Towards a Truly Statistical Natural Language Generator for Spoken Dialogues

Ondřej Dušek

Institute of Formal and Applied Linguistics
Charles University in Prague

June 5, 2013
Introduction

Objective of NLG
Given (whatever) input and a communication goal, create a natural language string that is well-formed and human-like.

- Desired properties: simplicity, variation, trainability …

Usage

- Spoken dialogue systems
- Machine translation
- Short texts: weather reports, customer recommendation …
- Summarization
- Question answering in knowledge bases
Standard NLG Pipeline (*Textbook*)

[Input]

- Content/Text Planning (“what to say”)
 - Content selection, basic structuring (ordering)

[Text plan]

- Sentence Planning/Realization (“how to say it”)
- Microplanning: aggregation, lexical choice, referring...

[Sentence Plan(s)]

- Surface realization: linearization according to grammar

[Text]

Towards a Truly Statistical Natural Language Generator
Real NLG Systems

Few systems implement the whole pipeline

- Systems focused on content planning with trivial surface realization
- Surface-realization-only systems
- Word-order-only systems
- Input/intermediate data representation varies greatly

Possible approaches

- Rule/template-based (if-then-else, filling in slots)
- Grammar-based (various formalisms, e.g. FUG, CCG)
- Only since 2000s: Statistical ... or rather hybrid
Introducing Statistical Methods to NLG

Rule-based methods

- Simple, straightforward, fast
- Surface realizers: once and for all
- Reliable (important!)
 - Content plans custom-tailored for domain
 - Surface realizer sure to produce grammatical output

Statistical methods

- Easier to maintain
- Easily adaptable to new domains
- Robust to unseen input
- Add variation, (hopefully) naturalness
Trainable Content Planning: User Models

- Presentation strategy based on user model
 - initial questions
- Adaptive, but rule-based
- MATCH, GEA, FLIGHTS

\[U_h = \sum_{k=1}^{K} w_k u_k(x_{kh}) \]

- \(U_h \)…total utility of option \(h \)
- \(u_k(x_{kh}) \)…utility of \(k \)-th attribute
- \(w_k \)…user-specific weight of \(k \)-th attribute
Trainable Content Planning: Overgenerate and Rank

- Rule-based sentence plan generator (clause combining operations)
 - Randomly sample several sentence plans
- Reranker (RankBoost) trained on hand-annotated sentence plans
 - Rank plans and select the best one
- **SPoT**

<table>
<thead>
<tr>
<th>Alt</th>
<th>Realization</th>
<th>H</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>What time would you like to travel on September the 1st to Dallas from Newark?</td>
<td>5</td>
<td>.85</td>
</tr>
<tr>
<td>5</td>
<td>Leaving on September the 1st. What time would you like to travel from Newark to Dallas?</td>
<td>4.5</td>
<td>.82</td>
</tr>
<tr>
<td>8</td>
<td>Leaving in September. Leaving on the 1st. What time would you, traveling from Newark to Dallas, like to leave?</td>
<td>2</td>
<td>.39</td>
</tr>
</tbody>
</table>
Trainable Content Planning: Reinforcement Learning

- Reinforcement learning of presentation strategy
- Communicative Goal: Dialogue Act + desired user reaction
- Plan lower-level NLG actions to achieve goal
- Markov Decision Process

$$Q^\pi(s, a) = \sum_{s'} T^a_{ss'} \left(R^a_{ss'} + \gamma V^\pi(s') \right)$$

- RL-NLG
Trainable Surface Realizers: Overgenerate and Rank

- Require a handcrafted realizer, e.g. CCG realizer
- Input underspecified \rightarrow more outputs possible
- Overgenerate
- Then use a statistical reranker
- Ranking according to:
 - \textit{NITROGEN}, \textit{HALOGEN}: \textit{n}-gram models
 - \textit{FERGUS}: Tree models (XTAG grammar)
 - \textit{Nakatsu and White}: Predicted Text-To-Speech quality
 - \textit{CRAG}: Personality traits (extraversion, agreeableness...)
 + alignment (repeating words uttered by dialogue counterpart)
- Provides variance, but at a greater computational cost
Trainable Surface Realizers: Parameter Optimization

- Still require a handcrafted realizer
- Train handcrafted realizer parameters
- No overgeneration
- Realizer needs to be “flexible”

Examples

- *Paiva and Evans*: linguistic features annotated in corpus generated with many parameter settings, correlation analysis
- *PERSONAGE–PE*: personality traits connected to linguistic features via machine learning
Statistical Surface Realizers

Using methods of Machine Translation

- “translating” from semantic representation to text
- \textit{PHARAOH SMT} / synchronous CFG + MaxEnt (\textit{WASP}^{-1})
- hybrid trees with CRFs (\textit{TreeCRF})

Syntax-based

- \textit{Bohnet et al.}: pipeline model with SVMs
- Meaning-Text Theory
- Semantics \rightarrow Syntax \rightarrow Linearization \rightarrow Morphologization
Fully Statistical Natural Language Generators

- Few, based on supervised learning
- Limited domain
- Hierarchical, phrase-based
- *Mairesse et al.*: Bayesian networks
 - semantic stacks
- *Angeli et al.*: log-linear model
 - records → fields → templates

<table>
<thead>
<tr>
<th>Charlie Chan name inform</th>
<th>is a inform</th>
<th>Chinese food inform</th>
<th>restaurant type inform</th>
<th>near inform</th>
<th>Cineworld near inform</th>
<th>in the inform</th>
<th>centre of town inform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlie Chan</td>
<td>inform</td>
<td>Chinese</td>
<td>restaurant</td>
<td>near</td>
<td>Cineworld</td>
<td>in the</td>
<td>centre of town</td>
</tr>
<tr>
<td>t = 1</td>
<td>t = 2</td>
<td>t = 3</td>
<td>t = 4</td>
<td>t = 5</td>
<td>t = 6</td>
<td>t = 7</td>
<td>t = 8</td>
</tr>
</tbody>
</table>
Language Generation at ÚFAL: Current State

Prior work

- For Czech
- Surface realization only, rule-based
- Based on FGD, tecto-trees
 - Functors / formemes
- Ptáček and Žabokrský, TectoMT

NLG for Dialogue Systems

- Mixing templates and tecto-trees

 \[
 \text{Vlak} \quad \text{[Praha|n:do+2|gender:fem]} \\
 \text{jede v} \quad [[7|adj:attr] \text{hodina|n:4|gender:fem}].
 \]

- Statistical word form generator (*Flect*)
Prospects

Desired properties of a new NLG system for dialogues

- **Trainable**: simple domain adaptation
- **Variable**: no fixed templates
- **Multilingual**: Czech and English at the very least

Planned approach

- *FGD*, tecto-trees as a useful formalism
- Surface realizer at least partially trainable
 - Many grammar rules can be learned from corpora
 - Statistical morphology generation: avoiding dictionaries
- Content planner fully trainable
 - Using MT-inspired methods for content planning?
Thank You

You can find these slides, including references, at:

You can contact me at:
odusek@ufal.mff.cuni.cz
References

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohnet, B. et al.</td>
<td>Broad coverage multilingual deep sentence generation with a stochastic multi-level realizer.</td>
<td>COLING</td>
</tr>
<tr>
<td>White, M. and Baldridge, J.</td>
<td>Adapting Chart Realization to CCG.</td>
<td>ENLG</td>
</tr>
<tr>
<td>Isard, A. et al.</td>
<td>Individuality and alignment in generated dialogues.</td>
<td>INLG</td>
</tr>
<tr>
<td>Bangalore, S. and Rambow, O.</td>
<td>Exploiting a probabilistic hierarchical model for generation.</td>
<td>COLING</td>
</tr>
<tr>
<td>Sgall, P. et al.</td>
<td>The meaning of the sentence in its semantic and pragmatic aspects.</td>
<td>Springer</td>
</tr>
<tr>
<td>Dušek, O. and Jurčiček, F.</td>
<td>Robust multilingual statistical morphological generation models.</td>
<td>ACL Student Research Workshop</td>
</tr>
<tr>
<td>Moore, J. et al.</td>
<td>Generating Tailored, Comparative Descriptions in Spoken Dialogue.</td>
<td>FLAIRS</td>
</tr>
<tr>
<td>Demberg, V. and Moore, J.</td>
<td>Information presentation in spoken dialogue systems.</td>
<td>EACL</td>
</tr>
<tr>
<td>Carenini, G. and Moore, J.</td>
<td>Generating and evaluating evaluative arguments.</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Langkilde–Geary, I.</td>
<td>An empirical verification of coverage and correctness for a general-purpose sentence generator.</td>
<td>INLG</td>
</tr>
<tr>
<td>Mairesse, F. et al.</td>
<td>Phrase–based statistical language generation using graphical models and active learning.</td>
<td>ACL</td>
</tr>
<tr>
<td>Nakatsu, C. and White, M.</td>
<td>Learning to say it well: reranking realizations by predicted synthesis quality.</td>
<td>COLING–ACL</td>
</tr>
<tr>
<td>Langkilde, I. and Knight, K.</td>
<td>Generation that exploits corpus–based statistical knowledge.</td>
<td>ACL–COLING</td>
</tr>
<tr>
<td>Paiva, D. S. and Evans, R.</td>
<td>Empirically–based control of natural language generation.</td>
<td>ACL</td>
</tr>
</tbody>
</table>
References

Rieser, V. and Lemon, O. 2010. Natural language generation as planning under uncertainty for spoken dialogue systems. EMNLP

SPoT Walker, M. et al. 2001. SPoT: A trainable sentence planner. NAACL

TectoMT Žabokrtský, Z. et al. 2008. TectoMT: highly modular MT system with tectogrammatics used as transfer layer. WMT

WASP Wong, Y. W. and Mooney, R. J. 2007. Generation by inverting a semantic parser that uses statistical machine translation. NAACL

Further NLG Links
C. DiMarco's slides: https://cs.uwaterloo.ca/~jchampai/CohenClass.en.pdf
J. Moore's NLG course: http://www.inf.ed.ac.uk/teaching/courses/nlg/
NLG Systems Wiki: http://www.nlg-wiki.org

Ondřej Dušek Towards a Truly Statistical Natural Language Generator