

Towards a Truly Statistical Natural Language Generator for Spoken Dialogues

Ondřej Dušek

Institute of Formal and Applied Linguistics Charles University in Prague

June 5, 2013

イロト イボト イヨト イヨ

Introduction

Objective of NLG

Given (whatever) input and a **communication goal**, create a natural language string that is **well-formed** and **human-like**.

• Desired properties: simplicity, variation, trainability ...

Usage

- Spoken dialogue systems
- Machine translation
- Short texts: weather reports, customer recommendation ...
- Summarization
- Question answering in knowledge bases

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Standard NLG Pipeline (Textbook)

[Input]

- \downarrow Content/Text Planning ("what to say")
 - Content selection, basic structuring (ordering)

[Text plan]

- \downarrow Sentence Planning/Realization ("how to say it")
- ↓ Microplanning: aggregation, lexical choice, referring...
 [Sentence Plan(s)]
- $\downarrow\,$ Surface realization: linearization according to grammar

[Text]

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Real NLG Systems

Few systems implement the whole pipeline

- Systems focused on content planning with trivial surface realization
- Surface-realization-only systems
- Word-order-only systems
- Input/intermediate data representation varies greatly

Possible approaches

- Rule/template-based (if-then-else, filling in slots)
- Grammar-based (various formalisms, e.g. FUG, CCG)
- Only since 2000s: Statistical ... or rather hybrid

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introducing Statistical Methods to NLG

Rule-based methods

- Simple, straightforward, fast
- Surface realizers: once and for all
- Reliable (important!)
 - Content plans custom-tailored for domain
 - Surface realizer sure to produce grammatical output

Statistical methods

- Easier to maintain
- Easily adaptable to new domains
- Robust to unseen input
- Add variation, (hopefully) naturalness

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction Statistics in NLG Prospects

Trainable Content Planning: User Models

- Presentation strategy based on user model
 - initial questions
- Adaptive, but rule-based
- MATCH, GEA, FLIGHTS

Street-traffic-quality

Show me Italian restaurants in the West Village.

Ondřej Dušek Towards a Truly Statistical Natural Language Generator

Trainable Content Planning: Overgenerate and Rank

- Rule-based sentence plan generator (clause combining operations)
 - Randomly sample several sentence plans
- Reranker (RankBoost) trained on hand-annotated sentence plans
 - Rank plans and select the best one
- SPoT

implicit_confirm(orig_city:NEWARK)
implicit_confirm(dest_city:DALLAS)
implicit_confirm(month:9)
implicit_confirm(day-number:1)
request(depart-time)

Alt	Realization	Н	RB
0	What time would you like to travel on September the 1st to Dallas from Newark?	5	.85
5	Leaving on September the 1st. What time would you like to travel from Newark to Dal- las?	4.5	.82
8	Leaving in September. Leaving on the 1st. What time would you, traveling from Newark to Dallas, like to leave?	2	.39

Trainable Content Planning: Reinforcement Learning

- Reinforcement learning
 of presentation strategy
- Communicative Goal: Dialogue Act + desired user reaction
- Plan lower-level NLG actions to achieve goal
- Markov Decision Process

$$\boldsymbol{Q}^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = \sum_{\boldsymbol{s}'} \mathcal{T}^{\boldsymbol{a}}_{\boldsymbol{s}\boldsymbol{s}'} \left(\mathcal{R}^{\boldsymbol{a}}_{\boldsymbol{s}\boldsymbol{s}'} + \gamma \mathcal{V}^{\pi}(\boldsymbol{s}') \right) \; \boldsymbol{k}^{\text{pr}}_{\boldsymbol{k}}$$

• RL-NLG

Trainable Surface Realizers: Overgenerate and Rank

- Require a handcrafted realizer, e.g. CCG realizer
- Input underspecified \rightarrow more outputs possible
- Overgenerate
- Then use a statistical reranker
- Ranking according to:
 - NITROGEN, HALOGEN: n-gram models
 - FERGUS: Tree models (XTAG grammar)
 - Nakatsu and White: Predicted Text-To-Speech quality
 - CRAG: Personality traits (extraversion, agreeableness...)
 + alignment (repeating words uttered by dialogue counterpart)
- Provides variance, but at a greater computational cost

Trainable Surface Realizers: Parameter Optimization

- Still require a handcrafed realizer
- Train handcrafted realizer parameters
- No overgeneration
- Realizer needs to be "flexible"

Examples

- Paiva and Evans: linguistic features annotated in corpus generated with many parameter settings, correlation analysis
- *PERSONAGE-PE*: personality traits connected to linguistic features via machine learning

Statistical Surface Realizers

Using methods of Machine Translation

- "translating" from semantic representation to text
- PHARAOH SMT / synchronous CFG + MaxEnt (WASP⁻¹)
- hybrid trees with CRFs (TreeCRF)

Syntax-based

- Bohnet et al.: pipeline model with SVMs
- Meaning-Text Theory
- Semantics \rightarrow Syntax \rightarrow Linearization \rightarrow Morphologization

• • • • • • • • • • • •

Introduction Statistics in NLG Prospects

Fully Statistical Natural Language Generators

- Few, based on supervised learning
- Limited domain
- Hierarchical, phrase-based
- Mairesse et al.: Bayesian networks emantic
 - semantic stacks
- Angeli et al.: log-linear model
 - records \searrow fields \searrow templates

Charlie Chan	is a	Chinese	restaurant	near	Cineworld	in the	centre of town
Charlie Chan		Chinese	restaurant		Cineworld		centre
name		food	type	near	near	area	area
inform	inform	inform	inform	inform	inform	inform	inform
t = 1	t = 2	t = 3	t = 4	t = 5	t = 6	t = 7	t = 8

Language Generation at ÚFAL: Current State

Prior work

- For Czech
- Surface realization only, rule-based
- Based on FGD, tecto-trees
 - Functors / formemes
- Ptáček and Žabokrtský, TectoMT

NLG for Dialogue Systems

Mixing templates and tecto-trees

Vlak [Praha|n:do+2|gender:fem] jede v [[7|adj:attr] hodina|n:4|gender:fem].

• Statistical word form generator (Flect)

do

vědět

>0-ing

Mann >0-er.3:1-ä

>4-ime, <ne

doing

nevíme

Männer

Prospects

Desired properties of a new NLG system for dialogues

- Trainable: simple domain adaptation
- Variable: no fixed templates
- Multilingual: Czech and English at the very least

Planned approach

- FGD, tecto-trees as a useful formalism
- Surface realizer at least partially trainable
 - Many grammar rules can be learned from corpora
 - Statistical morphology generation: avoiding dictionaries
- Content planner fully trainable
 - Using MT-inspired methods for content planning?

• □ ▶ • • □ ▶ • □ ▶ • □ ▶ •

Thank You

You can find these slides, including references, at: http://ufal.mff.cuni.cz/~odusek/slides/2013_wds.pdf

You can contact me at: odusek@ufal.mff.cuni.cz

イロト イボト イヨト イヨ

Introduction Statistics in NLG Prospects

References

Angeli	Angeli, G. et al. 2010. A Simple Domain-Independent Probabilistic Approach to Generation. EMNLP
Bohnet	Bohnet, B. et al. 2010. Broad coverage multilingual deep sentence generation with a stochastic multi-level realizer. <i>COLING</i>
CCG	White, M. and Baldrige, J. 2003. Adapting Chart Realization to CCG. <i>ENLG</i> http://openccg.sourceforge.net/
CRAG	Isard, A. et al. 2006. Individuality and alignment in generated dialogues. INLG
FERGUS	Bangalore, S. and Rambow, O. 2000. Exploiting a probabilistic hierarchical model for generation. COLING
FGD	Sgall, P. et al. 1986. The meaning of the sentence in its semantic and pragmatic aspects. Springer
Flect	Dušek, O. and Jurčiček, F. 2013. Robust multilingual statistical morphological generation models. ACL Student Research Workshop
FLIGHTS	Moore, J. et al. 2004. Generating Tailored, Comparative Descriptions in Spoken Dialogue. <i>FLAIRS</i> Demberg, V. and Moore, J. 2006. Information presentation in spoken dialogue systems. <i>EACL</i>
FUG	Elhadad, M. and Robin, J. 1996. An overview of SURGE: A reusable comprehensive syntactic realization component. http://www.cs.bgu.ac.il/surge/
GEA	Carenini, G. and Moore, J. 2006. Generating and evaluating evaluative arguments. Artificial Intelligence
Hajič	Hajič, J. 2004. Disambiguation of Rich Inflection Computational Morphology of Czech. Karolinum
HALOGEN	Langkilde-Geary, I. 2002. An empirical verification of coverage and correctness for a general-purpose sentence generator. <i>INLG</i>
Mairesse	Mairesse, F. et al. 2010. Phrase-based statistical language generation using graphical models and active learning. ACL
MATCH	Walker, M. et al. 2004. Generation and evaluation of user tailored responses in multimodal dialogue. Cognitive Science
Nakatsu&Wh	ite Nakatsu, C. and White, M. 2006. Learning to say it well: reranking realizations by predicted synthesis quality. COLING-ACL
NITROGEN	Langkilde, I. and Knight, K. 1998. Generation that exploits corpus-based statistical knowledge. ACL-COLING
Paiva&Evans	Paiva, D. S. and Evans, R. 2005. Empirically-based control of natural language generation. ACL

References

PERSONAGE-	PE Mairesse, F. and Walker, M. 2008. Trainable generation of big-five personality styles through
	data-driven parameter estimation. ACL
PHARAOH	Koehn. P. 2004. Pharaoh: a beam search decoder for phrase-based statistical machine translation models. <i>Machine Translation: From Real Users to Research</i> . Springer
Ptacek&Zabo	krtský Ptáček, J. and Žabokrtský, Z. 2006. Synthesis of Czech Sentences from Tectogrammatical Trees. TSD
RL-NLG	Lemon, 0. 2008. Adaptive natural language generation in dialogue using Reinforcement Learning. SEMdial
	Rieser, V. and Lemon, O. 2010. Natural language generation as planning under uncertainty for spoken dialogue systems. <i>EMNLP</i>
SimpleNLG	Gatt, A. and Reiter, E. 2009. SimpleNLG: A realisation engine for practical applications. ENLG
SPoT	Walker, M. et al. 2001. SPoT: A trainable sentence planner. NAACL
TectoMT	Žabokrtský, Z. et al. 2008. TectoMT: highly modular MT system with tectogrammatics used as transfer layer. WMT
Textbook	Reiter, E. and Dale, R. 2000. Building natural language generation systems. Cambridge Univ. Press
TreeCRF	Lu, W. et al. 2009. Natural Language Generation with Tree Conditional Random Fields. EMNLP
$WASP^{-1}$	Wong, Y. W. and Mooney, R. J. 2007. Generation by inverting a semantic parser that uses statistical machine translation. <i>NAACL</i>
	Wong, Y. W. Learning for semantic parsing and natural language generation using statistical machine translation techniques. PhD Thesis, University of Texas at Austin

Further NLG Links

C. DiMarco's slides: https://cs.uwaterloo.ca/~jchampai/CohenClass.en.pdf

F. Mairesse's slides: http://people.csail.mit.edu/francois/research/papers/ART-NLG.pdf

J. Moore's NLG course: http://www.inf.ed.ac.uk/teaching/courses/nlg/

NLG Systems Wiki: http://www.nlg-wiki.org

Wikipedia: http://en.wikipedia.org/wiki/Natural_language_generation

イロト イポト イヨト イヨト