-
Volume 1, page 86�90, 1998.

A. L Berger, V. J.D Pietra, and S. A.D Pietra. A maximum entropy approach
to natural language processing. Computational linguistics, 22(1):39�71, 1996.

A. Björkelund, L. Hafdell, and P. Nugues. Multilingual semantic role labeling. In
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning: Shared Task, page 43�48, 2009.

D. J Blower. An easy derivation of logistic regression from the Bayesian and
maximum entropy perspective. In AIP Conference Proceedings, volume 707,
page 30, 2004.

B. Bohnet. E�cient parsing of syntactic and semantic dependency structures. In
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning: Shared Task, page 67�72, 2009.

B. E Boser, I. M Guyon, and V. N Vapnik. A training algorithm for optimal mar-
gin classi�ers. In Proceedings of the �fth annual workshop on Computational
learning theory, page 144�152, 1992.

X. Carreras and L. Marquez. Introduction to the CoNLL-2004 shared task:
Semantic role labeling. In Proceedings of CoNLL-2004, pages 89�97, 2004.

X. Carreras and L. Marquez. Introduction to the CoNLL-2005 shared task: Se-
mantic role labeling. In Proceedings of the Ninth Conference on Computational
Natural Language Learning, page 152�164, 2005.

81

R. Caruana and D. Freitag. Greedy attribute selection. In Proceedings of the
Eleventh International Conference on Machine Learning, page 28�36, 1994.

C. C Chang and C. J Lin. LIBSVM: a library for support vector machines. 2001.

W. Che, Z. Li, Y. Hu, Y. Li, B. Qin, T. Liu, and S. Li. A cascaded syntactic and
semantic dependency parsing system. In Proceedings of the Twelfth Conference
on Computational Natural Language Learning, page 238�242, 2008.

W. Che, Z. Li, Y. Li, Y. Guo, B. Qin, and T. Liu. Multilingual dependency-based
syntactic and semantic parsing. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task, page 49�54, 2009.

E. Chen, L. Shi, and D. Hu. Probabilistic model for syntactic and semantic de-
pendency parsing. In Proceedings of the Twelfth Conference on Computational
Natural Language Learning, page 263�267, 2008.

N. Chomsky. Government and binding. Foris, Dordrecht, 1981.

S. Cinková, J. Toman, J. Haji£, K. �ermáková, V. Klime², L. Mladová,
J. �indlerová, K. Tom²·, and Z. �abokrtský. Tectogrammatical annotation
of the Wall Street Journal. The Prague Bulletin of Mathematical Linguistics,
(92), 2009.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):
273�297, 1995.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass
problems. The Journal of Machine Learning Research, 3:951�991, 2003.

N. Cristianini and J. Shawe-Taylor. An introduction to support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

Q. Dai, E. Chen, and L. Shi. An iterative approach for joint dependency parsing
and semantic role labeling. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning: Shared Task, page 19�24, 2009.

B. Efron. Bootstrap methods: another look at the jackknife. The annals of
statistics, 7(1):1�26, 1979.

R. E Fan, K. W Chang, C. J Hsieh, X. R Wang, and C. J Lin. LIBLINEAR:
a library for large linear classi�cation. The Journal of Machine Learning Re-
search, 9:1871�1874, 2008.

S. R Garner. WEKA: The waikato environment for knowledge analysis. In Pro-
ceedings of the New Zealand Computer Science Research Students Conference,
page 57�64, 1995.

A. Gesmundo, J. Henderson, P. Merlo, and I. Titov. A latent variable model of
synchronous syntactic-semantic parsing for multiple languages. In Proceedings
of the Thirteenth Conference on Computational Natural Language Learning:
Shared Task, page 37�42, 2009.

82

D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational
Linguistics, 28(3):245�288, 2002.

A. M Giuglea and A. Moschitti. Semantic role labeling via FrameNet, Verb-
Net and PropBank. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, page 936, 2006.

J. Haji£, J. Panevová, E. Haji£ová, P. Sgall, P. Pajas, J. �tepánek, J. Havelka,
M. Mikulová, Z. �abokrtský, and M. � Razímová. Prague Dependency Tree-
bank 2.0. LDC2006T01, page 1�58563, 2006.

J. Haji£, M. Ciaramita, R. Johansson, D. Kawahara, M. A Martí, L. Marquez,
A. Meyers, J. Nivre, S. Padó, J. �t¥pánek, et al. The CoNLL-2009 shared task:
Syntactic and semantic dependencies in multiple languages. In Proceedings
of the Thirteenth Conference on Computational Natural Language Learning:
Shared Task, page 1�18, 2009.

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. Springer, 2nd edition, 2009.

D. W Hosmer and S. Lemeshow. Applied logistic regression. Wiley-Interscience,
2000.

C. W Hsu, C. C Chang, C. J Lin, et al. A practical guide to support vector
classi�cation. 2003.

F. Jelinek. Statistical methods for speech recognition. MIT Press, 1997.

Z. P Jiang and H. T Ng. Semantic role labeling of NomBank: a maximum entropy
approach. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, page 138�145, 2006.

R. Johansson and P. Nugues. Extended constituent-to-dependency conversion for
English. In Proc. of the 16th Nordic Conference on Computational Linguistics
(NODALIDA), 2007.

G. H John, R. Kohavi, and K. P�eger. Irrelevant features and the subset selection
problem. In Proceedings of the eleventh international conference on machine
learning, volume 129, 1994.

A. B. Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558�562, 1962.

P. Kingsbury and M. Palmer. From treebank to PropBank. In Proceedings of the
3rd International Conference on Language Resources and Evaluation (LREC-
2002), page 1989�1993, 2002.

P. Kingsbury and M. Palmer. PropBank: the next level of treebank. In Proceed-
ings of Treebanks and lexical Theories, 2003.

83

K. Kipper-Schuler. VerbNet: A broad-coverage, comprehensive verb lexicon. PhD
thesis, University of Pennsylvania, 2005.

K. Kira and L. A Rendell. A practical approach to feature selection. In Proceed-
ings of the ninth international workshop on Machine learning, page 249�256,
1992.

I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In
Machine Learning: ECML-94, page 171�182, 1994.

A. Kulkarni and T. Pedersen. SenseClusters: Unsupervised clustering and label-
ing of similar contexts. In Proceedings of the ACL 2005 on Interactive poster
and demonstration sessions, page 108, 2005.

S. I Lee, H. Lee, P. Abbeel, and A. Y Ng. E�cient L1-regularized logistic
regression. In Proceedings of the National Conference on Arti�cial Intelligence,
volume 21, page 401, 2006.

Beth Levin. English verb classes and alternations: A preliminary investigation.
Univeristy of Chicago Press, Chicago, 1993.

B. Li, M. Emms, S. Luz, and C. Vogel. Exploring multilingual semantic role la-
beling. In Proceedings of the Thirteenth Conference on Computational Natural
Language Learning: Shared Task, page 73�78, 2009.

Edward Loper, Szu ting Yi, and Martha Palmer. Combining lexical resources:
Mapping between PropBank and VerbNet. In In Proceedings of the 7th Inter-
national Workshop on Computational Linguistics, 2007.

P. J MacCullagh and J. A Nelder. Generalized linear models. Chapman & Hall,
2nd edition, 1991.

R. Malouf et al. A comparison of algorithms for maximum entropy parame-
ter estimation. In Proceedings of the Sixth Conference on Natural Language
Learning (CoNLL-2002), page 49�55, 2002.

C. D. Manning and H. Schütze. Foundations of statistical natural language pro-
cessing. MIT Press, 2000.

C. D Manning, P. Raghavan, and H. Schtze. Introduction to Information Re-
trieval. Cambridge University Press, New York, 2008.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2):330,
1993.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji£. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the conference on
Human Language Technology and Empirical Methods in Natural Language Pro-
cessing, page 523�530, 2005.

84

A. Meyers, R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young, and
R. Grishman. The NomBank project: An interim report. In A. Meyers,
editor, HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation, page
24�31, Boston, Massachusetts, USA, May 2004. Association for Computational
Linguistics.

I. Meza-Ruiz and S. Riedel. Multilingual semantic role labelling with markov
logic. In Proceedings of the Thirteenth Conference on Computational Natural
Language Learning: Shared Task, page 85�90, 2009.

R. Morante, V. Van Asch, and A. Van den Bosch. Joint memory-based learning
of syntactic and semantic dependencies in multiple languages. In Proceedings
of the Thirteenth Conference on Computational Natural Language Learning:
Shared Task, page 25�30, 2009.

E. Moreau and I. Tellier. The crotal SRL system: a generic tool based on
tree-structured CRF. In Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning: Shared Task, page 91�96, 2009.

P. Moreda and M. Palomar. The role of verb sense disambiguation in semantic
role labeling. Advances in Natural Language Processing, page 684�695, 2006.

A. Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on
regularization. SIAM Review, 40:636�666, 1998.

A. Y Ng. Feature selection, L1 vs. L2-regularization, and rotational invariance. In
Proceedings of the twenty-�rst international conference on Machine learning,
page 78, 2004.

V. Ng and C. Cardie. Improving machine learning approaches to coreference res-
olution. In Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, page 111, 2002.

D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal
of Arti�cial Intelligence Research, 11(169-198):12, 1999.

M. Palmer, P. Kingsbury, and D. Gildea. The Proposition Bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71�106, 2005.

H. Peng, F. Long, and C. Ding. Feature selection based on mutual information:
criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE
Transactions on pattern analysis and machine intelligence, page 1226�1238,
2005.

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words.
In Proceedings of the 31st annual meeting on Association for Computational
Linguistics, page 183�190, 1993.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Semantic role labeling via
integer linear programming inference. In Proceedings of the 20th international
conference on Computational Linguistics, page 1346, 2004.

85

O. Rambow, B. Dorr, I. Ku£erová, and M. Palmer. Automatically deriving
tectogrammatical labels from other resources: A comparison of semantic labels
across frameworks. The Prague Bulletin of Mathematical Linguistics, 80, 2003.

B. Santorini. Part-of-speech tagging guidelines for the Penn Treebank Project.
University of Pennsylvania, 3rd edition, 1990.

J. Semecký and S. Cinková. Constructing an English valency lexicon. In Proceed-
ings of the Workshop on Frontiers in Linguistically Annotated Corpora 2006,
page 94�97, 2006.

P. Sgall, E. Haji£ová, and J. Panevová. The meaning of the sentence in its
semantic and pragmatic aspects. D. Reidel, Dordrecht, 1986.

W. M Soon, H. T Ng, and D. C.Y Lim. A machine learning approach to coref-
erence resolution of noun phrases. Computational Linguistics, 27(4):521�544,
2001.

M. Surdeanu, R. Johansson, A. Meyers, L. Marquez, and J. Nivre. The CoNLL-
2008 shared task on joint parsing of syntactic and semantic dependencies. In
Proceedings of the Twelfth Conference on Computational Natural Language
Learning, page 159�177, 2008.

O. Täckström. Multilingual semantic parsing with a pipeline of linear classi-
�ers. In Proceedings of the Thirteenth Conference on Computational Natural
Language Learning: Shared Task, page 103�108, 2009.

Y. Watanabe, M. Asahara, and Y. Matsumoto. Multilingual syntactic-semantic
dependency parsing with three-stage approximate max-margin linear models.
In Proceedings of the Thirteenth Conference on Computational Natural Lan-
guage Learning: Shared Task, page 114�119, 2009.

R. Weischedel and A. Brunstein. BBN pronoun coreference and entity type
corpus. LDC2005T33, Linguistic Data Consortium, Philadelphia, 2005.

I. H Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann Pub, 2nd edition, 2005.

D. Zeman. A simple generative pipeline approach to dependency parsing and
semantic role labeling. In Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning: Shared Task, page 120�125, 2009.

Y. Zhang, C. Ding, and T. Li. Gene selection algorithm by combining ReliefF
and mRMR. BMC genomics, 9(Suppl 2):S27, 2008.

H. Zhao, W. Chen, C. Kit, and G. Zhou. Multilingual dependency learning: a
huge feature engineering method to semantic dependency parsing. In Proceed-
ings of the Thirteenth Conference on Computational Natural Language Learn-
ing: Shared Task, page 55�60, 2009.

86

A
List of Machine Learning Tasks

Implemented

Each of the subtasks implemented corresponds to one Java class, as described
in Chapter 4. The tasks are divided into groups according to their purpose;
their ordering is alphabetical. Detailed technical descriptions, including lists of
required or optional parameters and the formats of inputs and outputs, are a
part of the Javadoc documentation provided on the enclosed CD (cf. Appendix
B).

Computation Tasks

AverageAttributeRanks Makes an average from several attribute rankings (it av-
erages the attributes' positions, if the resulting numbers
are the same, it orders them according to the �rst rank-
ing given), as described in Section 5.5.

ConcatClassi�er A dummy classi�er for the �les where no training data are
present � concatenates given input �elds and a pre-set text
(such as the lemma and �.01�, see Section 6.4).

DummyClassi�er A dummy classi�er which always assigns the most common
value of the target attribute in the training data. We use it
with unary predicates (see Section 6.1).

GreedyAttributeSearch This class applies the greedy attribute selection algorithm
(see Sections 5.5 and 6.3) with the given WEKA classi�er
con�guration, capable of starting with a prede�ned number
of attributes or all subsets of a given size, possibly con�ned
to a set of best attributes as output by a ranking algorithm.
Each round may be parallelized.

87

ILPSemanticResolver Using the LP_Solve library, this creates an ILP task which
optimizes the probability of all semantic labels under the
constraint that valency arguments must not repeat (see Sec-
tion 7.6)

mRMR Our own implementation of the minimum Redundancy �
Maximum Relevance feature ranking algorithm (see Section
5.5).

MutualInformation Attribute ranking based on mutual information (see Section
5.5); needed for our mRMR implementation.

SettingSelector This class tries to run the given WEKA classi�er on the
same data with several di�erent sets of settings and then
selects the one with the best results. We used it in our
search for the best classi�er parameters (see Sections 6.2
and 7.4).

SimpleSemanticResolver Given the probability distributions of the individual classi�-
cations of words in a sentence, this employs our own simple
procedure for assigning the most likely semantic roles, while
preserving the uniqueness of valency arguments (see Section
7.6).

SubsequentAttributeAdder A Search for the best performing number of attributes
(within a speci�ed range, with a speci�ed stepping), given
an attribute ranking. All trials may run in parallel. See
Section 6.3 for details on use in our system.

WekaAttributeRanker This applies a WEKA feature ranking (or our own MI,
mRMR) to evaluate all features in a data set.

WekaClassi�er This task either trains a speci�ed WEKA library model with
the given parameters and data set, or classi�es given data
sets using a pre-loaded model, or both. It is used by the
feature selection searches, or standalone (for usages in our
setup, see Sections 6.4 and 7.8). It is capable of selecting
only the given features and binarizing them.

Data Manipulating Tasks

AttributeAdder This allows re-adding a feature to a data set (such as sen-
tence ID) that was previously deleted because of feature
selection.

AttributeDivider This divides an attribute in two, �lling the remaining val-
ues with an empty one, signi�ed by �_� (used for adverbial
modi�ers split classi�cation, as described in Section 7.7).

AttributeFilter This creates new attributes that contain only the most com-
mon values of the old ones, optionally deleting the old ones
(see Section 5.5).

AttributeMerger This merges two attributes into one, replacing �_� values
(cf. Section 7.7).

AttributeSelector This class �lters out some features from the data set.

BigDataSplitter This will split a large data �le into chunks based on the
number of input instances (cf. Section 7.7).

88

Classi�cationMerger This tries to merge the classi�cation of several classi�ers,
using voting (cf. Section 7.7).

CollectingAdder This gathers values of a features in a large data set from
several smaller data sets.

ConditionalSelector This class sorts the input �les to several groups, according
to a given condition, i.e. number of possible values of a fea-
ture, existence of development data etc. (used for selecting
�orphans� and splitting the di�erent types of predicates, see
Sections 6.4 and 7.8).

CopyInput A dummy task that just copies its selected inputs to out-
puts, used for debugging.

DataMerger This class merges several data sets into one, if they have the
same format (used in predicate merging).

FileGroupsMerger This will just merge the �les that originate from di�erent
outputs and give them compatible names (and issue errors
if their names collide).

FileMerger This class merges several (text) �les into one by writing
them sequentially one after another.

IrrelevantAttributes-
Removal

This removes all the attributes that are irrelevant for the
classi�cation (described in Section 5.5).

MergedDataSplitter This splits the given �les, if they've been previously merged
and contain an attribute indicating the original �le name,
while preserving the non-merged �les intact (cf. Section 7.5).

PredicateMerger This merges rare predicates according to their frames (see
Section 7.5).

RandomSampleSelector This selects a random sample from the given input �les and
passes it to the output (used for our AC experiments, see
Section 7.1).

ResultsToSt This adds the results from the classi�cation �les back to the
corpus �le in the original format, possibly rewriting some
�elds (applied in the evaluation stage of both AC and PD
systems, see Sections 7.8 and 6.4).

SelectBest This selects the best performing set of features from several
given classi�er results (see Section 6.3).

SimpleDataSplitter This class splits the given data set, according to the number
of instances or di�erent values of a feature.

StToAr� This class converts the original corpus �le format of the
CoNLL Shared Task to ARFF �le format in the given set-
tings (see Section 5.3), creating data features (see Section
5.4).

WekaFilter This applies any WEKA �lter to the given data set.

Evaluation Tasks

AttributeStats This creates a summary about the number of values of a
feature in di�erent data sets.

89

BootstrapTest Our own implementation of a bootstrap con�dence intervals
estimation (see Section 5.6).

EvalClassi�cation This computes accuracy, precision, recall and F1 (labeled
and unlabeled) for the given target feature (see Section 5.6).

SumEval This makes a sum of all the evaluations from various �les
and computes the overall scores, taking the number of in-
stances into account.

90

B
Contents of the Enclosed CD

The enclosed CD contains the source �les and Java binary of our batch processing
NLP framework (see Chapter 4), along with several helper scripts used in our
analyses. Also included are the con�guration �les for both the PD and AC
subtasks of our SRL setup, training and evaluation phases (see Chapters 6 and
7) and a detailed evaluation of our setup. The CoNLL 2009 corpora are not
provided, as we do not own the redistribution rights.

The CD directory structure looks as follows:

ml-process/ Our Java batch processing NLP framework:

ml-process/bin/ The Java binary, along with installation and usage informa-
tion

ml-process/javadoc/ The documentation for the framework base, as well as all
implemented subtasks (cf. also Appendix A)

ml-process/src/ The complete Java source �les

ml-process/template/ A Java class template for subtask implementation

output/ Performance statistics of all three variants of our SRL setup,
as output by the CoNLL 2009 scorer, and more detailed
statistics for the simple post-inference version (see Chapter
8 for explanation)

scenario/ Scenario �les for AC and PD subtasks, training and evalu-
ation phase

scripts/ Various helper scripts:

scripts/data-inspection/ Various analysis and statistics functions used to obtain an
insight into the nature of the data

scripts/evaluation/ Detailed analysis of the SRL system outputs

scripts/experiments/ Helper scripts for the execution of experiments

scripts/predicate-merging/ Predicate statistics needed for the merging of rare predicates
(see Section 7.5)

91

scripts/word-clustering/ A helper script used to obtain a plain-text version of
the CoNLL corpora to create the Clusters features using
SenseClusters, see Section 5.5

thesis.pdf The complete text of this thesis

92

	Abstract
	Introduction
	The Problem of Deep Language Analysis
	The Aims of This Work
	Structure of the Thesis

	Related Work
	The CoNLL 2009 Shared Task
	Other Approaches to Deep Language Analysis

	Data Used
	Syntactic Annotation
	PropBank and NomBank Semantic Annotation
	Comparison to Prague English Dependency Treebank Annotation
	The CoNLL Corpus: Data Format and Statistics

	The Used Machine Learning Environment
	Splitting the Experiments into Subtasks
	Wildcards and Task Expansion
	Running the Tasks in Parallel
	Integration of Third-Party Libraries

	Fundaments of Our Deep Analysis System
	Basic Approaches
	Classifiers
	Data Conversion
	Generated Features
	Feature Filtering and Selection
	Measuring the Classifier Performance

	Predicate Disambiguation
	Observations on the Data
	Selecting the Classifier Setting
	Feature Selection Approaches
	The Predicate Disambiguation System

	Argument Classification
	Argument Candidates
	Separate and Joint Argument Identification
	Different Argument Types
	Classifier Setting
	Merging Rare Predicates
	Post-Inference on Valency Arguments
	Adverbial Modifiers Labelling
	The Argument Classification System

	The Deep Analysis System: Structure and Performance
	Overall Organization
	Features Evaluation
	System Performance on the CoNLL 2009 Evaluation Data
	Comparison to CoNLL 2009 Shared Task Systems
	Possible Sources of Errors

	Conclusions
	Results
	Further Research

	List of Abbreviations
	Bibliography
	List of Machine Learning Tasks Implemented
	Contents of the Enclosed CD

