Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

12. Multimodal Systems
(+a few words about domain adaptation)

Ondřej Dušek & Vojtěch Hudeček
http://ufal.cz/npfl099
9. 1. 2020
Multimodal Dialogue Systems

• adding more modalities to voice/text
 • input:
 • touch
 • drawing
 • gaze, gestures, facial expressions
 • voice pitch/tone
 • image
 • output:
 • graphics
 • gaze, gestures, facial expressions, body movement
• either traditional/modular and mostly rule-based systems, or very experimental (not much use in practice)
Standard Multimodal DS Schema

• basically the same as voice/text DSs
• adding multiple input modules
 • for multiple modalities
 • each with its own NLU-like interpretation
 • interpretations are merged
• multiple output modules
 • each with its own generation
 • dialogue manager output is split
• typically ready-made off-the-shelf modules
 • it’s too complex/costly to build these custom
Smart Devices

• Phones, wearables, smart speakers with a display
 • incl. Google Assistant, Alexa & Siri
 • admittedly not so much dialogue, more of commands
 • cloud-based operation for most

• Input
 • touch: active & passive gestures (touch/accelerometer)
 • “raise to speak”
 • rarely visually sensing gestures
 • doesn’t support gaze

• Output
 • graphics: card interface
 • generation functions rule-based/low-level

https://www.wearable.com/android-wear/how-to-use-voice-commands-on-android-wear
https://www.cnet.com/reviews/amazon-echo-spot-review/
“Classical” Multimodal Systems

• closed-domain task-oriented dialogue systems
• map-based: town information with map input & output
 • touch / pen – drawing, map display
 • reacting to zooming, area selection
 • handwriting recognition (as alternative input)
 • similar to Google Assistant, but more interactive
• in-car: voice & button control
• custom architectures
 • off-the-shelf modules
 • rule-based touch input processing

what about here?

S: I found 3 albums by The Beatles in your collection
<shows listing on screen>
U: Play the third one.
U: Which songs are on this one?
<selects an album from listing on screen>

(Johnston et al., 2002) https://www.aclweb.org/anthology/P02-1048/
(Johnston et al., 2014) https://www.aclweb.org/anthology/W14-4335
(Becker et al., 2006) https://www.aclweb.org/anthology/P06-4015
Virtual Agents

• character face/full body
 • on screen or 3D projected (FurHat)

• a lot more outputs
 • full motion video – facial expressions, gaze, gestures, body movement
 • a lot of it “automatic”, designed to look natural/match what’s said

• additional inputs – gaze & facial expression
 • checking user engagement/sentiment

• dialogue management mostly rule-based
 • retrieval with non-linguistic inputs (Virtual Humans/SimSensei)
 • limited-domain custom rules (FurHat)

• tutoring/training, healthcare

https://vhtoolkit.ict.usc.edu/

https://youtu.be/ejczMs6b1Q4

(Al Moubayed et al., 2012)
(Rushforth et al., 2009)
(DeVault et al., 2014)

https://doi.org/10.1007/978-3-642-34584-5_9
https://doi.org/10.1007/978-3-642-04380-2_82
https://dl.acm.org/doi/10.5555/2615731.2617415
Robots

• similar to virtual agents, but with actual hardware
 • different user’s perception
 • body gestures more prominent
 • touching the robot is possible
 • situated deployment – need to track user engagement
 • is the user still talking to the robot?
 • hardware limitations
 • mostly no facial expr./gaze output, some sensors missing etc.

• off-the-shelf robots (Nao, Pepper)
 • built-in & additional sensors (e.g. Kinect)
 • custom rule-based gesture generation
 • controlled via a computer (not autonomous)

• “receptionist” – directions, information

(Bohus et al., 2014) https://dl.acm.org/doi/10.5555/2615731.2615835
Multi-party Dialogue

- Relevant for both virtual agents & robots
 - supported by most previously mentioned projects
- How to handle multiple counterparts?
 - users or other robots/virtual agents
- gaze/engagement/speech detection
 - who’s speaking/looking etc.
- rules for multiple counterparts
 - switching gaze to address them
 - here, 3D is better than 2D (otherwise gaze ambiguous)
 - telling one to wait for another
- customer service, information

https://youtu.be/oOp4XP_ziMw
http://www.danbohus.com/
(Foster et al., 2012)
(Bohus et al., 2014)
(Skantze & Al Moubayed, 2012)
http://dl.acm.org/citation.cfm?doid=2388676.2388680
http://dl.acm.org/doi/10.5555/2615731.2615835
https://doi.org/10.1145/2388676.2388698

Interaction 1
(Socially inappropriate)

| One person, A, approaches the bar and turns towards the bartender |
| Robot (to A): How can I help you? |
| A: A pint of cider, please. |
| A second person, B, approaches the bar and turns towards the bartender |
| Robot (to B): How can I help you? |
| B: I’d like a pint of beer. |
| Robot: (Serves B) |

Interaction 2
(Socially appropriate)

| Robot (to A): How can I help you? |
| A: A pint of cider, please. |
| Robot (to B): One moment, please. |
| Robot: (Serves A) |
| Robot (to B): Thanks for waiting. |
| How can I help you? |
| B: I’d like a pint of beer. |
| Robot: (Serves B) |
Specific uses

• Air traffic controller training – radar as a modality
 • multiple agents/systems representing pilots
 • radar charting each agent’s behavior
• single ASR, many TTSs
 • varied accents
• all rule-based
 • very limited domain
 • bearings, flight levels

NPFL099 L12 2019

End-to-end Multimodal

• recent, experimental

• enhancing end-to-end DS architectures with image input
 • no video input
 • no avatars, facial expressions, gestures etc.
 • not much graphics output either

• also using off-the-shelf components
 • especially for image recognition – ready-made convolutional architectures
 • textual parts based on known architectures (HRED, MemNN etc.)

• mostly just end-to-end prediction
 • pretrained image recognition parts are kept fixed, no end-to-end training
Pretrained convolutional nets

• Data: ImageNet Challenge
 • >1M images, 1000 classes
 • just classify the object in the image
 • CNNs are way better than anything that came before them

• AlexNet – 1st deep CNN
 • 5 conv layers, ReLU activations, max pooling & 3 dense layers

• VGGNet – improvement
 • more layers, smaller CNN kernels (3x3, 2x2 pooling with stride 2)
 • reduces # of parameters, same function

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaecccc96
Pretrained CNNs

• **ResNet** – residual networks
 • trying to simplify the mappings found by CNNs
 • with regular CNNs, deeper might not be better (vanishing gradient problem)
 • “shortcuts”: adding identity / linear projection to convolutions
 • learning a **residual** CNN mapping (“what projection can’t handle”)
 • allows much deeper networks – alleviates vanishing gradients

• **Inception** – more CNN kernels in parallel
 • for detecting different-sized object features
 • 1x1 depth reductions, depth-wise concatenations
 • better results with shallower networks

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
(He et al., 2016) https://arxiv.org/abs/1512.03385
(Szegedy et al., 2015) http://arxiv.org/abs/1409.4842
Pretrained CNNs

• Faster R-CNN
 • object detection – harder task
 • detecting boxes (regions) for multiple objects in image

• Pipeline:
 • Region prediction network (detect salient boxes)
 • Region-of-interest pooling (consolidate features)
 • Region-based CNN (classify)
Region prediction

- pretrained VGG as feature extraction
 - features for each of the anchor points (regularly spaced in the image)
- for each anchor point, predict:
 - anchor base size & h/w ratio (e.g. 64-128-256px, 0.5/1/1.5)
 - p(this is object) & p(this is background)
 - anchor Δx, Δy, Δh, Δw
 - all of this via convolutions 😊
- trained using object/non-object anchors
- overlapping predictions unified

R-CNN classification

• basically the same as image classification (given region)
 • with one more box coordinates fix

• sharing VGG features from RPN
 • this makes it much faster (only the pooling & prediction layers are new)

Task: have a meaningful dialogue about an image
- close to visual QA: **human asks, system responds**
- but VD is multi-turn & human doesn’t see the image (just a caption)
 - follow-up questions possible – coreference
 - people are not primed by the image when asking questions

- not much realistic purpose other than to test the models
- dataset of 10-turn dialogues on 120k images
 - collected via crowdsourcing
 - connecting 2 people live to talk about an image
- shared challenges

[Image: A man and woman on bicycles are looking at a map.
Person A (1): where are they located
Person B (1): in city
Person A (2): are they on road
Person B (2): sidewalk next to 1
Person A (3): any vehicles
Person B (3): 1 in background
Person A (4): any other people
Person B (4): no
Person A (5): what color bikes
Person B (5): 1 silver and 1 yellow
Person A (6): do they look old or new
Person B (6): new bikes
Person A (7): any buildings
Person B (7): yes
Person A (8): what color
Person B (8): brick
Person A (9): are they tall or short
Person B (9): I can’t see enough of them to tell
Person A (10): do they look like couple
Person B (10): they are]

Caption: A man and woman on bicycles are looking at a map.

[Image: A sink and toilet in a small room.
Q3: can you see anything else ?
A3: there is a shelf with items on it
Q4: is anyone in the room ?
A4: nobody is in the room
Q5: can you see on the outside ?
A5: no, it is only inside
Q6: what color is the sink ?
A6: the sink is white
Q7: is the room clean ?
A7: it is very clean
Q8: is the toilet facing the sink ?
A8: yes the toilet is facing the sink
Q9: can you see a door ?
A9: yes, I can see the door
Q10 what color is the door ?
A10 the door is tan colored]
Base Visual Dialogue Models

(Das et al., 2017) http://arxiv.org/abs/1611.08669

Hierarchical Recurrent Encoder

- Each turn
- E_t: encoding
- R_t: attention over H
- LSTM

Late Fusion

- Basic encoders for everything
- Simple projection to initialize decoder
- LSTM decoder (same for all)

Memory Network

- Memory (1 hop only)
- Fully-connected layer
- Weighted sum
- $t \times 512$: attention over history

CNN output

- Current user input
- I, Q_t
- H^c

Internal Attention Over History

- Q_t:
 - t rounds of history (concatenated)
 - $Q_t = \{Q_1, Q_2, ..., Q_t\}$
Visual Dialogue Evaluation

• BLEU etc. possible but not used here
• IR setup used instead
 • system given ground-truth dialogue history + user input & 100 candidate answers to score/rank

• IR metrics:
 • ground-truth response rank (average)
 • recall@k (% cases where ground-truth is included in top k)
 • mean reciprocal rank: $\frac{1}{\text{ground truth rank}}$ (1 if ground truth is first, 0.5 if second etc.)
 • normalized discounted cumulative gain
 • for multiple acceptable answers out of the 100 candidates
 • DCG: $\sum_{i=1}^{100} \frac{c_i \text{ relevant?}}{\log_2(i+1)}$, normalize by highest possible DCG (all good answers on top)

• problem: images only give modest gain over text-only models

https://visualdialog.org/challenge/2019#evaluation
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
RL for Visual Dialogue

• human questioner replaced by “Q-bot”
 • Q-bot needs to guess an image

• using HRE architecture for both
 • Q-bot produces a VGG-like image representation
 • both trained via REINFORCE
 • same reward for both: lowered difference of Q-bot’s predicted representation to the ground-truth image
 • per turn

• curriculum learning
 • start with fully supervised
 • use RL only for last k turns
 • increase k

• combination with supervised works best

(Das et al., 2017)
http://arxiv.org/abs/1703.06585
Guess What

• guessing one of the objects in an image
 • GuessWhat data (150k guessing dialogues)
• 3 models:
 • question generation – LSTM
 • running through all previous questions
 • conditioned on VGG image features & previous replies
 • “oracle” – reply generation (Y/N/NA)
 • feed-forward from LSTM question encoding
 + object category + object size & position in image
 • guesser – select object from list of candidates
 • dot product & softmax over last LSTM generator state
 + candidate objects categories & sizes/positions
 • triggered at the end of the dialogue

(Strub et al., 2017)
https://www.ijcai.org/proceedings/2017/385
Guess What

- training via RL
 - optimize the sequence of questions to find the object
 - states = each word
 - <?> = answer retrieved, <stop> = end of dialogue, guesser applied
 - simple 0/1 reward (guesser found the correct object at the end or not)
- supervised pretraining
- only question generator trained using RL (REINFORCE)
 - learns to stop after 4.1 questions on average
 - without penalty
 - guesser might be less accurate for long dialogues

<table>
<thead>
<tr>
<th></th>
<th>New Objects</th>
<th>New Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppressed</td>
<td>39.2% ± 0.2</td>
<td>38.0% ± 0.1</td>
</tr>
<tr>
<td>Supervised</td>
<td>40.7% ± 0.1</td>
<td>39.4% ± 0.3</td>
</tr>
<tr>
<td>REINFORCE</td>
<td>46.1% ± 0.0</td>
<td>44.8% ± 0.2</td>
</tr>
<tr>
<td>REINFORCE</td>
<td>53.3% ± 0.3</td>
<td>52.3% ± 0.2</td>
</tr>
<tr>
<td>REINFORCE</td>
<td>49.5% ± 0.0</td>
<td>48.5% ± 0.2</td>
</tr>
<tr>
<td>REINFORCE</td>
<td>44.9% ± 0.1</td>
<td>45.8% ± 0.1</td>
</tr>
<tr>
<td>Human</td>
<td>84.4%</td>
<td>81.4%</td>
</tr>
<tr>
<td>Human with Guesser</td>
<td>63.8%</td>
<td>65.1%</td>
</tr>
<tr>
<td>Random</td>
<td>18.1%</td>
<td>20.2%</td>
</tr>
</tbody>
</table>
Image Chat

(Shuster et al, 2018)
http://arxiv.org/abs/1811.00945

• Open chat about an image
 • no particular task
 • specific personality traits of both participants
• Crowdsourced data
 • ~200k dialogues, 3 turns per dialogue (A-B-A)
 • A & B have predefined personalities
• Evaluation: recall@1 (out of 100 candidates)
Image Chat

- Pretrained input components
 - concatenating ResNet & Faster R-CNN image features
 - Transformer encoders pretrained on Reddit
 - 1 encoder for the dialogue context
 - 1 encoder for candidate response

- personality embedding

- multimodal combiner
 - concatenate all inputs except candidate & self-attend (transformer)
 - using 3 transformers, then summing them (~ensemble)

- dot product with candidate encoding for ranking (ranking only!)

- the same model can also do captioning and visual QA
Chat with Facial Expressions

• Data collected from movie clips
 • selected scenes with single face on screen
 • automatically annotated FACS facial features
 • movements of 18 muscles + 3 head position features
 • 48k utterances (=pretraining needed)
• facial features clustered & synced with words
 • 200 facial expression “templates”
• HRED-like setup
 • parallel encoders – words & facial in sync (+ turn-level encoders)
 • parallel decoders + fine-grained micro-gesture generator (frame-level LSTM)
 • training: supervised, RL (word F1 as reward), GAN (human/machine discriminator)
• avatar with external ASR/TTS

Shopping Dialogues

- a more practical task: fashion e-shop
 - both user & system can show images
 - user can reference/talk about images
- semi-automatic data (150k dialogues)
 - 84 predefined intents
 - generated dialogue flows
 - based on predefined state automata over intents
 - utterances for each intent written by annotators
 - backed by a large manually curated DB of fashion items with images (1M items)
 - taxonomy (man > apparel > lower body > trousers)
 - (generated) celebrity profiles/endorsements

(Saha et al., 2018)
http://arxiv.org/abs/1704.00200
Shopping Dialogues

- Models similar to visual dialogue
 - variants of multimodal HRED
 - VGG image input
- image input
 - turn-level
 - concatenated with utterance
 - seems to work better (fewer turns)
- text/image responses
 - shared encoder
 - text generation (word-by-word)
 - image ranking (needs rough retrieval)
 - so far just “select 1 out of 5”

(Saha et al., 2018) http://arxiv.org/abs/1704.00200
(Agarwal et al., 2018) http://aclweb.org/anthology/W18-6514
Domain Adaptation

• pretraining
 • BERT, but also any other model
 • weight sharing: copy weights for similar slots in target domain

• delexicalization
 • assuming your domains are similar (e.g. TVs → PCs)

• pseudo in-domain data selection
 • find data similar to your domain in the source domain

• forcing shared latent space (see few-shot end-to-end models)

• multi-task training
 • your task in source domain & different task in target domain

• partial handcrafting (see Hybrid Code Networks)
Summary

• “traditional” multimodal systems, with components
 • combination of off-the-shelf components
 • parallels for ASR/NLU & NLG/TTS in I/O modalities
 • dialogue typically quite simple
 • modalities: static graphics / touch / gaze / facial expr. / avatars / robots
 • often support multi-party dialogue

• end-to-end multimodal systems
 • mostly experimental, based on HRED with pretrained CNNs
 • VGG, ResNet, Inception (just image classification), Faster R-CNN (+object detection)
 • visual dialogue: questions & answers about an image
 • guessing: finding an object in image
 • image chat: open-domain, based on image
 • task-oriented: shopping dialogue with product images
Thanks

Contact us:

odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
or on Slack

Get the slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Volha Pethukova’s course (Uni Saarland):
 https://www.lsv.uni-saarland.de/multimodal-dialogue-systems-summer-2019/
• McTear et al. (2016): The Conversational Interface – Talking to Smart Devices
• papers referenced on slides
Exam

• Written test, ~10 questions
 • 60% = pass (C), 73%+ = B, 88%+ = A
 • points might be adapted based on your overall performance
 • expected 1 hr, but you’ll be given at least 2hrs (no pressure on time)

• Covering all lectures

• Question format
 • you’ll need to write stuff on your own (not a-b-c-d)
 • explanation of terms/concepts
 • no exact formulas needed (if needed, they might be provided)
 • but you should know the principles of how stuff works
 • relationships between concepts (“what’s the difference between X & Y”)
 • “how would you build X”
 • focused on “important” stuff – see summaries at the end of each lecture