NPFL123 Dialogue Systems 7. Neural Policies & Natural Language Generation

https://ufal.cz/npfl123

Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda & Jan Cuřín, Petr Fousek

28.3.2022

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Deep Reinforcement Learning

- Exactly the same as "plain" RL (see last time)
 - agent & environment, actions & rewards
 - Markov Decision Process

"deep" = part of the agent is handled by a NN

- value function (typically Q)
- policy

NPFL123 L7 2022

- NN = function approximation approach
 - such as REINFORCE / policy gradients
 - NN \rightarrow complex non-linear functions
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states

Value Function Approximation

- Searching for approximate V(s) or Q(s, a)
 - exact values are too big to enumerate in a table
 - parametric approximation $V(s; \theta)$ or $Q(s, a; \theta)$
- Regression: Mean squared value error
 - weighted over states' importance
 - useful for gradient descent
 - \rightarrow ~ any supervised learning approach possible
 - not all work well though
- MC = stochastic gradient descent
- TD is not true gradient descent
 - < using current weights in target estimate
 - faster than MC, but unstable for NNs!

our estimate

states' importance weight (probability distribution)

$$\overline{\mathrm{VE}}(\boldsymbol{\theta}) \coloneqq \sum_{s \in \mathcal{S}} \mu(s) \big(V_{\pi}(s) - V(s, \boldsymbol{\theta}) \big)^2$$

target value (which we don't have!) \Rightarrow using R_t in MC \rightarrow using $r_{t+1} + \gamma V(s', \theta)$ in TD

Deep Q-Networks

- Q-learning with function approximation
 - *Q* function represented by a neural net
- Causes of poor convergence in basic Q-learning with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using *Q* in computing updates to *Q*)

cool!

common NN tricks

- d) scale of rewards & Q values unknown \rightarrow numeric instability
- Fixes in DQN:
 - a) minibatches (updates by averaged *n* samples, not just one)
 - b) experience replay
 - c) freezing target Q function
 - d) clipping rewards 🗸

DQN tricks ~ making it more like supervised learning

- Experience replay break correlated samples
 - run through some episodes (dialogues, games...)
 - store all tuples (s, a, r', s') in a buffer —
 - for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

$$\operatorname{loss} \coloneqq \mathbb{E}_{(s,a,r',s')\in \operatorname{buf}}\left[\left(r' + \gamma \max_{a'} Q\left(s',a';\overline{\theta}\right) - Q(s,a;\theta)\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

____ "generate your own 'supervised' training data"

DQN algorithm

- initialize $\boldsymbol{\theta}$ randomly •
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ε-greedy policy based on Q(θ)
 take a, observe reward r' and new state s'

 - store (s, a, r', s') in D
 - $s \leftarrow s'$
- often \rightarrow once every k steps:
 - sample a batch B of random (s, a, r', s')'s from D
 - update $\boldsymbol{\theta}$ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r'+\gamma \max_{a'} Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^2\right]$ a. k. a. training
- rarely \rightarrow once every λ steps:
 - $\overline{\theta} \rightarrow \overline{\theta}$

(Mnih et al., 2013, 2015) http://arxiv.org/abs/1312.5602 http://www.nature.com/articles/nature14236

https://youtu.be/V1eYniJ0Rnk?t=18

storing experience

DQN for Dialogue Systems

- a simple DQN can drive a dialogue system's action selection
 - DQN is function approximation works fine for POMDPs
 - no summary space tricks needed here

1.0

0.8 0.0 Rat

0.36

p=4.44E-06 0.78

Policy Networks

- Learning policy directly **policy network**
 - can work better than Q-learning
 - NN: input = state, output = prob. dist. over actions
 - actor-critic: network predicts both π and V/Q
- Training can't use/doesn't need the DQN tricks
 - just REINFORCE with baseline
 - reward baseline = advantage
 - these are on-policy \rightarrow no experience replay
 - minibatches used anyway

policy gradient theorem guarantees convergence

Natural Language Generation

- conversion of system action semantics → text (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model e.g. "user wants short answers"

can be any kind of

knowledge representation

- general NLG objective:
 - given input & communication goal
 - create accurate + natural, well-formed, human-like text
- additional NLG desired properties:
 - variation
 - simplicity
 - adaptability

NLG Use Cases

dialogue systems

very different for task/non-task-oriented/QA systems

standalone

- data-to-text
- short text generation for web & apps
 - weather, sports reports
 - personalized letters
- creative generation (stories)

machine translation

- now mostly integrated end-to-end
- formerly not the case

summarization

NLG Subtasks (textbook pipeline)

Inputs

↓ Content/text/document planning

- content selection according to communication goal
 - basic structuring & ordering

Content plan

↓ Sentence planning/microplanning

- aggregation (facts → sentences) -
- lexical choice
- referring expressions ,

Sentence plan

e.g. restaurant vs. it

↓ Surface realization

- linearization according to grammar
 - word order, morphology

Text

typically handled by dialogue manager in dialogue systems

organizing content into sentences & merging simple sentences

this is needed for NLG in dialogue systems

deciding

how to say it

deciding

what to say

NLG Implementations

Few systems implement the whole pipeline

- All stages: mostly domain-specific data-to-text, standalone
 - e.g. weather reports
- Dialogue systems: just sentence planning + realization
- Systems focused on content + sentence planning with trivial realization
 - frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
- Surface realization only
 - requires very detailed input
 - some systems: just ordering words

Pipeline vs. end-to-end approaches

- planning + realization in one go popular for neural approaches
- pipeline: simpler components, might be reusable (especially realizers)
- end-to-end: no error accumulation, no intermediate data structures

NLG Basic Approaches

canned text

- most trivial completely hand-written prompts, no variation
- doesn't scale (good for DTMF phone systems)

templates

- "fill in blanks" approach
- simple, but much more expressive covers most common domains nicely
- can scale if done right, still laborious
- most production dialogue systems

• grammars & rules

- grammars: mostly older research systems, realization
- rules: mostly content & sentence planning

machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- neural nets made it work *much* better

Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
 "Alright, from {from_stop} to {to_stop},",

'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
 "Alright, to {to_stop} in {arrival_time_rel},",

'iconfirm(arrival_time="{arrival_time}")':
 "You want to be there at {arrival_time},",

(Alex public transport information rules) 'iconfirm(arrival_time_rel="{arrival_time_rel}")':
https://github.com/UFAL-DSG/alex "You want to get there in {arrival_time_rel},",

NPFL123 L7 2022

Grammar/Rules for Sentence Planning

- Handcrafted grammar/rules
 - input: base semantics (e.g. dialogue acts)
 - output: detailed sentence representation (=realizer inputs, see →)
- Statistical enhancements: generate more options & choose the best
 - generate multiple outputs
 - underspecified grammar
 - rules with multiple options...
 - choose the best one
 - train just the selection learning to rank
 - any supervised approach possible e.g. "best" = 1, "not best" = 0

https://www.aclweb.org/anthology/N01-1003

Grammar-based realizers

- Various grammar formalisms
 - production / unification rules in the grammar
 - lexicons to go with it
 - expect very detailed input (sentence plans)
- typically general-domain, reusable
 - **KPML** multilingual
 - systemic functional grammar
 - FUF/SURGE English
 - functional unification grammar
 - OpenCCG English
 - combinatory categorial grammar

KPML input for *A dog is in the park*.

(10 / spatial-locating :speechact (a0 / assertion :polarity positive :speaking-time t0) :reference-time-id t0 :event-time (t0 / time) :theme d0 :domain (d0 / object :lex dog :identifiability-q notidentifiable) :range (p0 / three-d-location :lex park :identifiability-q identifiable))

FUF/SURGE input for She hands the draft to the editor

OpenCCG input for The cheapest flight is on Ryanair

Bateman, 1997)	http://www.academia.edu/download/3459017/bateman97-jnle.pdf
Elhadad & Robin, 1996)	https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download
White & Baldridge, 2003)	https://www.aclweb.org/anthology/W03-2316
Moore et al., 2004)	http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

Procedural realizer: SimpleNLG

- A simple Java API
 - "do-it-yourself" style only cares about the grammar
 - input needs to be specified precisely
 - building up ~syntactic structure
 - final linearization
- built for English
 - large coverage lexicon included
 - ports to multiple languages available

SimpleNLG generation procedure

Lexicon lexicon = new XMLLexicon("my-lexicon.xml"); NLGFactory nlgFactory = new NLGFactory(lexicon); Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createClause();

p.setSubject("Mary"); p.setVerb("chase"); p.setObject("the monkey");

p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.

(Gatt & Reiter, 2009) https://www.aclweb.org/anthology/W09-0613

Grammar/Procedural Realizers

- procedural, but based on grammar formalisms
- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology
- **Treex** (Functional Generative Description)
 - deep syntax → surface syntax → morphology and linearization
 - simple Perl program
 - copy deep syntax
 - fix morphology agreement
 - add prepositions, conjunctions & articles
 - add auxiliary verbs
 - inflect words
 - add punctuation & capitalization

(Lavoie & Rambow, 1997) http://dl.acm.org/citation.cfm?id=974596 (Popel & Žabokrtský 2010; Dušek et al., 2015) https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf https://www.aclweb.org/anthology/W15-3009

Trainable Realizers

Overgenerate & Rerank

- same approach as for sentence planning
- assuming a flexible handcrafted realizer (e.g., OpenCCG)
- underspecified input → more outputs possible ←
- generate more & use statistical reranker, based on:
 - **n-gram language models** NITROGEN (Langkilde & Knight, 1998) <u>https://www.aclweb.org/anthology/P98-1116</u> HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
 - Tree language models FERGUS (Bangalore & Rambow, 2000) <u>https://aclweb.org/anthology/C00-1007</u>
 - expected text-to-speech output quality (Nakatsu & White, 2006) <u>https://www.aclweb.org/anthology/P06-1140</u>
 - personality traits & alignment/entrainment CRAG (Isard et al., 2006) <u>https://www.aclweb.org/anthology/W06-1405</u>
- more variance, but at computational cost

Grammar/Procedural-based

• same as RealPro or TectoMT, but predict each step using a classifier

StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012 this means the grammar may be smaller

Non-Neural End-to-End NLG

- NLG as language models
 - hierarchy of language models (HMM/MEMM/CRF style)
 - DA \rightarrow slot \rightarrow word level
- NLG using context-free grammars
 - a) "language models" by probabilistic CFGs
 - approximate search for best CFG derivation
 - b) synchronous PCFGs MRs & text
 - "translation" with hierarchical phrase-based system
 - parsing MR & generating text

(Oh & Rudnicky, 2002)https://doi.org/10.1016/S0885-2308(02)00012-8(Angeli et al., 2010)https://www.aclweb.org/anthology/D10-1049(Liang et al., 2009)https://www.aclweb.org/anthology/P09-1011(Mairesse et al., 2010)https://www.aclweb.org/anthology/P10-1157(Mairesse & Young, 2014)https://www.aclweb.org/anthology/J14-4003

rule	prob./paramete
1. $S \rightarrow R(start)$	[Pr = 1]
2. $\mathbf{R}(r_i.t) \rightarrow \mathbf{FS}(r_j, start) \mathbf{R}(r_j.t)$	$[P(r_j.t r_l.t) \cdot \lambda]$
3. $\mathbf{R}(r_i.t) \rightarrow \mathbf{FS}(r_j, start)$	$[P(r_j.t r_i.t) \cdot \lambda]$
4. $FS(r, r, f_i) \rightarrow F(r, r, f_j) FS(r, r, f_j)$	$[P(f_j f_i)]$
5. $FS(r, r, f_i) \rightarrow F(r, r, f_j)$	$[P(f_j \mid f_i)]$
6. $\mathbf{F}(r,r.f) \rightarrow \mathbf{W}(r,r.f) \mathbf{F}(r,r.f)$	$[P(w w_{-1}, r, r, f)]$
7. $\mathbf{F}(r, r, f) \rightarrow \mathbf{W}(r, r, f)$	$[P(w \mid w_{-1}, r, r, f)]$
8. $W(r,r,f) \rightarrow \alpha$	$P(\alpha r, r, f, f, t, f, v)]$
9. $W(r,r,f) \rightarrow g(f.v)$ [$P(g(f.v).mode$]	[r, r. f, f.t = int)]

(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039

Neural Generation: Seq2seq RNNs (see NLU for RNN intro)

Neural End-to-End NLG: RNNs

- Unlike previous, doesn't need alignments
 - no need to know which word/phrase corresponds to which slot

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

- 1st system: RNN language model conditioned on DA (~decoder only)
 - input: binary-encoded DA
 - 1 if intent/slot-value present, 0 if not
 - delexicalized: much fewer values, shorter vector
 - modified LSTM cells
 - input DA passed in every time step
 - generating delexicalized texts word-by-word
 - i.e. decoder only

Inform(name=EAT, food=British)

SLOT_NAME

0, 0, 1, 0, 0, ..., 1, 0, 0, ..., 1, 0, 0, 0, 0, 0...

serves

dialogue act

SLOT FOOD

binary representation

SLOT FOOD

British

</s>

Seq2seq NLG with reranking (TGen)

(Dušek & Jurčíček, 2016) https://aclweb.org/anthology/P16-2008

• Encode DAs as sequences, apply standard RNN seq2seq

Transformer = seq2seq, with feed-forward & attention nets (instead of RNN)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762

Transformers & Pretrained Language Models

- Transformer architecture (Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
 - encoder-decoder, but using feed-forward & attention instead of RNNs
 - positional encoding used to indicate sentence position
 - predefined "pattern" functions (based on sin & cos)
 - simply added to word embeddings
 - no RNN \rightarrow parallel training \rightarrow faster, allows larger models (more layers)
- Large models pretrained on open-domain texts
 - guess masked word (encoder only: BERT) (Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
 - (Radford et al., 2019) https://openai.com/blog/better-language-models/ generate next word (decoder only: GPT)
 - fixed distorted sentences (both: BART, T5) (Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703 (Raffel et al., 2020) http://jmlr.org/papers/v21/20-074.html
- Can be finetuned for your domain & task
 - relatively little data is enough
 - extremely fluent

https://www.aclweb.org/anthology/2020.acl-main.18/ (Chen et al., 2020) (Kasner & Dušek, 2020) https://www.aclweb.org/anthology/2020.webnlg-1.20/

Problems with neural NLG

Checking the semantics

- neural models tend to forget input / make up irrelevant stuff
- reranking works, but isn't perfect
- Needs quite a lot of data
- Delexicalization needed (at least some slots)
 - otherwise the data would be too sparse
 - alternative: copy mechanisms
- Diversity & complexity of outputs
 - still can't match humans
 - needs specific tricks to improve this
- Still more hassle than writing up templates 😏

open sets, verbatim on the output (e.g., restaurant/area names)

Summary

Deep Reinforcement Learning

- same as plain RL agent + states, actions, rewards just Q or π is a NN
- function approximation for Q mean squared value error
- **Deep Q Networks** Q learning where Q is a NN + tricks
 - experience replay, target function freezing
- **Policy networks** policy gradients where π is a NN

Natural Language Generation

- steps: content planning, **sentence planning**, **surface realization**
 - not all systems implement everything (content planning is DM's job in DS)
 - pipeline vs. end-to-end
- approaches: templates, grammars, statistical
- templates work great
- neural: RNN / Transformer, reranking

Thanks

Contact us:

Labs: S4 in 10 minutes

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek,nekvinda}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Matiisen (2015): Demystifying Deep Reinforcement Learning: <u>https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/</u>
- Karpathy (2016): Deep Reinforcement Learning Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
- David Silver's course on RL (UCL): <u>http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</u>
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): <u>http://incompleteideas.net/book/the-book.html</u>
- Milan Straka's course on RL (Charles University): <u>http://ufal.mff.cuni.cz/courses/npfl122/</u>
- Deep RL for NLP tutorial: <u>https://sites.cs.ucsb.edu/~william/papers/ACL2018DRL4NLP.pdf</u>
- Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: <u>https://arxiv.org/abs/1312.5602</u>
- Mnih et al. (2015): Human-level control through deep reinforcement learning: <u>https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf</u>
- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation <u>http://arxiv.org/abs/1703.09902</u>
- My PhD thesis (2017), especially Chapter 2: <u>http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf</u>