NPFL099 Statistical Dialogue Systems
7. Dialogue Management (2)

Action Selection/Policy
Ondrej Dusek, Simone Balloccu, Zdenék Kasner, Mateusz Lango,
Ondrej Platek, Patricia Schmidtova
http://ufal.cz/npfl099
14.11. 2023

Charles University @ @ @
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics unless otherwise stated

http://ufal.cz/npfl099

Action selection: Recap

(from Milica Gasic’s slides)

* Action selection: deciding what to do (or say) next
* based on dialogue state (i.e. uses tracking output)
* follows a policy towards an end goal

* FSM, frames, rule-based

* trained policies: typically with RL
» explore more different paths than supervised
 plan ahead - optimize for the whole dialogue, not just 1 turn

* RL: MDP formalism - agent in an environment, state-action-reward
e POMDP = MDP with continuous states
* trained with user simulator "] Agent ',

state reward

St Tt
4_Tt+1 i
St Environment]47
(Sutton & Barto, 2018)
NPFL099 L7 2023 2

action

Reinforcement learning: Definition

* RL =finding a policy that maximizes long-term reward
* unlike supervised learning, we don’t know if an action is good
* immediate reward might be low while long-term reward high

alternative - episodes: only count to T when we encounter a terminal state
- (e.g. 1 episode = 1 dialogue)

00)
accumulated B i, ~————_ ye[0,1]=discount factor
long-term R, = Y Tt+i+1
t t+i+ (immediate vs. future reward trade-off)
reward =0
(from turn t onwards) y = 1:nodiscount, only usableifi < T

Y < 1:R;isfinite (if r; is finite)
y = 0: greedy approach (ignore future rewards)

* state transition is stochastic > maximize expected return

E[R;|m,sg] «— expected R, if we start from state s, and follow policy 7

NPFL099 L7 2023

State-value Function

* Using return, we define the value of a state s under policy m: V" (s)
» Expected return for starting in state s and following policy

* Returnisrecursive: Ry = 14,1 + Y - Ry1q
* This gives us a recursive equation (Bellman Equation):

V”(S) = lZy Tegt|T, S = S] Z n(s a) Z p(s'ls, a)(r(s a s') + yV”(s’))
acEA s'es T
- expected
prob. ofchoosmg transition ;. ediate
a from s undern probs. reward

* V" (s) defines a greedy policy:

actions that look best for the next step

!
fora = argmaxZS esP(S'ls, a)(r(s,a,s") +yVT(s"))

J #ofa's

(s, a) ==
0 otherwise

NPFL099 L7 2023 -

Action-value (Q-)Function

* Q" (s,a) - return of taking action a in state s, under policy &
» Same principle as value V™(s), just considers the current action, too
 Has its own version of the Bellman equation

!
Q" (s,a) = [Zy Fean |, So = 5, @p = a] - Z p(s'ls, @) <r<s as) +y Z Q" (s',a")n(s',a))

s'eS a'eA

* Q™ (s, a) also defines a greedy policy:

again, “actions that look best for the next step”

—

simpler: no need to enumerate s’,
no need to know p(s’|s,a) and r(s, a,s")

— T
| #ofa,sfora—argmc?xQ (s,a) «—

0 otherwise \

but Q function itself tends to be more complex than V

(s, a) =

—

NPFL099 L7 2023

» optimal policy 7* - one that maximizes expected return E[R;|r]
* V™ (s) expresses E[R;|m] > useitto define *

- 7* is a policy such that V™' (s) = V™ (s) Vi',Vs € §

« " always exists in an MDP (need not be unique)
* T* has the optimal state-value function V" (s) := max V" (s)
T

« * also has the optimal action-value function Q*(s,a) := max Q™ (s,a)
T
» greedy policies with V*(s) and Q* (s, a) are optimal

* we can search for either *, V*(s) or Q*(s, a) and get the same result
* each has their advantages and disadvantages

RL Agents Taxonomy

* Quantity to optimize:
. L) ysd:%

* value function - critic
 either Q or V, typically Q in practice ‘ \
. Value Function / ‘%gt?(: Policy
 policy - actor =
PY both _ actor_critic Valuef%sed POlICX -Based
, / MdeI-Bas

* Environment model: |
« model-based (assume known p(s'[s,a), r (s, a, s)) s

* nice but typically not satisfied in practice \\ - //
* model-free (don’t assume anything, sample) .

* thisisthe usual real-world case

* thisis where using Q instead of V comes handy (from David Silver's slides)

NPFL099 L7 2023

Reinforcement Learning Approaches

* How to optimize:

« dynamic programming - find the exact solution from Bellman equation
* iterative algorithms, refining estimates
* expensive, assumes known environment - not practical for real-world use

* Monte Carlo learning - learn from experience 7
* sample, then update based on experience ' both used

* Temporal difference learning - like MC but look ahead (bootstrap) [in practice
« sample, refine estimates as you go

» Sampling & updates:
 on-policy - improve the policy while you’re using it for decisions
« can’t use that with batch learning (decision policy is changing constantly)
» off-policy - decide according to a different policy

NPFL099 L7 2023

Exactly the same as “plain” RL
* agent & environment, actions & rewards

‘“deep” = part of the agent is handled by a NN

* value function (typically Q)
* policy

function approximation approach

state

"'_| Agent |

reward
Tt

I Tt+1
1

g Uy

-

| Spiq
gLt

h

Environment]4*

(Sutton & Barto, 2018)

* Q values/ policy are represented as a parameterized function Q(s,a; 0) / n(s; 0)

* enumerating in a table would take up too much space, be too sparse

» the parameters 6 are optimized

assuming huge state space
* much fewer weights than possible states
» update based on one state changes many states

needs tricks to make it stable

actior

Q TD model-free off-policy

Q-Learning
» temporal difference - update Q as you go any policy that chooses all
. . . actions & states enough times '
* off-policy - directly estimates best Q* “—— il converge to Q*%S, Q) .
» regardless of policy used for sampling we need to explore to converge .
* choose learning rate a, initialize Q arbitrarily _
» for each episode: - | 3 st 1 e
hoose initial s . argmax Q (s, a) with probability 1 — €
¢ C = 7 @ v
e for each step: l random action with probability €

* choose a from s according to e-greedy policy based on Q

 take action a, observe observe reward r and state s’
e 0(s,a) =« (1—a)-0(s,a) +« (r +y - ma}xQ(s’,a’))
a

¢ ! \ J State: S°'
¢ S S ! Action taken: North (any action)

update uses best a’, regardless of current policy:
a’ is not necessarily taken in the actual episode

TD: moving estimates

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
NPFL099 L7 2023 Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Q TD model-free off-policy

Deep Q-Networks

* Q-learning, where Q function is represented by a neural net

» “Usual” Q-learning doesn’t converge well with NNs:
a) SGDisunstable
b) correlated samples (data is sequential)
c) TD updates aim at a moving target (using Q in computing updates to Q)
d) scale of rewards & Q values unknown - numeric instability

* > DOQN adds fixes:
a) minibatches (updates by averaged n samples, not just one)

b) experience replay ol
c) freezing target Q function '

d) Cllpplng rewards D common NN tricks

(Mnih et al., 2013, 2015)

http://arxiv.org/abs/1312.5602
NPFL099 L7 2023 http://www.nature.com/articles/nature14236 11

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

Q TD model-free off-policy

* Experience replay - break correlated samples
 run through some episodes (dialogues, games...) «——
store all tuples (s, a,r’,s’) in a buffer

for training, don’t update based on most recent moves - use buffer
* sample minibatches randomly from the buffer

overwrite buffer as you go, clear buffer once in a while
only possible for off-policy

“generate your own
‘supervised’ training data”

' _ 2
loss = E(5 g+ s")ebut [(T' +ymax{ (s’,a’;0) — Q(s, a; 9))]

* Target Q function freezing

* fix the version of Q function used in update targets
* have a copy of your Q network that doesn’t get updated every time

* oncein a while, copy your current estimate over —

“have a fixed target,
like in supervised learning”

Q TD model-free off-policy

* initialize @ randomly
* initialize replay memory D (e.g. play for a while using current Q(9))
* repeat over all episodes:
* setinitial state s
» foralltimestepst = 1...T inthe episode: _
* select action a; from e-greedy policy based on Q(0) | storing experience
* take a;, observe reward 1,1 and new state s; 4 ~ (1step of Q-learning exploration)
o store (S;, ¢, Tetrq1,Se41) IND i

—_

« sample a batch B of random (s,a,r’,s")’s from D “replay”
I / / . D 21 - ini
* update 0 using loss E(sa's")eB [(r +y maxQ (s',a’;8) — Q(s, a; 9))], a. t(i 3.pt(;2|tr;|)ng

* once every A steps (rarely):
R

update the frozen target function

(Lietal., 2017) Q TD model-free off-policy

D Q N fO Y D i il logu e SySte ms https://arxiv.org/abs/1703.01008 (Lipton et al., 2018)

https://github.com/MiuLab/TC-Bot https://arxiv.org/abs/1608.05081

* DQN can drive dialogue action selection/policy

* warm start needed to make the training actually work:
* pretrain the network using supervised learning

1.0

* replay buffer spiking - initialize using simple rule-based policy b —msemon
* sothere are at least a few successful dialogues
* the RL agent has something to catch on .
EMC N error model controller 6 Rmepﬂ . -
rule-based simulator 4 user a0ign e Error - (simulating ASR/NLU noise) fj r.
with agenda :

running on DA level .

0

\ State Tracker Rule DQN '
User Sim. Agent | Update w/ User | movie ticket booking:

Le- || Update w/ User i
step 1| | Add Exp. |[Srexste ;‘_‘_‘_'_'_‘_‘:_‘:::_:; better than rule-based
e e S ' 1. state i Get State |
DQN - feed-forward, | Getaction i il replay memory
1 hidden ReLU layer A H K SRR initialized using a

3. (updated) agent action fmmmmmm oo Simple handcrafted pOlicy

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot
https://arxiv.org/abs/1608.05081

* Instead of value functions, train a network to represent the policy
* allows better action sampling - according to actual stochastic policy
* no need for e-greedy (which is partially random, suboptimal)
* To optimize, we need a performance metric: /(6) = V™6 (s,)

» expected return in starting state when following g
* we want to directly optimize this using gradient ascent

* Policy Gradient Theorem:
» expresses VJ/(0) in terms of Vrr(als,)

VJ(0) «) u(s)) Q"(s,)Vn(als,0) = Ey

.S
Y
u(s) is state probability under r - this is the same as expected value E,,

z Q™ (s,a)Vr(als, 9)]

(Sutton & Barto, 2018; p. 324ff)

REINFORCE: Monte Carlo Policy Gradients i MC modetiree on-policy

» direct search for policy parameters by stochastic gradient ascent
* looking to maximize performance J(8) = V™6 (s,)

. e eye qe . . this will guarantee
» choose learning rate a, initialize @ arbitrarily the right state
. lOOp forever: | distribution/frequency u(s)

* generate an episode sy, ag, 14, ..., ST—1,A7_1, T, following (- | -,)
e foreacht =0,1..T:0 < 0 + a\yt}gtvm r(ac|se, 6)

= T-1 =t \
returns R; i=t ¥V Ti+1 this is stochastic VJ(0):

/ from policy gradient theorem
variant - advantage instead of returns: « using single action sample a;

diSCOUnting a baseline o expressing QT[as Rt (under]ETL')
b(s) (predicted by any model)

. usingVlnx = =
A; = Ry — b(s;) instead of R; \ & x

gives better performance V(s) isactually a good b(s)

NPFL099 L7 2023 (Sutton & Barto, 2018; p. 327f) 16

Policy Gradients (Advantage) ACtOr'CritiC n&V TD model-free on-policy

* REINFORCE + V approximation + TD estimates - better convergence
* differentiable policy m(als, 8)
» differentiable state-value function parameterization V (s, w)

* two learning rates a?, % 0
f
* loop forever:
* setinitial state s for the episode AN) aw
* for each step t of the episode: T
« sample action a from (- |s, @), take a and observe reward r and new state s’ Y J

« compute advantage A « r +yV (s, w) — V(s,w)

« update@ « 0 + a%ytAVinn(als,0),w « w+ a¥ - AVV (s, w)
¢ ¢ SI\ Y J \ v [
actor (policy update) critic (value function update)
TD: update same as REINFORCE, except:
after each step, we use (s, w) as baseline
moving estimates * risused instead of R; (TD instead of MC)

(Suetal., 2017)
NPFL099 L7 2023 http://arxiv.org/abs/1707.00130 17

http://arxiv.org/abs/1707.00130

ACER: Actor-Critic with Experience Replay

» off-policy actor-critic - using experience replay buffer

* same approach as Q-learning

n&V TD model-free off-policy

- since ER buffer has past experience with out-of-date policies (using “old” 8),
it’s considered off-policy (behaviour policy mz # target policy mg)

« sampling behaviour from mg is biased w. r. t. g

 correcting the bias - importance sampling: multiply by importance weight p; =

 all updates are summed over batches & importance-sampled

* new objective/performance metric: Tt[%)/i{\
6

batch average

over timesteps t importance sampled

(Wangetal.,2017) http://arxiv.org/abs/1611.01224

(Suetal., 2017) http://arxiv.org/abs/1707.00130
NPFL099 L7 2023 (Weisz et al.,2018) http://arxiv.org/abs/1802.03753

g (aglst)
g (atlse)

using advantage instead of returns

18

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753

. o e o . ulman ot 4 n&V TD model-free off-policy
Proximal Policy Optimization (5000l

* ACERis prone to very large updates, unstable

positive

* to avoid going “off a cliff”, it needs very low LR, trains slowly advantages
* > change the objective to produce more stable updates porr 420 ot get
» Basically clipping the ACER objective et
.« define 7, (8) = "2L%ISt) _ 1ti6 to old params 3
iner(6) ng(At|St) P |
« starting from E, [ZegatIE%AJ = E¢|r:(8)A;] (see ACER) Y
6 - optimization
¢ US|ng Et[mln(Tt(Q)At, Chp T't(e) 1+6At)] 1'7/ ;{ai:ing

‘ original cllpped to stay close to 1 4\
minimum - lower bound on the unclipped objective |

LCLIP

negative
advantages

NPFL099 L7 2023 19

http://arxiv.org/abs/1707.06347

* Reward function is critical for successful learning

* Handcrafting is not ideal
* domain knowledge typically needed to detect dialogue success

* need simulated or paid users,
can’t learn from users without knowing their task

* paid users often fail to follow pre-set goals

* Having users provide feedback is costly & inconsistent
* real users don’t have much incentive to be cooperative

* Learning/optimizing the rewards is desirable

T u rn B leve l rewa rd S (Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019; Ultes & Maier, 2021)

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/

() I nte ra Ction q ua lity https://aclanthology.org/2021.siedial-1.42 (Takanobu et al., 2019) http://arxiv.org/abs/1908.10719
. h -h
» hand-annotated turns for ~200 dialogues from duta |
« SVM/RNN on low-level domain-independent features senerated

(ASR confidence, # reprompts etc.)

* Discriminator oy Tao-
» policy vs. human-human (iterative, adversarial learning) [w. | '
» reward for appearing human-like at each turn T : ‘

 Information gain lebased TEedoward feed forward

* reward system asking = changes in belief state distributions
(Jensen-Shannon divergence = threshold)

e combined with task success (Feudal RL, see -)

(Geishauser et al., 2021) http://arxiv.org/abs/2109.07129

NPFL099 L7 2023 21

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/
https://aclanthology.org/2021.sigdial-1.42
http://arxiv.org/abs/1908.10719
http://arxiv.org/abs/2109.07129

Alternating supervised & RL

* we can do better than just supervised pretraining
e alternate regularly

)E‘ Mark Ried|
. @mark_riedl

« start with supervised more frequently =
. Everyone knows this, right? Right? Most RL agents are overfit and can be
* A “eV| ate Spa rse rewa rdS, defeated by acting out-of-distribution. Everyone should know this.
but don’t completely avoid exploring https://twitter.com/mark_riedl/status/1682937331727192065

 laterdo more RL
* butdon’t forget what you learned by supervised learning

* options:
» schedule supervised every N updates

* same +increase N gradually

* use supervised after RL does poorly (worse than baseline)
* baseline = moving average over history + A - std. error of the average
« agentis less likely to be worse than baseline in later stages of learning

(Xiong et al., 2018)
NPFL099 L7 2023 http://arxiv.org/abs/1806.06187 =

http://arxiv.org/abs/1806.06187
https://twitter.com/mark_riedl/status/1682937331727192065

Deep Dyna-Q: learning from humans & simulator

* humans are costly, simulators are inaccurate

(Pengetal., 2018)

https://www.aclweb.org/anthology/P18-1203

(Suetal., 2018)

https://www.aclweb.org/anthology/D18-1416

* = learn from both, improve simulator as you go

e direct RL =learn from users

* world model learning = improve internal simulator

* supervised, based on previous dialogues with users
* planning =learn from simulator

* DQN, feed-forward policy

* simulator: feed-forward multi-task net
» draw a goal uniformly at the start -
 predict actions, rewards, termination
 use K simulated (“planning”) dialogues per 1 real

movie booking:
name, date, # tickets etc.

e discriminative DDQ: only use a simulated dialogue

if it looks real (according to a discriminator)

Human
Conversational Data
Imitation

Learning l

Policy
Model

wg
Dirpct
Reinforpement

Planning

World

Model User

Learhing
Real

World mode .
Experience

learning

user action reward terminate?

a r t
Tesk-Specific j 0])1c’s<‘nr(1‘r1'm

Shared T
layers

[

§: state

D)
1
() (a: agent action)

internal simulator = world model

https://www.aclweb.org/anthology/P18-1203
https://www.aclweb.org/anthology/D18-1416

» good for multiple subtasks

* e.g. book a flight to London and a hotel for the same day,

close to the airport
* top-level policy: select subtask g;

—> User T
reward

Dialogue \ Extrinsic

policy learning

lSubgoal

Top-level dialogue

Dialogue
states

| Low-level dialogue e

* low-level policy: actions a; 4, to complete subtask g; M
* given initiation/termination conditions e
« keeps on track until terminal state is reached e -
 shared by all subtasks (subtask=parameter)
* internal critic (=prob. that subtask is solved) a e -
\ [\ ‘

* global state tracker
* integrates information from subtasks

(Pengetal., 2017)
http://aclweb.org/anthology/D17-1237

St —— ﬂ:g(g;; St) —bgz

Low-level Dialogue Policy T4 g(ay; Se, 9t)

1 .
St—. .
Mog(aise gy) —— 2

——0n Yt— - am

top-level Q-network low-level Q-network

http://aclweb.org/anthology/D17-1237

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

* spatial (slot-based) split instead of temporal [o ettt (b)
, : : S (b) Lot [95,0)
* doesn’t need defined subtasks & sub-rewards D) | |bm | s (5) B (D) b
. . ; bsl sz "
* belief state representation - features g //@\ p e -
. Y Qg:f” Argmax Qgin: ' T :
* master ¢y, slot-independent ¢;, per-slot ¢, Ep ermaser N (R !
* handcrafted (could be neural nets) oo QQQQQ ’an
* supports sharing parameters across domains — =t gmd
* two-step action selection: hello, inform request, confirm
1) master action: “slot-dependent or not”? | | |)
inform = “inform over all slots

* master policy
2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)
» chooses max. Q for all slot-action pairs - involves choosing the slot

* everything is trained using the same global reward signal

http://arxiv.org/abs/1803.03232

* RL for action selection / dialogue policy
 MDP /agentin an environment, taking actions, getting rewards
* dynamic programming, Monte Carlo, Temporal Difference
 optimizing value function VV/Q (critic), policy (actor), or both (actor-critic)
* learning on-policy or off-policy (act by the policy you learn/not)

* DQN - representing & optimizing Q function with a network
* minibatches, target function freezing, experience replay

* Policy gradients - policy network & direct policy optimization
* REINFORCE (MC policy gradients) + advantage
* Actor-critic (REINFORCE + TD + V estimates) + extensions (ACER, PPO)

* rewards can be learned/estimated (supervised/GAN-style)
* learning multiple tasks: hierarchical, feudal RL

Thanks

Contact us: Next Monday: NLG & HW4

https://ufaldsg.slack.com/ We start at 9:50
odusek@ufal.mff.cuni.cz
Skype/Meet/Zoom/Troja (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

Sutton & Barto (2018): Reinforcement Learning: An Introduction (29 ed.)
http://incompleteideas.net/book/the-book.html

Nie et al. (2019): Neural approaches to conversational Al: https://arxiv.org/abs/1809.08267

Filip Jurcicek’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/

Milica Gasic’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:
http://cs.brown.edu/courses/csci2951-k/papers/youngl3.pdf

27

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1809.08267
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

