NPFL123 Dialogue Systems 8. Dialogue Policy (non-neural)

https://ufal.cz/npfl123

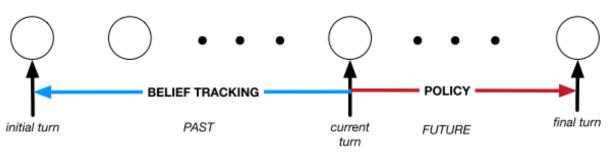
Ondřej Dušek, Vojtěch Hudeček, Tomáš Nekvinda & Jan Cuřín, Petr Fousek

21. 3. 2022

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Dialogue Management

- Two main components:
 - State tracking (last lecture)
 - Action selection with a policy (today)
- action selection deciding what to do next
 - based on the current belief state under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic
- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal <------ e.g. ask for all information you require



(from Milica Gašić's slides)

- Did you say Indian or Italian?
- follow convention, don't be repetitive

DM/Action Selection Approaches

Finite-state machines

- simplest possible
- dialogue state is machine state
- Frame-based (VoiceXML)
 - slot-filling + providing information basic agenda

Rule-based

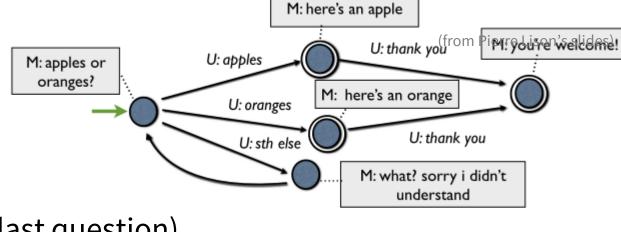
• any kind of rules (e.g. Python code)

Statistical

- typically using reinforcement learning
- Note that state tracking differs with different action selection

FSM Dialogue Management

- Dialogues = graphs going through possible conversations
 - nodes = system actions
 - edges = possible user response semantics
- advantages:
 - easy to design
 - predictable
- disadvantages:
 - very rigid not real conversations
 (ignores anything that's not a reply to last question),
 - doesn't scale to complex domains
- Good for basic DTMF (tone-selection) phone systems



system-initiative

Frame-based Approach

- Making the interaction more flexible
- State = frame with slots
 - required slots need to be filled **mixed-initiative**
 - this can be done in any order*
 - more information in one utterance possible
- If all slots are filled, query the database
- Multiple frames (e.g. flights, hotels...)
 - needs frame tracking
- Standard implementation: VoiceXML
- Still not completely natural, won't scale to more complex problems

Question
What city are you leaving from?
Where are you going?
What day would you like to leave?
What time would you like to leave?
What is your preferred airline?

(from Hao Fang's slides)

	<form></form>
	<field name="transporttype"></field>
	<prompt>Please choose airline, hotel, or rental car. </prompt>
	<pre><grammar type="application/x=nuance-gsl"></grammar></pre>
	[airline hotel "rental car"]
	 slock>
	<prompt>You have chosen <value expr="transporttype">. </value></prompt>
<	

Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With if-then-else rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

the fact structure is deriv	ved	
from the belief state	229	<pre>elif fact['we_did_not_understand']:</pre>
	230	# NLG("Sorry, I did not understand
	231	res_da = DialogueAct("notunderstoo
	232	res_da.extend(self.get_limited_cor
ode _ 🖓_	233	<pre>dialogue_state["ludait"].reset()</pre>
ng 🚽	2.35	<pre>elif fact['user_wants_help']:</pre>
-0	236	# NLG("Pomoc.")
	237	<pre>res_da = DialogueAct("help()")</pre>
	238	dialogue_state["ludait"].reset()
	239	
	240	<pre>elif fact['user_thanked']:</pre>
	241	# NLG("Díky.")
directly choose		res_da = DialogueAct('inform(cordi
+ update s	state	dialogue_state["ludait"].reset()
	244	
	245	<pre>elif fact['user_wants_restart']:</pre>
	246	# NLG("Dobře, zančneme znovu. Jak
	247	dialogue_state.restart()
	248	res_da = DialogueAct("restart()&he
	249	dialogue_state["ludait"].reset()
	250	
	251	<pre>elif fact['user_wants_us_to_repeat']:</pre>
	252	# NLG - use the last dialogue act
	253	<pre>res_da = DialogueAct("irepeat()")</pre>
	254	<pre>dialogue_state["ludait"].reset()</pre>

(Jurčíček et al., 2014)

https://www.tsdconference.org/tsd2014/download/preprints/628.pdf

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py

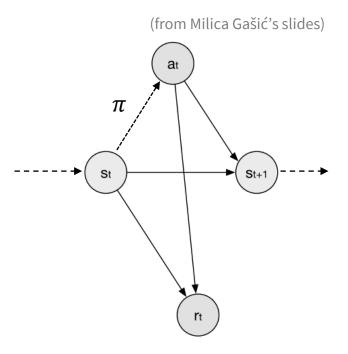
DM with supervised learning

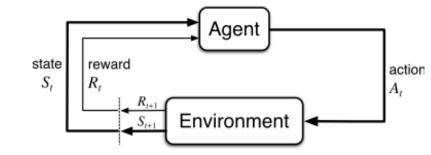
• Action selection ~ classification → use supervised learning?

- set of possible actions is known
- belief state should provide all necessary features
- Yes, but...
 - You need sufficiently large human-human data hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there's **no single correct next action** multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won't behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs **should** behave differently make the best of what they have

DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - agent in an environment:
 - has internal **state** $s_t \in S$
 - takes **actions** $a_t \in \mathcal{A}$
 - actions chosen according to **policy** $\pi: S \to \mathcal{A}$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - Markov property state defines everything
 - no other temporal dependency
- let's assume we know the state for now
 - let's go with MDPs, see how they map to POMDPs later



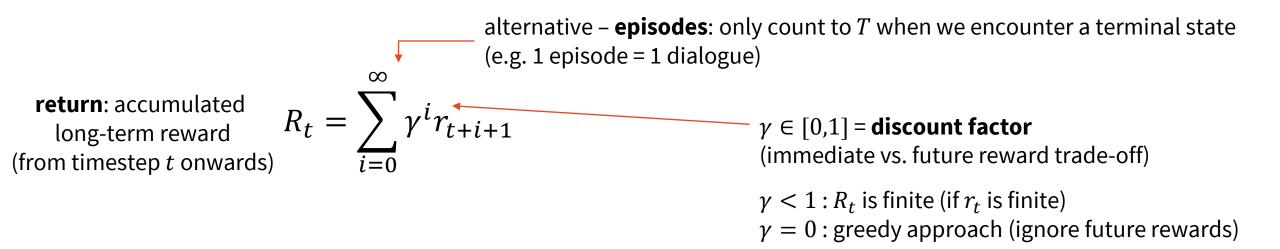


Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \to A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!
- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a)$ ~ probability of choosing action a in state s p(a|s)
 - decision = sampling from $\pi(s, a)$

Reinforcement learning

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high



• state transition is stochastic \rightarrow maximize expected return

State-value Function

- Using return, we define the **value of a state** s under policy $\pi: V^{\pi}(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$prob. of choosing a from s under \pi transition probs. transition immediate reward transition probs. tra$$

• $V^{\pi}(s)$ defines a greedy policy:

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a)(r(s,a,s') + \gamma V^{\pi}(s')) \\ 0 \text{ otherwise} \end{cases}$$

Action-value (Q-)Function

- $Q^{\pi}(s, a)$ -return of **taking action** a **in state** s, under policy π
 - Same principle as value $V^{\pi}(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s, a_{0} = a\right] = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left(r(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s',a') \pi(s',a')\right)$$

• $Q^{\pi}(s, a)$ also defines a greedy policy:

again, "actions that look best for the next step"

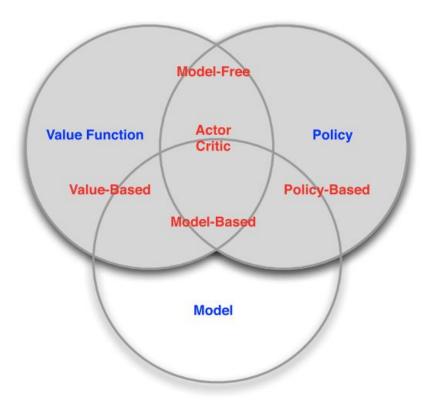
$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} Q^{\pi}(s,a) & \quad \text{simpler: no need to enumerate } s', \\ no need to know p(s'|s,a) \text{ and } r(s,a,s') \\ 0 \text{ otherwise} & \quad \text{but } 0 \text{ tables are bigger than } V \text{ tables} \end{cases}$$

Optimal Policy in terms of *V* **and** *Q*

- optimal policy π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
 - $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \rightarrow$ use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \ge V^{\pi'}(s) \ \forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) \coloneqq \max_{\pi} Q^{\pi}(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^* , $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages

RL Agent Taxonomy

- Quantity to optimize:
 - value function critic
 - policy actor
 - (both actor-critic omitted)
- Environment model:
 - model-based (assume known p(s'|s, a), r(s, a, s'))
 - makes for mathematically nice solutions
 - but you can only know the full model in limited settings
 - model-free (don't assume anything, sample)
 - this is the one for "real-world" use
 - using Q instead of V comes handy here ("hiding" p(s'|s, a))



(from David Silver's slides)

RL Approaches

- How to optimize:
 - **dynamic programming** find the exact solution from Bellman equation
 - iterative algorithms, refining estimates
 - expensive, assumes known environment (=must be model-based)
 - Monte Carlo learning learn from experience
 - sample, then update based on experience
 - Temporal difference learning like MC but look ahead (bootstrap)
 - sample, refine estimates as you go
- Sampling & updates:
 - **on-policy** improve the policy while you're using it for decisions
 - **off-policy** decide according to a different policy

Value Iteration DP model-based value

- 1) Choose a threshold τ , Initialize $V_0(s)$ arbitrarily
- At convergence, we're less than τ away from optimal state values
 - resulting greedy policy is typically already optimal in practice
- Can be done with $Q_i(s, a)$ instead of $V_i(s)$
- Assumes known p(s'|s, a) and r(s, a, s')
 - can be estimated from data if not known but it's expensive

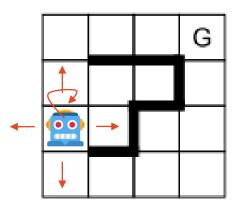
Value iteration example (Gridworld)

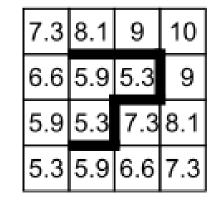
- Robot in a maze: can stay or move \leftarrow , \uparrow , \rightarrow , \downarrow (all equally likely)
 - reward +1 for staying at "G"
 - reward -1 for hitting a wall
 - discount factor $\gamma = 0.9$

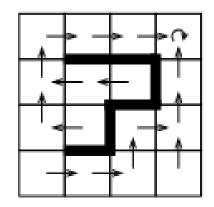
maze

optimal state-value function $V^*(s)$

optimal policy π^*







(Heidrich-Meisner et al., 2007) https://christian-igel.github.io/paper/RLiaN.pdf https://youtu.be/9YN1R6Lh9Jo (note that rewards here come from states, not movements)

Monte Carlo Methods MC model-based/free value

- V(s) or Q(s, a) estimated iteratively, on-policy -
 - explores states with more value more often
- Loop over episodes (dialogues)
 - record (s_t, a_t, r_t) for t = 0, ... T in the episode
 - for all *s*, *a* in the episode:
 - $R(s, a) \leftarrow \text{list of all returns}$ for taking action a in state s (sum of rewards till end of episode)
 - $Q(s,a) \leftarrow \operatorname{mean}(R(s,a)) \blacktriangleleft$
- To converge, we need to explore using ε-greedy policy:

```
a = - \begin{cases} \arg \max_{a} Q(s, a) \text{ with probability } 1 - \epsilon \\ random \text{ action with probability } \epsilon \end{cases}
```

 ϵ can be large initially, then gradually lowered

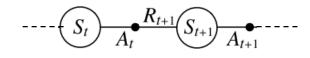
off-policy extensions exist (omitted)

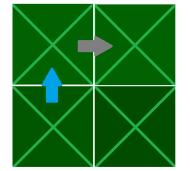
$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

here: model-free for *Q*'s, but also works model-based for *V*'s

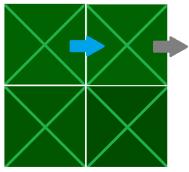
SARSA (state-action-reward-state-action) TD model-free value

- estimate Q(s, a) iteratively, on-policy, with immediate updates
 - **TD**: don't wait till the end of episode
- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s, initial a according to ϵ -greedy policy based on Q
 - for each step:
 - take action a, observe reward r and state s'
 - choose action a' from s' acc. to ϵ -greedy policy based on Q
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot (r + \gamma Q(s',a'))$
 - $s \leftarrow s', a \leftarrow a'$
- typically converges faster than MC (but not always)





State: S Action taken: North Action expected at S': East



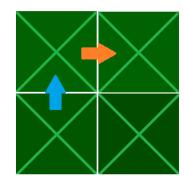
State: S' Action taken: East (from previously) Action expected at S": East

https://towardsdatascience.com/td-inreinforcement-learning-the-easy-way-f92ecfa9f3ce

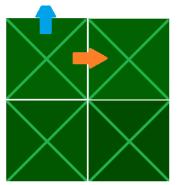
Q-Learning (off-policy TD) TD model-free value

- off-policy directly estimate $Q^*(s, a)$
 - regardless of policy used for sampling
- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose *a* from *s* according to ϵ -greedy policy based on Q -
 - take action a, observe observe reward r and state s'
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a')\right)$
 - $s \leftarrow s'$

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode



State: S Action taken: North Action with max Q value at S': East



State: S' Action taken: North (any action)

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

Animated example for SARSA & Q-Learning: <u>https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html</u>

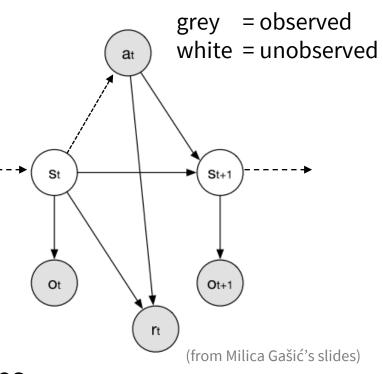
https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

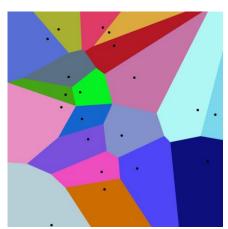
REINFORCE: Policy gradients MC model-free policy

- we assume a differentiable parametric policy $\pi(a|s, \theta)$
- MC search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1 \dots T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta)$ variant: discounting a **baseline** b(s) (predicted by any model) $R_t - b(s_t)$ instead of R_t gives better performance $a \operatorname{good} b(s)$ is actually V(s)• from policy gradient theorem

POMDP Case

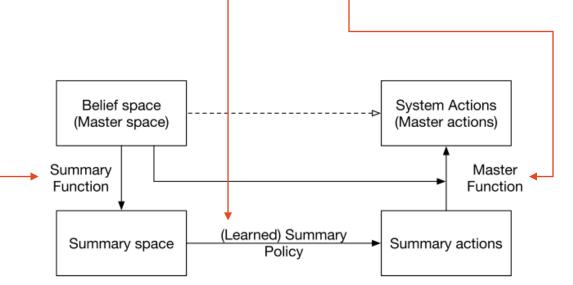
- POMDPs belief states instead of dialogue states
 - probability distribution over states
 - can be viewed as MDPs with continuous-space states
- All MDP algorithms work...
 - if we quantize/discretize the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- REINFORCE/policy gradients work out of the box
 - function approximation approach, allows continuous states





Summary Space

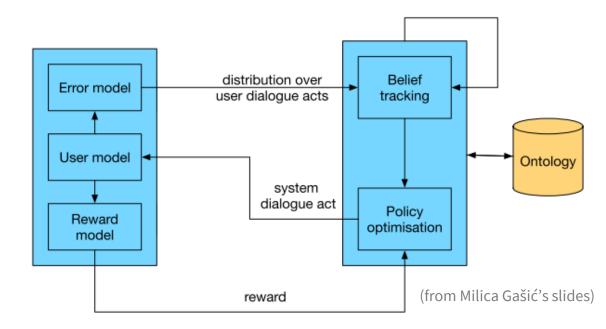
- for a typical DS, the belief state is too large to make RL tractable
- solution: map state into a reduced space, optimize there, map back
- reduced space = summary space
 - handcrafted state features
 - e.g. top slots, # found, slots confirmed...
- reduced action set = summary actions
 - e.g. just DA types (inform, confirm, reject)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions
- state is still tracked in original space
 - we still need the complete information for accurate updates



(from Milica Gašić's slides)

Simulated Users

- We can't really learn just from static datasets
 - on-policy algorithms don't work
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k's dialogues used for training, depending on method
- solution: user simulation
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE policy from data



Summary

- Action selection deciding what to do next
- Approaches
 - Finite-state machines (system-initiative)
 - Frames (VoiceXML)
 - Rule-based
 - Machine learning (RL better than supervised)
- RL in a POMDP scenario (can be approximated by MDP)
 - optimizing value function or policy
 - learning on-policy or off-policy
 - learning with or without a **model**
 - using summary space
 - training with a **user simulator**

Thanks

Contact us:

Labs in 10 mins S4

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek,nekvinda}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): <u>https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/</u>
- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): <u>http://incompleteideas.net/book/the-book.html</u>
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: <u>https://christian-igel.github.io/paper/RLiaN.pdf</u>
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: <u>http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf</u>
- Oliver Lemon's slides (Heriot-Watt University): <u>https://sites.google.com/site/olemon/conversational-agents</u>
- Pierre Lison's slides (University of Oslo): <u>https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/</u>
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596 spr2018/
- David Silver's course on RL (UCL): <u>http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</u>
- Barnabás Póczos's slides (Carnegie-Mellon University): <u>https://www.cs.cmu.edu/~mgormley/courses/10601-s17/</u>