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Organizational
NPFL123 – 2/2 Z+ZK – 5 Credits

• Lecture (Tue 10:40am S11) + labs (Wed 9:00am SU1)

• Lecture: intro, theory

• Labs: practical examples, hands-on exercises

• To pass the course:
• Written exam – freeform questions, as covered by the lectures

• Lab exercises (best to come there)

• Small personal projects (make your own system, by agreement)

• Slides, news etc. at ufal.cz/npfl123
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http://ufal.cz/npfl123


About Us
Ondřej Dušek: lectures, course guarantor

• PhD at ÚFAL, 2 years at Heriot-Watt Uni Edinburgh, now back

• worked mostly on language generation

• also chatbots (HWU Alexa Prize team)

Ondřej Plátek: labs
• founded Oplatai

• R&D in startups and Apple Siri team

• MSc. at ÚFAL 2014 on speech recognition

Jan Cuřín: speech lectures, dialog authoring tools
• IBM – Manager at IBM Prague AI R&D Lab – IBM Watson Assistant Service

• PhD at ÚFAL in 2006 (machine translation)

• dialog systems and applications, speech recognition, machine translation
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Course Syllabus (1)

1. Introduction (today)

2. What happens in a dialogue?

3. Dialogue system data & how to evaluate

4. Assistants (Alexa, Siri, Google etc.), question answering

5. Dialogue authoring/tooling systems

6. Language understanding

7. Dialogue state tracking 

8. Dialogue management

9. Language generation
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Course Syllabus (2)

10. Automatic speech recognition

11. Speech synthesis

12. Chatbots
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Recommended Reading
• There’s nothing ideal (active research topic!)

Primary (brief):
Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2018, Chap. 24-25 
(https://web.stanford.edu/~jurafsky/slp3/)

Other (see also website):
• Janarthanam: Hands-On Chatbots and Conversational UI Development. Packt 2017

• Skantze: Error Handling in Spoken Dialogue Systems. PhD Thesis 2007, Chap. 2 
(http://www.speech.kth.se/~gabriel/thesis/chapter2.pdf)

• Jokinen & McTear: Spoken dialogue systems. Morgan & Claypool 2010.

• Psutka et al.: Mluvíme s počítačem česky. Academia 2006.

• Lemon & Pietquin: Data-Driven Methods for Adaptive Spoken Dialogue Systems. Springer 2012.

• Rieser & Lemon: Reinforcement learning for adaptive dialogue systems. Springer 2011.
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https://web.stanford.edu/~jurafsky/slp3/
http://www.speech.kth.se/~gabriel/thesis/chapter2.pdf


What’s a dialogue system?

Definition:

• A (spoken) dialogue system is a computer system designed to 
interact with users in (spoken) natural language

• Wide definition – covers lots of different cases
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“AI”: sci-fi vs. reality

• Lots of talk about AI now

• Hype around Siri/Alexa/Google

• Sci-fi expectations – AI-complete
• Star Trek – know-it-all (youtu.be/1ZXugicgn6U?t=3)

• 2001 Space Oddyssey –mutiny (youtu.be/9W5Am-a_xWw)

• Her – personality (youtu.be/6QRvTv_tpw0?t=27)

• We’re not there – probably for long
• main bottleneck: understanding 

(not speech comprehension, meaning!)

• … more like Red Dwarf talkie toaster (youtu.be/LRq_SAuQDec?t=71)
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https://youtu.be/1ZXugicgn6U?t=3
https://youtu.be/9W5Am-a_xWw
https://youtu.be/6QRvTv_tpw0?t=27
https://youtu.be/LRq_SAuQDec?t=71


Real Dialogue System Examples

• “Smart speakers” / conversational assistants
• Alexa, Siri, Google (+ others)

• Phone systems
• even basic ones (DMTF)

• voice-based ones deployed now

• Computer games

• Chatbots

• Assistive technologies

• Research systems (skylar.speech.cs.cmu.edu) 
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https://skylar.speech.cs.cmu.edu/


Example: Google Assistant

• Handling call for a client (Google IO 2018 demo)
• very natural speech

• show’s what’s possible now in a limited domain

• redirects to a human if it can’t handle the shop’s request
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https://youtu.be/d40jgFZ5hXk

https://youtu.be/d40jgFZ5hXk


Example: Alana Chatbot
(Heriot-Watt University)
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https://www.bbc.co.uk/programmes/b0bhwhw1
https://ihavenotv.com/the-joy-of-ai
(the Alana section starts at 47:38)• Open-domain

https://www.bbc.co.uk/programmes/b0bhwhw1
https://ihavenotv.com/the-joy-of-ai


Possible Areas of Use

• Information retrieval
• Let’s go / Buses: http://www.speech.cs.cmu.edu/letsgo/example.html
• CLASSiC / Restaurants: https://youtu.be/lHfLr1MF7DI

• Navigation
• SpaceBook: https://youtu.be/qQZnwrOyeTE?t=65

• Cars

• Task completion / home automation

• Assistive technologies
• therapy, elderly care

• Language learning

• Robotics
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http://www.speech.cs.cmu.edu/letsgo/example.html
https://youtu.be/lHfLr1MF7DI
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Why take interest 
in Dialogue Systems?
• It’s the ultimate natural interface for computers

• Exciting & active research topic
• some stuff works, but there’s a long way to go

• potential in many domains

• integrates many different technologies

• lots of difficult AI problems – dialogue is hard!

• Commercially viable
• interest & investment from major IT companies
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Basic Dialogue System Types

Task-oriented

• focused on completing a certain task/tasks 
• booking restaurants/flights, finding bus schedules, smart home…

• most actual DS in the wild

• “backend access” vs. “agent/assistant”

Non-task-oriented

• chitchat – social conversation, entertainment
• getting to know the user, specific persona

• gaming the Turing test
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Communication Domains

• “domain” = conversation topic / area of interest

• traditional: single/closed-domain
• one well-defined area, small set of specific tasks

• e.g. banking system on a specific phone number

• multi-domain
• basically joining several single-domain systems

• open-domain
• “responds to anything” – mostly chitchat
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Application Areas

• phone (traditional)
• users call a phone number & a dialogue system picks up

• apps
• assistant apps for your phone/computer

• companions (XiaoIce)

• smart speakers
• home automation, assistants (Alexa/Google Home)

• appliances
• voice operated TVs

• other devices connect to smart speakers
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https://www.digitaltrends.com/mobile/
5-things-you-need-to-know-about-microsofts-chinese-girlfriend-chatbot-xiaoice/



Application Areas

• cars
• hands-free car-specific functions

• Android Auto, Apple CarPlay, vendor-specific solutions

• web
• search assistants (IKEA)

• Facebook Messenger chatbots

• embodied (robots)
• information assistants

• virtual characters
• computer games
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https://www.ikea.com/ms/cs_CZ/
customer_service/contact_us/ask_anna.html

https://www.digitaltrends.com/cars/what-is-android-auto/



Modes of Communication

• text
• most basic/oldest

• easiest to implement, robust

• not completely natural

• voice
• more difficult, but can be more natural 

• easy to deploy over the phone

• multimodal
• voice/text + graphics

• additional modalities: video – gestures, mimics; touch

• most complex
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Johnston et al., ACL 2002

https://www.eitdigital.eu/typo3temp/
assets/_processed_/a/6/csm_FURHAT_ea50ba2bf9.jpg



Dialogue Initiative

• system-initiative
• “form-filling” (“Hello. Please tell me your date of birth.”)

• system asks questions, user must reply in order to progress

• traditional, most robust, but least natural

• user-initiative
• user asks, machine responds (“Alexa, set the timer for two minutes”)

• mixed-initiative
• system and user both can ask & react to queries

• most natural, but most complex
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S: Hello. How may I help you?
U: I’m looking for a restaurant.
S: What price do you have in mind?
U: Something in the city center please.
S: OK, city center. What price are you 

looking for?



Dialogue Systems Architecture

• main loop:
• voice → text

• text → meaning

• meaning → reaction

• reaction → text

• text → voice

• access to backend

• multimodal systems:
additional components
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what’s the time?

speech recognition

language 
understanding

request(time)

language 
generation

it is currently 3:30 p.m.

speech synthesis

dialogue 
management

inform(time=15:30)

backend



Automatic Speech Recognition (ASR)

• Converting speech signal (acoustic waves) into text

• Typically produces several possible hypotheses 
with confidence scores
• n-best list

• lattice

• confusion network

• Very good in ideal conditions

• Problems:
• noise, accents, distance, channel (phone)…
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0.8 I’m looking for a restaurant
0.4 uhm looking for a restaurant
0.2 looking for a rest tour rant

Kazemian et al., ICMR 2008
DOI 10.1145/1460096.1460112



Speech Recognition

• Also: voice activity detection
• detect when the user started & finished speaking

• wake words (“OK, Google”)

• ASR implementation: mostly neural networks
• take acoustic features (frequency spectrum)

• compare with previous

• emit letters

• Limited domain: use of language models
• some words/phrases more likely than others

• previous context can be used
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https://www.i-programmer.info/images/
stories/News/2011/AUG/DNNspeech.jpg



Natural/Spoken

Language understanding (NLU/SLU)

• Extracting the meaning from the (now textual) user utterance

• Converting into a structured semantic representation
• dialogue acts: 

• act type/intent (inform, request, confirm)

• slot/attribute (price, time…)

• value (11:34, cheap, city center…)

• other, more complex – e.g. syntax trees, predicate logic

• Specific steps:
• named entity resolution (NER) 

• identifying task-relevant names (London, Saturday)

• coreference resolution 
• (“it” –> “the restaurant”)
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inform(food=Chinese, price=cheap)
request(address)



Language Understanding
• Implementation varies

• (partial) handcrafting viable for limited domains
• keyword spotting

• regular expressions

• handcrafted grammars

• machine learning – various methods
• intent classifiers + slot/value extraction

• Can also provide n-best outputs

• Problems:
• recovering from bad ASR

• ambiguities

• variation
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[On a Tuesday]
U: I’d like to book a flight from London to New 

York for next Friday

S: Leaving Baltimore. What is the arrival city?
U: fine Portland [ASR error]
S: Arriving in Portland. On what date?
U: No not Portland Frankfurt Germany

U: Chinese city center
U: uhm I’ve been wondering if you could find 

me a restaurant that has Chinese food 
close to the city center please



Dialogue Manager (DM)

• Given NLU input & dialogue so far, 
responsible for deciding on next action
• keeps track of what has been said in the dialogue

• keeps track of user profile

• interacts with backend (database, internet services)

• Dialogue so far = dialogue history, modelled by dialogue state
• managed by dialogue state tracker

• System actions decided by dialogue policy
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Dialogue state / State tracking

• Stores (a summary of) dialogue history
• User requests + information they provided so far

• Information requested & provided by the system

• User preferences

• Implementation
• handcrafted – e.g. replace value per slot with last-mentioned

• good enough in some circumstances

• probabilistic – keep an estimate of per-slot preferences
based on SLU output
• more robust, more complex
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price: cheap
food: Chinese
area: riverside

price: 0.8 cheap
0.1 moderate
0.1 <null>

food: 0.7 Chinese
0.3 Vietnamese

area: 0.5 riverside
0.3 <null>
0.2 city center



Dialogue Policy
• Decision on next system action, given dialogue state

• Involves backend queries

• Result represented as system dialogue act

• Handcrafted:
• if-then-else clauses

• flowcharts (e.g. VoiceXML)

• Machine learning 
• often trained with reinforcement learning

• POMDP (Partially Observable 
Markov Decision Process)

• recurrent neural networks
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confirm(food=Chinese)

inform(name=Golden Dragon,
food=Chinese, price=cheap)

https://www.w3.org/2004/Talks/05-www2004-voice/dialog.png



Natural Language Generation (NLG)
(Response Generation)

• Representing system dialogue act in natural language (text)
• reverse NLU

• How to express things might depend on context
• Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: templates
• Fill in (=lexicalize) values into predefined templates (sentence skeletons)

• Works well for limited domains
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inform(name=Golden Dragon, food=Chinese, price=cheap)

<name> is a <price>-ly priced restaurant serving <food> food

Golden Dragon is a cheaply priced restaurant serving Chinese food.

+

=



Natural Language Generation

• Grammar-based approaches
• grammar/semantic structures instead of templates

• NLG realizes them (=converts to linear text)
by applying syntactic transformation rules

• Statistical approaches
• most prominent: recurrent neural networks

• generating word-by-word

• input: encoded semantics 
+ previous words
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Kozlowski, ACL-SRW 2002

White, ENLG 2011

RNN
cells

delexicalized (generates templates)

after lexicalization (filling in templates)
Wen, INLG 2016



Text-to-speech (TTS) 
/ Speech Synthesis
• Generate a speech signal corresponding to NLG output

• text → sequence of phonemes 
• minimal distinguishing units of sound (e.g. [p], [t], [ŋ] “ng”, [ə] “eh/uh”, [i:] “ee”)

• + pitch/intonation, speed, pauses, volume/accents

• Standard pipeline:
• text normalization

• abbreviations

• punctuation

• numbers, dates, times

• pronunciation analysis (grapheme → phoneme conversion)

• intonation/stress generation

• waveform synthesis
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take bus number 3 at 5:04am
take bus number three at five o four a m
t eɪ k   b ʌ s   n ʌ m b ə   θ r iː   æ t   f aɪ v   ə ʊ   f ɔː r   eɪ ɛm



Speech Synthesis

• TTS Methods:
• Formant-based: phoneme-specific frequencies

• oldest, not very natural, but works on limited hardware

• Concatenative
• record a single person, cut into phoneme transitions (diphones), glue them together

• Hidden Markov Models
• phonemes in context modelled as hidden Markov models

• Model parameters estimated from data (machine learning)

• Neural networks
• HMMs swapped for a recurrent neural network

• can go directly from text, no need for phoneme conversion
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https://en.wikipedia.org/wiki/MBROLA

https://google.github.io/tacotron/

https://youtu.be/9Avlhm55kvg?t=379

http://homepages.inf.ed.ac.uk/jyamagis/

https://en.wikipedia.org/wiki/MBROLA
https://youtu.be/9Avlhm55kvg?t=379
http://homepages.inf.ed.ac.uk/jyamagis/


Organizing the Components

• Basic: pipeline
• ASR → NLU → DM → NLG → TTS

• components oblivious of each other

• Interconnected
• read/write changes to dialogue state

• more reactive (e.g. incremental processing), but more complex

• Joining the modules (experimental)
• ASR + NLU

• NLU + state tracking

• NLU & DM & NLG
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Dialogue Systems Research

• Multi/open domains
• reusability, domain transfer

• Joint models (“end-to-end”, all in one neural network)

• Multimodality
• adding video (input/output)

• Context dependency
• understand/reply in context (grounding, speaker alignment)

• Incrementality
• don’t wait for the whole sentence to start processing
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Summary

• We’re far from AI sci-fi dreams, but it still works a bit
• dialogue is hard

• DSs have many forms & usage areas
• task-oriented vs. non-task-oriented

• closed vs. open domain

• system vs. user initiative

• Main components: ASR → NLU → DM → NLG → TTS
• implementation varies

• It’s an active and interesting research topic!

• Next week: what happens in dialogue and why it’s hard
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Thanks
Contact me:

odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get the slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on slides and syllabi by:

• Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Filip Jurčíček (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
• Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
• Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/
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Come to labs!
Tomorrow 9:00 SU1

Talk to me about
Ph.D./MSc./BSc. theses!

mailto:odusek@ufal.mff.cuni.cz
http://ufal.cz/npfl123
https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html#FOR
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https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
http://projects.ict.usc.edu/nld/cs599s13/schedule.php
https://is.muni.cz/el/1433/jaro2018/PA156/um/
https://courses.washington.edu/ling575/

