Dialogue Systems
NPFL123 Dialogové systémy

6. Natural Language Understanding (Non-neural)

Ondřej Dušek & Ondřej Plátek & Jan Cuřín
ufal.cz/npfl123
26. 3. 2019
Natural Language Understanding

• words \rightarrow meaning
 • whatever “meaning” is – can be different tasks
 • typically structured, explicit representation

• alternative names/close tasks:
 • spoken language understanding
 • semantic decoding/parsing

• integral part of dialogue systems, also explored elsewhere
 • stand-alone semantic parsers
 • other applications:
 • human-robot interaction
 • question answering
 • machine translation (not so much nowadays)
NLU Challenges

• non-grammaticality

• disfluencies
 • hesitations – pauses, fillers, repetitions
 • fragments
 • self-repairs (~6%!)

• ASR errors

• synonymy

• out-of-domain utterances

find something cheap for kids should be allowed

uhm I want something in the west the west part of town
uhm find something uhm something cheap no I mean moderate
uhm I’m looking for a cheap

I’m looking for a for a chip Chinese rest or rant

Chinese city centre
uhm I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please

oh yeah I’ve heard about that place my son was there last month
Semantic representations

- **syntax/semantic trees**
 - typical for standalone semantic parsing
 - different variations

- **frames**
 - technically also trees, but not directly connected to words
 - (mostly older) DSs, some standalone parsers

- **graphs (AMR)**
 - more of a toy task, but popular

- **dialogue acts** = intent + slots & values
 - flat – no hierarchy
 - most DSs nowadays

Example:

```
inform(date=Friday, stay="2 nights")
```

1 want to stay 2 nights from Friday...
NLU basic approaches

For trees/frames/graphs:

• **grammar-based parsing**
 • handwritten/probabilistic grammars & chart parsing algorithms

• **statistical**
 • inducing structure using machine learning
 • grammar is implicit (training treebanks)

For DAs (shallow parsing):

• **classification**

• **sequence labelling**
Grammars vs. shallow parsing

Grammars are:

- more expressive
 - hierarchical structure better captures relations
- harder to maintain
 - sparser
 - harder to build rules by hand
 - statistical parsers need more data
 - training data is harder to get
- more hardware-hungry
 - chart parsing: $O(n^3)$, shallow: $O(n)$ for simplest approaches
- more brittle
 - shallow parsing is typically less sensitive to ASR errors, variation, etc.
Grammars: CFG
(Context-free Grammar)

- Simple recursive grammar
 - **rules**: $X \rightarrow A \; B \; C$
 - splitting a phrase into adjacent parts
 - **terminals** = words
 - **non-terminals** = phrases (spanning multiple words)

- parsable using dynamic programming
 - (chart parsing)

- too simple for full natural language
 - but may be OK for a limited domain
 - especially with **probabilistic extensions**
CFG: Phoenix Parser
(ATIS, 90’s)

• CFG hierarchy based on **semantic frames**
 • Frames → slots / other frames
 • multiple CFGs, one per slot

• Robustness attempts
 • ignore stuff not belonging to any frame

• Chart parsing
 • left to right
 • maximize coverage
 • minimize # of different slots

I would like to **go to Boston** **tomorrow** **from San Francisco**

[Depart Location] → LEAVE from ENT
LEAVE → leaving | departing | ∅
ENT → <city> | <airport>

[List] (I WOULD LIKE TO)
[Arrive Location] (GO TO [arrive_loc] ([city ([cityname] (BOSTON)))
[Depart Date Range] ([depart_date_range] ([on_date] ([date]
 ([day_of_week] ([dayname] (TOMORROW))))))
[Depart Location] (FROM [depart_loc] ([city] ([cityname] (SAN FRANCISCO))))

all networks matching a span added to parse chart, pruned afterwards
Grammars: CCG
(Combinatory Categorial Grammar)

• Grammar based on lambda calculus
 • syntax-bound semantics: lambda meaning in parallel to syntax phrases

• CCG lambda expressions:
 • logical constant: NYC, BOSTON…
 • variable: $x, y, z…$
 • literal: city(AUSTIN), located_in(AUSTIN, TEXAS)
 • lambda terms – binding variables: $\lambda x.\text{city}(x) \sim \text{“x is a city”}$
 • quantifiers $\exists \forall$, logical operators $\land \lor \neg$

• CCG categories: syntax + lambda
 • simple: NOUN : $\lambda x.\text{city}(x)$
 • complex: $S \backslash NP/NP : \lambda x.f(x)$ (“sentence missing an NP to the left and right”)

• Lexicon: word + syntax + lambda:
 • city \vdash NOUN: $\lambda x.\text{city}(x)$, is \vdash $S \backslash NP/NP : \lambda x.f(x)$
Grammars: CCG

- parsing = combining categories (function application)
 - much fewer operations than CFG
 - $>$, $<$ function application – $B : g + A \backslash B : f \rightarrow A : f(g)$
 - $>\mathbf{B}$, $<\mathbf{B}$ function composition – $A/B : f + B/C : g \rightarrow A/C : \lambda x. f(g(x))$
 - $<\Phi$ coordination (2 identical categories $\rightarrow 1$)
 - – category change
 - similar algorithms to CFG
 - statistical parsers available

<table>
<thead>
<tr>
<th>CCG</th>
<th>is</th>
<th>fun</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>$S\backslash NP/ADJ$</td>
<td>$\lambda f.\lambda x. f(x)$</td>
</tr>
<tr>
<td>CCG</td>
<td>ADJ</td>
<td>$\lambda x. fun(x)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCG</th>
<th>is</th>
<th>fun</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>$S\backslash NP/ADJ$</td>
<td>$\lambda f.\lambda x. f(x)$</td>
</tr>
<tr>
<td>CCG</td>
<td>ADJ</td>
<td>$\lambda x. fun(x)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCG</th>
<th>is</th>
<th>fun</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>$S\backslash NP/ADJ$</td>
<td>$\lambda f.\lambda x. f(x)$</td>
</tr>
<tr>
<td>CCG</td>
<td>ADJ</td>
<td>$\lambda x. fun(x)$</td>
</tr>
</tbody>
</table>

https://yoavartzi.com/tutorial/

http://aclweb.org/anthology/D11-1039
NLU as classification

• using DAs – treating them as a set of semantic concepts
 • concepts:
 • intent
 • slot-value pair
 • binary classification: is concept Y contained in utterance X?
 • independent for each concept

• consistency problems
 • no conflicting intents (e.g. affirm + negate)
 • no conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 • need to be solved externally, e.g. based on classifier confidence
NLU as classification

• classification: features → labels (classes)
 • here: classes are binary (-1/1 or 0/1)
 • one classifier per concept

• features
 • binary – is X present? or count – how many X’s are present?
 • words
 • n-grams
 • word pairs/triples (position-independent)
 • regex
 • presence of named entities

I’m looking for something cheap in the city centre.

(from Milica Gašić’s slides)
NER + delexicalization

Approach:
1) identify slot values/named entities
2) delexicalize = replace them with placeholders (indicating entity type)
 • or add the NE tags as more features for classification

• generally needed for NLU as classification
 • otherwise in-domain data is too sparse
 • this can vastly reduce the number of concepts to classify & classifiers

• NER is a problem on its own
 • but general-domain NER tools may need to be adapted
 • added gazetteers with in-domain names
 • in-domain gazetteers alone may be enough
 • NE supplemented by NE linking/disambiguation (usually not needed in DS)

What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.
NLU Classifiers

• note that data is usually scarce!

• **handcrafted / rules**
 • simple mapping: word/n-gram/regex match → concept
 • can work really well for a limited domain
 • no training data, no retraining needed (tweaking on the go)

• **logistic regression**

• **SVM** (support vector machine)

• **neural nets**
 • different, “automatic” features (embeddings, see later)
 • only applicable if a lot of data is available
Logistic Regression
(Maximum Entropy Classifier)

\[p(y|x) = \text{sigmoid}(-y(\theta \cdot x)) = \frac{1}{1 + \exp(-y(\theta \cdot x))} \]

- despite the name, it’s a classifier
- very basic, but powerful with the right features
- trained by gradient descent (logistic/cross entropy loss)
- maximum entropy estimate (“most uniform model given data”)

\[p(y|x) = \frac{1}{Z(x)} \exp(\theta \cdot f(x, y)) \]

binary, for \(y \in \{-1, +1\} \)

normalization

equivalent form
- maximum entropy style (works for **multiclass**, too!)
generalization: **feature functions** vector (some fire for each value of \(y \))
Support-Vector Machines (SVMs)

- separate classes with **maximum margin** (=best generalization)
- **decision boundary** defined by **support vectors** (closest instances)

There are many possible separation boundaries between classes in feature space. The boundary farthest away from both classes = maximum margin. Instances closest to the boundary = **support vectors**. Removing a support vector changes the boundary.
SVMs

• Decision boundary: \(\mathbf{\theta} \cdot \mathbf{x}^{\text{bound}} = 0 \)

• Support vectors: \(\mathbf{\theta} \cdot \mathbf{x}^{\text{sv}} = y^{\text{sv}} \) (\(y^{\text{sv}} \in \{-1, +1\} \))

• Maximum margin: \(\max \frac{2}{||\mathbf{\theta}||} \sim \min \frac{1}{2} ||\mathbf{\theta}||^2 \) with correct classification

 • constrained optimization – quadratic programming (Lagrange multipliers)

• SVM Score: \(g(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x} = \sum_{i=1}^{S} y_i \alpha_i \mathbf{x}_i \cdot \mathbf{x} \)

• classification:
 • \(y = \text{sign}(g(\mathbf{x})) \)

• probability:
 Platt scaling
 • logistic regression with \(g(\mathbf{x}) \) as feature

why margin is \(\frac{2}{||\mathbf{\theta}||} \): https://math.stackexchange.com/questions/1305925/
SVM vs. Logistic Regression

• **soft-margin SVM** – for non-separable cases
 • non-separable = no perfect decision boundary
 • “soft” = weighing correct classification *(hinge loss)* & margin size
 • model: \[
 \min_{\theta} \lambda \|\theta\|^2 + \sum_i \max\{0, 1 - y_i \theta \cdot x_i\}
 \]

• **regularized logistic regression** – for better generalization
 • preventing overfitting to training data – trying to keep parameter values low
 • logistic loss
 • model: \[
 \min_{\theta} \lambda \|\theta\|^2 + \sum_i \log(1 + \exp(1 - y_i \theta \cdot x_i))
 \]

• the main difference is the loss
 • hinge loss should be marginally better for classification, but it depends
Classification example

features (\(\mathbf{x}\))

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>want</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
</tr>
<tr>
<td>go</td>
<td>1</td>
</tr>
<tr>
<td>from</td>
<td>2</td>
</tr>
<tr>
<td><airport-1></td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>him</td>
<td>0</td>
</tr>
<tr>
<td>price</td>
<td>0</td>
</tr>
<tr>
<td>tell</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>I want</td>
<td>1</td>
</tr>
<tr>
<td>want to</td>
<td>1</td>
</tr>
<tr>
<td>to go</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>from <airport-1></td>
<td>1</td>
</tr>
</tbody>
</table>

weights:

<table>
<thead>
<tr>
<th>intent</th>
<th>(\theta_{SF})</th>
<th>(\theta_{RP})</th>
<th>(\theta_{FA1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>search_flights</td>
<td></td>
<td></td>
<td>(\theta_{FA1})</td>
</tr>
<tr>
<td>request_price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from_airport</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SVM: \(\theta_{FA1} \cdot \mathbf{x} = +3.4347 \rightarrow \text{found from_airport=Newark}\)

LR: \(\text{sigmoid}(\theta_{FA1} \cdot \mathbf{x}) = 0.883 \rightarrow \text{found from_airport=Newark (conf. = 0.883)}\)
Slot filling as sequence tagging

- get slot values directly – “automatic” delexicalization
 - each word classified
 - classes = slots & **IOB format** (inside-outside-beginning)
 - slot values taken from the text
 (where a slot is tagged)
 - NER-like approach

- rules + classifiers kinda still work
 a) keywords/regexes found at specific position
 b) apply classifier to each word in the sentence left-to-right
- problem: overall consistency
 - slots found elsewhere in the sentence might influence what’s classified now

- solution: **structured/sequence prediction**
Maximum Entropy Markov Model (MEMM)

• Looking at past classifications when making next ones
 • LR + a simple addition to the feature set
• Whole history would be too sparse/complex
 → **Markov assumption**: only the most recent matters
 • 1\(^{st}\) order MM: just the last one (←this is what we show here)
 • \(n^{th}\) order MM: \(n\) most recent ones
• still not modelling the sequence globally

\[
p(y|x) = \prod_{t=1}^{T} \frac{1}{Z(y_{t-1}, x)} \exp(\theta \cdot f(y_t, y_{t-1}, x))
\]

- for the whole sequence
- time steps – independent except for \(y_{t-1}\)
- \(y_{t-1}\) is the main addition compared to LR

looking at the whole input
Hidden Markov Model (HMM)

• Modelling the **sequence as a whole**
• Very basic model:
 • “**tag depends on word + previous tag**”
• Markov assumption, again
• “Hidden” – reverse viewpoint:
 • “tags are hidden, but they influence the words on the surface”
• Inference – Viterbi algorithm
 • we can get the **globally best tagging**

HMM is a **generative model** – models **joint distribution** $p(y, x)$, not just conditional $p(y|x)$

\[
p(y, x) = \prod_{t=1}^{T} p(y_t|y_{t-1})p(x_t|y_t)
\]

- **transition probability** prev. tag → tag
- **observation probability** tag → word

for the whole sequence
Hidden Markov Model

• Rewrite so it looks more like MEMM + get conditional probability

\[p(y, x) = \prod_{t=1}^{T} \exp \left(\sum_{i,j \in S} \theta_{ij} 1_{y_t=i} 1_{y_{t-1}=j} + \sum_{i \in S} \sum_{o \in O} \mu_{oi} 1_{y_t=i} 1_{x_t=o} \right) \]

\[p(y, x) = \prod_{t=1}^{T} \exp \left(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right) \]

conditional probability

\[p(y|x) = \frac{p(y, x)}{\sum_{y'} p(y', x)} = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp \left(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp(\theta \cdot f(y_t, y_{t-1}, x_t)) \]

normalization is global

transition

observation

hide the actual probabilities as weights (in logarithm)

subsume transition & observation under feature functions, \(\theta_k \) is \(\theta_{ij} \) & \(\mu_{oi} \)

just indicators (binary features)

just the current word

vector notation
HMM vs. MEMM

• MEMM:
 • any feature functions, as in LR
 • local normalization – does not model whole sequences, just locally
 • label bias problem
 • training: you know the correct labels
 • inference: one error can lead to a series of errors

• HMM:
 • global normalization for $p(y|x)$ over all y’s
 • modelling sequences as a whole
 • very boring & limited feature functions

• how about best of both?
Linear-Chain

Conditional Random Field (CRF)

- HMM + more complex feature functions
- MEMM + global sequence modelling

\[
p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp(\theta \cdot f(y_t, y_{t-1}, x))
\]

- state-of-the-art for many sequence tagging tasks (incl. NLU)
 - until NNs took over
 - used also in conjunction with NNs
- global normalization makes it slow to train

global normalization (otherwise like MEMM)
feature functions looking at whole input (otherwise looks like HMM)
Sequence tagging example

ASR:

I want to go from from Newark to London City next Friday

Previous tags:

0 0 0 0 0 B-from_airport 0

current position:

what’s the class for London?

features (x):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>in_sent=l</td>
<td>1</td>
</tr>
<tr>
<td>in_sent=want</td>
<td>1</td>
</tr>
<tr>
<td>in_sent=to</td>
<td>3</td>
</tr>
<tr>
<td>in_sent=go</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>in_sent=him</td>
<td>0</td>
</tr>
<tr>
<td>in_sent=price</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>in_sent=l want</td>
<td>1</td>
</tr>
<tr>
<td>in_sent=want to</td>
<td>1</td>
</tr>
<tr>
<td>in_sent=to go</td>
<td>1</td>
</tr>
</tbody>
</table>

features (x):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cur=London</td>
<td>1</td>
</tr>
<tr>
<td>cur=him</td>
<td>0</td>
</tr>
<tr>
<td>prev_tag=O</td>
<td>1</td>
</tr>
<tr>
<td>prev_tag=B-price</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>cur=to</td>
<td>1</td>
</tr>
<tr>
<td>prev=to</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>prev=want</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>prev=price</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>cur=to London</td>
<td>1</td>
</tr>
<tr>
<td>prev=Newark to</td>
<td>1</td>
</tr>
</tbody>
</table>

HMM considers only these

MEMM: looks at London, ignores that it also needs to tag City later → likely to tag as B-to_city

CRF: also considers future tags, more likely to tag London City as B-to_airport I-to_airport
Handling ASR noise

• ASR produces multiple hypotheses
• Combine & get resulting NLU hypotheses
 • NLU: $p(\text{DA}|\text{text})$
 • ASR: $p(\text{text}|\text{audio})$
 • we want $p(\text{DA}|\text{audio})$
• Easiest: sum it up

$$p(\text{DA}|\text{audio}) = \sum_{\text{texts}} P(\text{DA}|\text{text})P(\text{text}|\text{audio})$$

0.33 – I am looking for a bar
0.26 – I am looking for the bar
0.11 – I am looking for a car
0.09 – I am looking for the car
0.59 – inform(task=find, venue=bar)
0.20 – null()

(from Filip Jurčiček’s slides)
Handling ASR noise

• Alternative: use confusion networks
 • per-word ASR confidence
• Word features weighed by word confidence

features:
l 0.9
hi 0.02
am 0.9
looking 1
for 1
...
I am 0.81
my am 0.063
am looking 0.9
a bar 0.3
a car 0.24
...
should be normalized by n-gram length

0.33 – I am looking for a bar
0.26 – I am looking for the bar
0.11 – I am looking for a car
0.09 – I am looking for the car

~equivalent confusion network

from Filip Jurčiček’s slides
Context

• user response can depend on last system action
 • fragments/short replies are ambiguous without context
• → add last system DA/text into input features
 • helps disambiguate
• careful – user may not play nice!
 • system needs to be trained with both alternatives in mind

U: I’m looking for flights from JFK.
S: Where would you like to go?
U: Atlanta.

inform(??=Atlanta)
inform(from=Atlanta)

x U: Actually I’d rather fly from Newark.
Summary

- NLU can be tricky
 - bad grammar, fragments, synonymy, ASR errors ...
- Grammars, frames, graph representation
 - rule-based or statistical structure induction
 - more expressive, but harder – not so much in limited-domain systems
- Shallow parsing
 - dialogue acts: intent + slots & labels
 - rules – keyword spotting, regex
 - classification (LR, SVM)
 - sequence tagging (MEMM, HMM, CRF)
- Next time: neural NLU & dialogue state tracking
Thanks

Contact me:
odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
• Aikaterini Tzompanaki’s slides (University of Cergy-Pontoise): https://perso-elif.ensea.fr/tzompanaki/teaching.html
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
• Andrew McCallum’s slides (U. of Massachusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/

Labs tomorrow
9:00 SU1