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NLG in a 
narrow 
sense

Natural Language Generation

= task of automatically producing text in e.g. English (or any other language)

• covers many subtasks:
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task input output
unconditional language generation Ø arbitrary text

conditional language generation short text prompt continuation of the prompt

machine translation text in language A text in language B

summarization long text text summary

question answering question answer

image captioning image image caption

data-to-text generation structured data description of the data

dialogue response generation dialogue act system response
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NLG Objectives

•general NLG objective: 

•additional NLG desired properties:
• variation (avoiding repetitiveness)
• simplicity (saying only what is intended)
•adaptability (conditioning on e.g. user model)

3

given input & communication goal
create accurate + natural, well-formed, human-like text
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NLG in Dialogue Systems

• in the context of dialogue systems:

4NPFL099 L8 2023

“what the system wants to say” “actually saying it”

NLG:   system action → system response

• system action  
• selected by the dialogue manager 
• may be conditioned on:

• dialogue state
• dialogue history (→ referring expressions, avoiding repetition)
• user model (→ “user wants short answers”)



NLG Subtasks (Textbook Pipeline)
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inputs

content plan

sentence plan

text

surface realization

sentence planning / microplanning

content planning

deciding 
what to say

deciding 
how to say it

selecting content according 
to a communication goal
(typically handled by dialogue 
manager in dialogue systems)

organizing content into sentences, 
merging sentences, 
choosing referring expressions

linearization according to 
grammar, word order, 
morphology

= how proper NLG had to be done before neural approaches
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NLG Subtasks (Textbook Pipeline)
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(Gatt & Krahmer, 2018)
https://jair.org/index.php/jair/article/view/11173

Example: classical NLG pipeline in medical domain



NLG Basic Approaches

• hand-written prompts (“canned text”)
• most trivial – hard-coded, no variation
• doesnʼt scale (good for DTMF phone systems)

• templates (“fill in blanks”)
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• NNs made it work much better
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Template-based NLG

•most common in commercial dialogue systems
• simple, straightforward, reliable

• custom-tailored for the domain
• complete control of the generated content

• lacks generality and variation
• difficult to maintain, expensive to scale up

• can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases
• template coverage/selection rules (heuristics, random variation)

• can be a good starting point for ML algorithms
• post-editing / reranking the templates with neural language models
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Template-based NLG – Examples
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(Facebook, 2015)

(Facebook, 2019)

inflection rules

Example: Facebook



Template-based NLG – Examples
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Example: Dialogue assistants

(https://developer.amazon.com/en-US/docs/alexa/custom-skills/
create-intents-utterances-and-slots.html)

Alexa Mycroft

(https://mycroft-ai.gitbook.io/docs/mycroft-technologies/padatious)



Template-based NLG – Examples
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Example: Research systems

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex 

(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.emnlp-main.527

https://github.com/UFAL-DSG/alex


Grammar / Rule-based NLG

•based on top of linguistic theories
• state-of-the-art research systems until NLG the arrival of NNs
• rules for building tree-like structures

→ rules for tree linearization
• reliable, more natural than templates
• takes a lot of effort, naturalness still 

not human-level 
• see NPFL123 for more details
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(Mille et al., 2019)
https://aclanthology.org/W19-8659.pdf

https://aclanthology.org/W19-8659.pdf


Neural NLG

• learning the task from the data
• sequence-to-sequence generation / editing / re-ranking
• fluency can match human-level, minimal hand-crafting
•not controllable (“black-box”),

semantic inaccuracies (omissions / hallucinations),
low diversity,
expensive data gathering,
expensive training,
expensive deployment
→ promising research area 😉
• getting better with larger models
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Seq2seq Generation
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https://slds-lmu.github.io/seminar_nlp_ss20/natural-language-generation.html

• encoder-decoder
• RNN: encoder updates the hidden state → decoder is initialized with the hidden state
• Transformer: encoder generates a sequence of hidden states → decoder attends to this sequence
• pretrained Transformers (PLMs): BART, T5 (trained on sequence denoising)

• decoder-only
• input sequence is prepended as a context, the decoder generates continuation
• PLMs: GPT-2, GPT-3 (trained on autoregressive language modelling)

• training vs. inference:
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https://slds-lmu.github.io/seminar_nlp_ss20/natural-language-generation.html


Decoding Algorithms

• for each time step t, the decoder outputs a probability distribution: P(yt| y1:t-1, X)
• how to use it?
• exact inference: find a sequence maximizing P(y1:T| X)

• not possible in practice (why? and is it our goal?)
• approximation algorithms

• greedy search
• beam search

• stochastic algorithms
• random sampling
• top-k sampling
• nucleus sampling (=top-p sampling)

(+ repetition penalty → decreasing probabilities of generated tokens)
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Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc 

● greedy search: always take the argmax
○ does not necessarily produce the most probable sequence (why?)
○ often produces dull responses

Example:

Context:            Try this cake. I baked it myself.
Optimal Response : This cake tastes great.
Greedy search:  This is okay.

many examples start with “This is”, 
no possibility to backtrack
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https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

● beam search: try k continuations of k hypotheses, keep k best 
○ better approximation of the most probable sequence, bounded memory & time
○ allows re-ranking generated outputs
○ k=1 → greedy search

Reranking:

(Ondřejʼs PhD thesis, Fig. 7.7)
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
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https://huggingface.co/blog/how-to-generate


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 

● top-k sampling: choose top k options (~5-500), sample from them
○ avoids the long tail of the distribution
○ more diverse outputs
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https://huggingface.co/blog/how-to-generate


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

● nucleus sampling: choose top options that cover  >= p probability mass (~0.9)
○ “k” is adapted according to the distribution shape
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https://huggingface.co/blog/how-to-generate


RNN-based Approaches

• first neural approaches: ~2015
•TGen: standard LSTM with attention

• encoder – triples <intent, slot, value>
• decodes words (possibly delexicalized)
• beam search & reranking

•RNNLM
• using special LSTM gate cells (SC-LSTM)  to control slot 

mentions
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(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008 

RNN |  seq gen + classif

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199 
http://arxiv.org/abs/1603.01232 

https://aclweb.org/anthology/P16-2008
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232


Delexicalization Alternatives

• copy mechanism (see NLU & the next slide)
• select (or interpolate) between:

• generating a new token
• copying a token from input

• removes the need for pre/postprocessing
• inflection model

• useful for languages with rich morphology 
(e.g., Czech)

• a simple LM such as RNN LM
• pretrained models

• the model learns to copy and inflect words 
implicitly during pretraining

• works well for high-resource languages
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Baráčnická rychta je    na     <area>

Baráčnická rychta is in Malá Strana

inform(name=Baráčnická rychta, area=Malá Strana)

Malá Strana nominative
Malé Strany genitive
Malé Straně dative, locative
Malou Stranu accusative
Malou Stranou instrumental

0.10
0.07
0.60
0.10
0.03

lstm lstm lstm lstm

(Dušek & Jurčíček, 2019) 
https://arxiv.org/abs/1910.05298 

https://arxiv.org/abs/1910.05298


(See et al., 2017) 
http://arxiv.org/abs/1704
.04368

Delexicalization Alternatives – Copy Mechanism
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probability of copying a 
token from the input

probability of generating a new 
token from the vocabulary

http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368


•GPT-2 or BART / T5 finetuned for NLG
• different pretraining tasks – similar outcomes

•works nicely when simply finetuned for data-to-text
• encode linearized data, decode text
• the model learns copying implicitly

•mBART / mT5 (multilingual) → allows multilingual generation
• can generate e.g. Russian outputs from English triples

• are we done now?

Finetuning PLMs
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(Kale & Rastogi, 2020) 
https://www.aclweb.org/anthology/2020.in
lg-1.14 

(Liu et al., 2020)
http://arxiv.org/abs/2001.08210 

PLM |  seq gen

(Kasner & Dušek, 2020)   
https://aclanthology.org/2020.
webnlg-1.20/ 

https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.inlg-1.14
http://arxiv.org/abs/2001.08210
https://aclanthology.org/2020.webnlg-1.20/
https://aclanthology.org/2020.webnlg-1.20/


Finetuning PLMs with Reranking

• goal: improving semantic accuracy
• seq2seq + reranking with GPT-2 & RoBERTa

•GPT-2 fine-tuned for <data> name[Zizzi] eatType[bar] <text> Zizzi is a bar .

•beam search decoding
•RoBERTa for classification

• accurate/omission/repetition/hallucination/value error
• training data synthesized

• “accurate” examples from original training data
• others created by manipulating the data and texts 

(adding/removing/replacing sentences and/or data items)
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prompt (fed into GPT-2) decoded given the prompt

(Harkous et al., 2020)
http://arxiv.org/abs/2004.06577 

PLM |  seq gen + classif

http://arxiv.org/abs/2004.06577


PLMs + Templates

• combining advantages of templates (controllability) and PLMs (fluency)

• concatenate simple templates and then use pretrained LMs (e.g. T5/BART) to rephrase 
them
• basically text-to-text denoising, i.e. what the models were originally trained to do

•needs less data & generalizes to new domains
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(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology
/2020.emnlp-main.527 

rule + PLM | seq gen

templates system

https://www.aclweb.org/anthology/2020.emnlp-main.527
https://www.aclweb.org/anthology/2020.emnlp-main.527


PLMs + Templates

• data-to-text NLG without human-written references
• start with templates → postprocess them with BART-based models

• trained for text-based operations learned from Wikipedia

• improvement: using prompted GPT-3 instead of hand-crafted templates 
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(Kasner & Dušek, 2022)
https://aclanthology.org/2022.acl-l
ong.271/

rule + PLM | seq gen

(Xiang et al., 2022)
http://arxiv.org/abs/2210.04325

https://aclanthology.org/2022.acl-long.271/
https://aclanthology.org/2022.acl-long.271/
http://arxiv.org/abs/2210.04325


Prompting LLMs

• direct instructions instead of task-specific 
finetuning (see Lecture 4, slide 21)

• works only with very large models (about >1B par.)
• ChatGPT, GPT-4  → best performance, but many 

issues (replicability, cost, data contamination, ...)
•preliminary results for NLG: prompting competitive 

to finetuning, but different kinds of problems:
• variability in responses (“Here is the answer: (...)”, “As 

an AI language model (...)”
• prompt sensitivity
• hallucinations

• for NLG in dialog, overgenerate-and-rerank still helps
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LLM | seq gen(Axelsson and Skantze, 2023)
http://arxiv.org/abs/2307.07312

(Yuan and Färber, 2023)
http://arxiv.org/abs/2307.14712

https://www.boredpanda.com/chatgpt-memes/

(Ramirez et al., 2023)
https://aclanthology.org/2023.sigdial-1.32

http://arxiv.org/abs/2307.07312
http://arxiv.org/abs/2307.14712
https://aclanthology.org/2023.sigdial-1.32


Content Planning: Content Selection

• explicit content selection
•usually done by DM in dialogue systems
•needed for complex inputs, e.g. sports report generation

• records (team / entity / type / value) → summary
• content selection: pointer network

• still largely unsolved problem w.r.t. semantic accuracy

(Puduppully et al., 2019)
http://arxiv.org/abs/1809.00582 
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seq2seq + copy | seq gen

(Thomson & Reiter, 2022)
http://arxiv.org/abs/2108.05644

http://arxiv.org/abs/1809.00582
http://arxiv.org/abs/2108.05644


Content Planning: Content Selection
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(Puduppully et al., 2019)
http://arxiv.org/abs/1809.00582 

source statistics 
(excerpt)

target textcontent plan 
(for the 1st sentence)

seq2seq + copy | seq gen

Example of NLG with content planning

http://arxiv.org/abs/1809.00582


Content Planning: Ordering & Aggregation

• ordering the facts + aggregating them into 
sentences
• content already selected at this point
• can help the generator not to miss any facts
• for graphs with oriented edges:

• generating all possible content plans using DFS 
(possibly pruning unpromising branches) → 
re-ranking the plans using a feature-based classifier

• for a set of key-value pairs:
• using Conditional Random Field (CRF) for finding 

the optimal plan

30

(Moryossef et al., 2019a,b) 
http://arxiv.org/abs/1904.03396
https://arxiv.org/pdf/1909.09986.pdf 

seq2seq + copy | seq gen

(Su et al., 2020) 
http://arxiv.org/abs/2108.13740
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Realizing from Trees

• NLG with tree-shaped inputs
• simple case: discourse relations (discourse connectives, sentence splits) between 

individual fields
• much flatter than usual syntactic trees

• improvements to account for the input structure:
• constrained beam search decoding, tree-LSTM, self-training on synthetic data
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seq2seq + copy | seq gen(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220 
(Rao et al., 2019) https://www.aclweb.org/anthology/W19-8611/ 
(Li et al., 2021) https://aclanthology.org/2021.inlg-1.10 

http://arxiv.org/abs/1906.07220
https://www.aclweb.org/anthology/W19-8611/
https://aclanthology.org/2021.inlg-1.10


Data Noise & Cleaning

•NLG errors are often caused by data errors
• ungrounded facts (← hallucinating)
• missing facts (← forgetting)
• domain mismatch
• noise (e.g. source instead of target)

• just 5% untranslated stuff kills an NMT system

• easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose
• crowdsourcing – workers forget/donʼt care

• cleaning improves situation a lot
• can be done semi-automatically up to a point

(Dušek et al., 2019)
https://arxiv.org/abs/1911.03905 

(Khayrallah & Koehn, 2018) 
https://www.aclweb.org/anthology/W18-2709 

(Wang, 2019) 
https://www.aclweb.org/anthology/W19-8639/ 
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https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W19-8639/


Summary

• NLG: system action → system response

• templates work pretty well

• seq2seq generation with finetuned PLMs 
• best among data-driven
• problems – hallucination, not enough diversity, needs lots of data

• prompting-based approaches with LLMs
• less effort than finetuning

• problems – hallucination, controllability, prompt sensitivity, model access

• mitigating problems: re-ranking, modularization, data cleaning
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Thanks

Contact us: 
https://ufaldsg.slack.com/ 
{kasner,odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:
http://ufal.cz/npfl099  

References/Inspiration/Further:
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation 

http://arxiv.org/abs/1703.09902 
• Sharma et al. (2022). Innovations in Neural Data-to-text Generation. https://arxiv.org/pdf/2207.12571.pdf
• Ondřej's PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf 

Icons from https://www.flaticon.com/
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Next week: End-to-end models

Labs in 10 minutes
Assignment 4

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://arxiv.org/abs/1703.09902
https://arxiv.org/pdf/2207.12571.pdf
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
https://www.flaticon.com/

