8. (non-neural) Dialogue Management / Action Selection

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz,npfl123

9. 4. 2019
Dialogue Management

- Two main components:
 - **State tracking** (last lecture)
 - **Action selection** (today)

- action selection – deciding what to do next
 - based on the current belief state – under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic

- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require
DM/Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state
- Frame-based (VoiceXML)
 - slot-filling + providing information – basic agenda
- Rule-based
 - any kind of rules (e.g. Python code)
- Statistical
 - typically using reinforcement learning
- Note that state tracking differs with different action selection
FSM Dialogue Management

- Dialogues = graphs going through possible conversations
 - nodes = system actions
 - edges = possible user response semantics

- advantages:
 - easy to design
 - predictable

- disadvantages:
 - very rigid – not real conversations (ignores anything that’s not a reply to last question)
 - don’t scale to complex domains

- Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

• Making the interaction more flexible
• State = frame with slots
 • required slots need to be filled
 • this can be done in any order
 • more information in one utterance possible
• If all slots are filled, query the database
• Multiple frames (e.g. flights, hotels...)
 • needs frame tracking
• Standard implementation: VoiceXML
• Still not completely natural, won’t scale to more complex problems

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEPT DATE</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEPT TIME</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

mixed-initiative

(from Hao Fang’s slides)

(from Pierre Lison’s slides)
Rule-based (Information State Update)

- Richer state representation – information state
 - complete context – common ground, beliefs, agenda…

- Rules for state update
 - based on dialogue moves (~DAs)
 - rule = applicability conditions + effects
 - effects:
 - updates to information state (~tracking)
 - system actions – updating the “next move” entry
 - all matching rules applied in a sequence

- Much more expressive than FSM/Frames
- Cumbersome to handcraft

BEL = belief
QUD = questions under discussion
LM = last dialogue move

(Larsson & Traum, 2000)
https://dl.acm.org/citation.cfm?id=973943

(private to the system)

(common ground)

https://doi.org/10.1007/978-94-010-0019-2_15
Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

(Jurčíček et al., 2014)

https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
DM with supervised learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You *need* sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s **no single correct next action** – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • DSs *should* behave differently – make the best of what they have
DM as a Markov Decision Process

• MDP = probabilistic control process
 • modelling situations that are partly random, partly controlled
 • agent in an environment:
 • has internal state $s_t \in S$
 • takes actions $a_t \in A$
 • actions chosen according to policy $\pi: S \rightarrow A$
 • gets rewards $r_t \in \mathbb{R}$ & state changes from the environment
 • Markov property – state defines everything
 • no other temporal dependency

• let’s assume we know the state for now
 • let’s go with MDPs,
 see how they map to POMDPs later
Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

• RL = finding a policy that maximizes long-term reward
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

alternative – episodes: only count to \(T \) when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

\[
R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}
\]

accumulated long-term reward

\(\gamma \in [0,1] = \text{discount factor} \)
(immediate vs. future reward trade-off)

\(\gamma < 1 : R_t \) is finite (if \(r_t \) is finite)
\(\gamma = 0 : \text{greedy approach (ignore future rewards)} \)

• state transition is stochastic \(\rightarrow \) maximize expected return

\[\mathbb{E}[R_t | \pi, s_0] \]
expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
State-value Function

• Using return, we define the value of a state s under policy π: $V^\pi(s)$
 • Expected return for starting in state s and following policy π
• Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
• This gives us a recursive equation (Bellman Equation):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))$$

• $V^\pi(s)$ defines a greedy policy:
 $$\pi(s, a) := \begin{cases}
 \frac{1}{\# \text{ of } a'} & \text{for } a = \arg \max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\
 0 & \text{otherwise}
 \end{cases}$$

Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of taking action a in state s, under policy π
 - Same principle as value $V^\pi(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)$$

- $Q^\pi(s, a)$ also defines a greedy policy: again, “actions that look best for the next step”
 - $\pi(s, a) := \begin{cases} \frac{1}{\# of a's} & \text{for } a = \arg \max_a Q^\pi(s, a) \\ 0 & \text{otherwise} \end{cases}$
 - simpler: no need to enumerate s', no need to know $p(s'|s, a)$ and $r(s, a, s')$
 - but Q tables are bigger than V tables
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_\pi V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_\pi Q^\pi(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agent Taxonomy

- Quantity to optimize:
 - value function – critic
 - policy – actor
 - both – actor-critic

- Environment model:
 - model-based (assume known $p(s'|s, a), r(s, a, s)$)
 - model-free (don’t assume anything, sample)
 - this is where using Q instead of V comes handy

(from David Silver's slides)
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
Value Iteration

1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily
2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:
 \[
 \text{for all } s: V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V_i(s'))
 \]
 \[
 i \leftarrow i + 1
 \]

• At convergence, we’re less than τ away from optimal state values
 • resulting policy is typically already optimal in practice
• Can be done with $Q_i(s, a)$ instead of $V_i(s)$
• Assumes known $p(s'|s, a)$ and $r(s, a, s')$
 • can be estimated from data if not known – but it’s expensive
Value iteration example
(Gridworld)

• Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 • reward +1 for staying at “G”
 • reward -1 for hitting a wall
 • discount factor $\gamma = 0.9$

See a similar example animated here: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
(note that rewards come from states, not state-action pairs)
Policy iteration

• Similar to value iteration, but improves both policy & value function
 • also works for Q in place of V

• Initialize π_1 and $V^{\pi_1}(s)$ arbitrarily, set $k = 1$, iterate:

1) **E: Policy evaluation** – compute $V^{\pi_k}(s)$ for policy π_k
 • iterative approximation based on Bellman equation
 • choose threshold τ, loop with i while $V^{\pi_k}_{i+1}(s) - V^{\pi_k}_i(s) \geq \tau$ for any s:
 • for all s: $a \leftarrow \pi_k(s), V_{i+1}(s) \leftarrow \sum_{s'} p(s'|s,a)(r(s,a,s') + \gamma V_i(s'))$

2) **I: Policy improvement** – find better π_{k+1} based on $V^{\pi_k}(s)$
 • choose best action in each state based on $V^{\pi_k}(s)$
 • for all s: $\pi_{k+1} \leftarrow \arg\max_a \sum_{s'} p(s'|s,a)(r(s,a,s') + \gamma V^{\pi_k}(s'))$
 • end if no $\pi_{k+1}(s) = \pi_k(s)$ for all s
Monte Carlo Methods

- \(V(s) \) or \(Q(s, a) \) estimated iteratively, on-policy
 - explores states with more value more often
- Loop over episodes (dialogues)
 - record \((s_t, a_t, r_t)\) for \(t = 0, \ldots, T \) in the episode
 - for all \(s, a \) in the episode:
 - \(R(s, a) \leftarrow \) list of all returns for taking action \(a \) in state \(s \) (sum of rewards till end of episode)
 - \(Q(s, a) \leftarrow \) average \((R(s, a)) \)
- To converge, we need to explore – using \(\epsilon \)-greedy policy:

\[
a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
\end{cases}
\]

\(\epsilon \) can be large initially, then gradually lowered

\[
R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}
\]

off-policy extensions exist (omitted)

here: model-free for \(Q \)'s, but also works model-based for \(V \)'s
SARSA (state-action-reward-state-action)

- estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 - TD: don’t wait till the end of episode
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s, initial a acc. to ϵ-greedy policy based on Q
 - for each step:
 - take action a, observe reward r and state s'
 - choose action a' from s' acc. to ϵ-greedy policy based on Q
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 - $s \leftarrow s'$, $a \leftarrow a'$
- typically converges faster than MC (but not always)
Q-Learning (off-policy TD)

- **off-policy** – directly estimate $Q^*(s, a)$
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily

for each episode:
- choose initial s
- **for each step:**
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 - $s \leftarrow s'$

(update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode)

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
REINFORCE – MC policy search

• assuming a differentiable parametric policy $\pi(a|s, \theta)$
• direct search for policy parameters by stochastic gradient ascent
 • looking to maximize performance $J(\theta) = V^{\pi_\theta}(s_0)$
• choose learning rate α, initialize θ arbitrarily
• loop forever:
 • generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot|\cdot, \theta)$
 • for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \theta)$

variant: discounting a baseline $b(s)$ (predicted by any model)
 $R_t - b(s_t)$ instead of R_t
gives better performance

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

this is stochastic $\nabla J(\theta)$
• from policy gradient theorem
• with action sample a_t

a good $b(s)$ is actually $V(s)$
Policy Gradients Actor-Critic

- REINFORCE + \(V \) approximation + TD estimates – better convergence
 - differentiable policy \(\pi(a|s, \theta) \)
 - differentiable state-value function parameterization \(\hat{V}(s, w) \)
 - two learning rates \(\alpha^\theta, \alpha^w \)

- loop forever:
 - set initial state \(s \) for the episode
 - for each step \(t \) of the episode:
 - sample action \(a \) from \(\pi(\cdot|s, \theta) \), take \(a \) and observe reward \(r \) and new state \(s' \)
 - compute \(\delta \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w) \)
 - update \(\theta \leftarrow \theta + \alpha^\theta \gamma^t \delta \nabla \ln \pi(a|s, \theta) \), \(w \leftarrow w + \alpha^w \cdot \delta \nabla \hat{V}(s, w) \)
 - \(s \leftarrow s' \)

same as REINFORCE, except:
- we use \(\hat{V}(s, w) \) as baseline
- \(r \) is used instead of \(R_t \) (TD instead of MC)
POMDP Case

• POMDPs – belief states instead of dialogue states
 • probability distribution over states
 • can be viewed as MDPs with continuous-space states

• All MDP algorithms work...
 • if we **quantize/discretize** the states
 • use grid points & nearest neighbour approaches
 • this might introduce errors / make computation complex

• REINFORCE/policy gradients work out of the box
 • function approximation approach, allows continuous states

[Diagram showing state transition with grey for observed and white for unobserved states]

https://en.wikipedia.org/wiki/Voronoi_diagram
for a typical DS, the belief state is too large to make RL tractable
solution: map state into a reduced space, optimize there, map back

- reduced space = **summary space**
 - handcrafted state features
 - e.g. top slots, # found, slots confirmed…
- reduced action set = **summary actions**
 - e.g. just DA types (*inform, confirm, reject*)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions

- state is still tracked in original space
 - we still need the complete information for accurate updates

(from Milica Gašić's slides)
Simulated Users

• We can’t really learn just from static datasets
 • on-policy algorithms don’t work
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE policy from data

(from Milica Gašić’s slides)
Summary

• Action selection – deciding what to do next

• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact me:
 odusek@ufal.mff.cuni.cz
 room 424 (but email me first)

Get these slides here:
 http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Labs tomorrow
9:00 SU1