
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL123 Dialogue Systems

7. Neural Policies 
& Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda
& Jan Cuřín, Petr Fousek

28. 3. 2022

https://ufal.cz/npfl123


Deep Reinforcement Learning

• Exactly the same as “plain” RL (see last time)

• agent & environment, actions & rewards

• Markov Decision Process

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• NN = function approximation approach
• such as REINFORCE / policy gradients

• NN → complex non-linear functions

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states

2NPFL123 L7 2022

(Sutton & Barto, 2018)



Value Function Approximation

• Searching for approximate 𝑉(𝑠) or 𝑄 𝑠, 𝑎
• exact values are too big to enumerate in a table

• parametric approximation 𝑉 𝑠; 𝜽 or 𝑄(𝑠, 𝑎; 𝜽)

• Regression: Mean squared value error
• weighted over states’ importance

• useful for gradient descent

• → ~ any supervised learning approach possible
• not all work well though

• MC = stochastic gradient descent

• TD is not true gradient descent
• ← using current weights in target estimate

• faster than MC, but unstable for NNs!

3

VE(𝜽) ≔

𝑠∈𝒮

𝜇 𝑠 𝑉𝜋 𝑠 − 𝑉 𝑠, 𝜽
2

states’ importance weight
(probability distribution)

target value
(which we don’t have!)

→ using 𝑅𝑡 in MC 
→ using 𝑟𝑡+1 + 𝛾𝑉(𝑠′, 𝜽) in TD

our estimate



Deep Q-Networks

• Q-learning with function approximation
• 𝑄 function represented by a neural net

• Causes of poor convergence in basic Q-learning with NNs:
a) SGD is unstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)

d) scale of rewards & 𝑄 values unknown → numeric instability

• Fixes in DQN:
a) minibatches (updates by averaged 𝑛 samples, not just one)

b) experience replay

c) freezing target Q function

d) clipping rewards

4NPFL123 L7 2022

cool!

common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236


DQN tricks

• Experience replay – break correlated samples
• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over 

NPFL123 L7 2022

loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own 
‘supervised’ training data”

“have a fixed target, 
like in supervised learning”



DQN algorithm

• initialize 𝜽 randomly 
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• for episode, set initial state s 
• select action 𝑎 from 𝜖-greedy policy based on 𝑄(𝜽)
• take 𝑎, observe reward 𝑟′ and new state 𝑠′

• store 𝑠, 𝑎, 𝑟′, 𝑠′ in 𝐷
• 𝑠 ← 𝑠′

• once every 𝑘 steps:
• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps:
• ഥ𝜽 ← 𝜽

6NPFL123 L7 2022

often

rarely

storing experience

“replay”
a. k. a. training

https://youtu.be/V1eYniJ0Rnk?t=18

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

https://youtu.be/V1eYniJ0Rnk?t=18
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236


DQN for Dialogue Systems

• a simple DQN can drive a dialogue system’s action selection
• DQN is function approximation – works fine for POMDPs

• no summary space tricks needed here

7https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

rule-based simulator 
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer replay memory 

initialized using a 
simple handcrafted policy

movie ticket booking:
better than rule-based

NPFL123 L7 2022

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot


Policy Networks

• Learning policy directly – policy network
• can work better than Q-learning

• NN: input = state, output = prob. dist. over actions

• actor-critic: network predicts both 𝜋 and 𝑉/𝑄

• Training can’t use/doesn’t need the DQN tricks
• just REINFORCE with baseline

• reward – baseline = advantage

• these are on-policy → no experience replay
• minibatches used anyway

8NPFL123 L7 2022

policy gradient theorem
guarantees convergence



Natural Language Generation

• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective: 
• given input & communication goal
• create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

9NPFL123 L7 2022

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition



NLG Use Cases

• dialogue systems
• very different for task/non-task-oriented/QA systems

• standalone
• data-to-text

• short text generation for web & apps
• weather, sports reports

• personalized letters

• creative generation (stories)

• machine translation
• now mostly integrated end-to-end

• formerly not the case

• summarization

10NPFL123 L7 2022



NLG Subtasks (textbook pipeline)

Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

Text

11NPFL123 L7 2022

organizing content into sentences
& merging simple sentences

this is needed for NLG 
in dialogue systems

typically handled by 
dialogue manager

in dialogue systemsdeciding 
what to say

deciding 
how to say it

e.g. restaurant vs. it



NLG Implementations

• Few systems implement the whole pipeline
• All stages: mostly domain-specific data-to-text, standalone

• e.g. weather reports

• Dialogue systems: just sentence planning + realization

• Systems focused on content + sentence planning with trivial realization
• frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer

• Surface realization only
• requires very detailed input

• some systems: just ordering words

• Pipeline vs. end-to-end approaches
• planning + realization in one go – popular for neural approaches

• pipeline: simpler components, might be reusable (especially realizers)

• end-to-end: no error accumulation, no intermediate data structures 

12NPFL123 L7 2022



NLG Basic Approaches

• canned text
• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• neural nets made it work much better

13NPFL123 L7 2022



Template-based NLG

• Most common in dialogue systems
• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

NPFL123 L7 2022

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex


Grammar/Rules for Sentence Planning

• Handcrafted grammar/rules
• input: base semantics (e.g. dialogue acts)

• output: detailed sentence representation (=realizer inputs, see →)

• Statistical enhancements: 
generate more options & choose the best
• generate multiple outputs

• underspecified grammar

• rules with multiple options…

• choose the best one
• train just the selection – learning to rank

• any supervised approach possible
e.g. “best” = 1, “not best” = 0

15NPFL123 L7 2022

SpoT trainable planner
(RankBoost ranking)

H
u

m
a

n

R
a

n
kB

o
o

st

input DA

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003

NB: this is slow!

https://www.aclweb.org/anthology/N01-1003


Grammar-based realizers

• Various grammar formalisms
• production / unification rules in the grammar

• lexicons to go with it

• expect very detailed input (sentence plans)

• typically general-domain, reusable
• KPML – multilingual

• systemic functional grammar

• FUF/SURGE – English
• functional unification grammar

• OpenCCG – English
• combinatory categorial grammar

KPML input for A dog is in the park.

(Bateman, 1997) http://www.academia.edu/download/3459017/bateman97-jnle.pdf
(Elhadad & Robin, 1996) https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
(White & Baldridge, 2003) https://www.aclweb.org/anthology/W03-2316
(Moore et al., 2004) http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

FUF/SURGE input for She hands the draft to the editor

OpenCCG input for The cheapest flight is on Ryanair

http://www.academia.edu/download/3459017/bateman97-jnle.pdf
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
https://www.aclweb.org/anthology/W03-2316
http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf


Procedural realizer: SimpleNLG

• A simple Java API
• “do-it-yourself” style – only cares about the grammar

• input needs to be specified precisely

• building up ~syntactic structure

• final linearization

• built for English
• large coverage lexicon included

• ports to multiple languages available

17NPFL123 L7 2022

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613

SimpleNLG
generation procedure

https://www.aclweb.org/anthology/W09-0613


Grammar/Procedural Realizers

• procedural, but based on grammar formalisms

• RealPro (Meaning-Text-Theory)

• deep syntax/semantics → surface syntax → morphology

• Treex (Functional Generative Description)

• deep syntax → surface syntax → morphology and linearization

• simple Perl program
• copy deep syntax

• fix morphology agreement

• add prepositions, conjunctions & articles

• add auxiliary verbs

• inflect words

• add punctuation & capitalization

18

(Popel & Žabokrtský 2010; Dušek et al., 2015) 
https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009
http://dl.acm.org/citation.cfm?id=974596


Trainable Realizers

• Overgenerate & Rerank
• same approach as for sentence planning

• assuming a flexible handcrafted realizer (e.g., OpenCCG)

• underspecified input → more outputs possible

• generate more & use statistical reranker, based on:
• n-gram language models

• Tree language models

• expected text-to-speech output quality

• personality traits & alignment/entrainment

• more variance, but at computational cost

• Grammar/Procedural-based
• same as RealPro or TectoMT, but predict each step using a classifier

19NPFL123 L7 2022

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103

FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007

(Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140

CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

this means
the grammar

may be smaller

https://www.aclweb.org/anthology/C10-1012
https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/W02-2103
https://aclweb.org/anthology/C00-1007
https://www.aclweb.org/anthology/P06-1140
https://www.aclweb.org/anthology/W06-1405


Non-Neural End-to-End NLG

• NLG as language models
• hierarchy of language models 

(HMM/MEMM/CRF style)

• DA → slot → word level

• NLG using context-free grammars
a) “language models” by probabilistic CFGs

• approximate search for best CFG derivation

b) synchronous PCFGs – MRs & text
• “translation” with hierarchical phrase-based system

• parsing MR & generating text

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

(Wong & Mooney, 2007)
https://www.aclweb.org/anthology/N07-1022

(Konstas & Lapata, 2012)
https://www.aclweb.org/anthology/P12-1039

rule prob./parameter

https://doi.org/10.1016/S0885-2308(02)00012-8
https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P10-1157
https://www.aclweb.org/anthology/J14-4003
https://www.aclweb.org/anthology/N07-1022
https://www.aclweb.org/anthology/P12-1039


Neural Generation: Seq2seq RNNs

21NPFL123 L7 2022

target word embeddingssource “word” embeddings

token representation: embeddings
= vectors of ~100-1000 numbers

encoder outputs
– “hidden states”
(=again, vectors of numbers)

vocabulary is numbered

attention = weighted combination
(weights different for each step)

encoder decoder

probability distribution
over the whole vocabulary

cells: identical (compound) neural layers
input: prev. output + token embedding

(see NLU for RNN intro)

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473

http://arxiv.org/abs/1409.0473


Neural End-to-End NLG: RNNs

• Unlike previous, doesn’t need alignments
• no need to know which word/phrase corresponds to which slot

• 1st system: RNN language model conditioned on DA (~decoder only)
• input: binary-encoded DA

• 1 if intent/slot-value present, 0 if not

• delexicalized: much fewer values, shorter vector

• modified LSTM cells
• input DA passed in every time step

• generating delexicalized texts word-by-word
• i.e. decoder only

(Wen et al, 2015; 2016) http://aclweb.org/anthology/D15-1199 http://arxiv.org/abs/1603.01232

delexicalized (~generated templates)

after lexicalization (templates filled in)

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

dialogue act 
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232


Seq2seq NLG with reranking (TGen)

• Encode DAs as sequences, apply standard RNN seq2seq
• encoder: triples <DA type, slot, value>

• decoder: words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

NPFL123 L7 2022

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

https://aclweb.org/anthology/P16-2008


Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

24

no recurrent connections

attention over all of input

attention over all of input
& output generated so far (self-attention)

encoder decoder

positional encoding
(indicate position in sentence)

feed-forward (fully connected) network
• ReLU activations
• tricks for better training

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762

http://arxiv.org/abs/1706.03762


Transformers & Pretrained Language Models

• Transformer architecture
• encoder-decoder, but using feed-forward & attention instead of RNNs

• positional encoding used to indicate sentence position
• predefined “pattern” functions (based on sin & cos)

• simply added to word embeddings

• no RNN → parallel training → faster, allows larger models (more layers)

• Large models pretrained on open-domain texts
• guess masked word (encoder only: BERT)

• generate next word (decoder only: GPT)

• fixed distorted sentences (both: BART, T5)

• Can be finetuned for your domain & task
• relatively little data is enough

• extremely fluent

25NPFL123 L7 2022

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762

(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423

(Radford et al., 2019) https://openai.com/blog/better-language-models/

(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703
(Raffel et al., 2020) http://jmlr.org/papers/v21/20-074.html

(Chen et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.18/
(Kasner & Dušek, 2020) https://www.aclweb.org/anthology/2020.webnlg-1.20/

http://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/N19-1423
https://openai.com/blog/better-language-models/
https://www.aclweb.org/anthology/2020.acl-main.703
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/2020.acl-main.18/
https://www.aclweb.org/anthology/2020.webnlg-1.20/


Problems with neural NLG

• Checking the semantics
• neural models tend to forget input / make up irrelevant stuff

• reranking works, but isn’t perfect

• Needs quite a lot of data

• Delexicalization needed (at least some slots)
• otherwise the data would be too sparse

• alternative: copy mechanisms

• Diversity & complexity of outputs
• still can’t match humans

• needs specific tricks to improve this

• Still more hassle than writing up templates

26NPFL123 L7 2022

(Dušek et al., 2020)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)

http://arxiv.org/abs/1901.07931


Summary

Deep Reinforcement Learning
• same as plain RL – agent + states, actions, rewards – just 𝑄 or 𝜋 is a NN

• function approximation for 𝑄 – mean squared value error

• Deep Q Networks – Q learning where 𝑄 is a NN + tricks
• experience replay, target function freezing

• Policy networks – policy gradients where 𝜋 is a NN

Natural Language Generation
• steps: content planning, sentence planning, surface realization

• not all systems implement everything (content planning is DM’s job in DS)

• pipeline vs. end-to-end

• approaches: templates, grammars, statistical

• templates work great

• neural: RNN / Transformer, reranking

27NPFL123 L7 2022



Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek,nekvinda}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial: https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf
• Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602
• Mnih et al. (2015): Human-level control through deep reinforcement learning: 

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation 

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf 28

Labs: S4 in 10 minutes

https://ufaldsg.slack.com/
http://ufal.cz/npfl123
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf
https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

