

#### Statistical Dialogue Systems NPFL099 Statistické Dialogové systémy

# **10. Chatbots** (non-task-oriented)

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

12.12.2019

### **Chatbots / Chatterbots**



- dialogue systems for **open-domain** dialogue chitchat
- non-task oriented
  - main goal: keep the user entertained
  - standard evaluation: conversation length, user engagement
- (more or less) different architecture
  - may have the same structure as task oriented (NLU  $\rightarrow$  DM  $\rightarrow$  NLG)
  - often simpler, integrated somewhat like end-to-end DS
  - it's hard to have explicit NLU for open domain
    - no task to guide a meaning formalism
  - some of them don't need a DB connection (but some use it)
- beware: *anything* can be called chatbots nowadays
  - here: only chatterbots / non-task-oriented systems

### **Chatbot tests**

#### • **Turing test** (1950)

- evaluator & 2 conversations, with a machine & human, text-only
- needs to tell which is which
- does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed
- Loebner Prize (1990+)
  - Turing test style, first topic-restricted 1995+ unrestricted
  - time-limited (currently 25 minutes for both conversations)
  - criticized as publicity stunt creates hype but no real progress

#### • Amazon Alexa Prize (2017+)

- no pretending it's human, just coherent & engaging conversation for 20 mins.
- topic semi-restricted ("on popular topics")
- evaluator & 3 judges with stop-buttons
- score: duration + 1-5 scale of "would talk again"







### **Chatbot history**



- natural communication important part of general AI
  - concerned people even before modern computers (cf. Turing)
- 1<sup>st</sup> chatbot: **Eliza** (1966)
  - rule-based, simulates a therapist
- Parry (1972)
  - similar, simulates a person with paranoid schizophrenia
  - was able to fool psychotherapists in a Turing test
- Not much progress until end of 1990's just better rules
  research focused on task-oriented systems
- 1990's/2000's retrieval-based systems
- 2015+ huge surge of generative models

### **Notable/hyped chatbots**

- Pandorabots/AIML framework for rule-based chatbots
  - A.L.I.C.E. bot basic implementation, ~better Eliza
    - people can reuse & add their own personality
  - Mitsuku (2013+) multiple times Loebner Prize winner

#### Jabberwacky/Cleverbot (1997+)

- attempts to learn from users
- remembers & reuses past conversations (>100M)
- also won Loebner Prize multiple times
- Xiaolce (2014+)
  - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
  - on social networks (mainly Weibo)
  - also learns from users & reuses user inputs
  - partly rule-based, focus on emotions
  - a lot of people bonding with "her"

https://www.zo.ai/ https://www.facebook.com/zo/

https://home.pandorabots.com/home.html



https://www.cleverbot.com/





### **Chatbot basic architectures**



#### Rule-based

- human-scripted, react to keywords/phrases in user input
- very time-consuming to make, but still popular
  - chitchat by conversational assistants is typically rule-based

#### • Data-driven

- **retrieval** remember a corpus & get replies from there
  - "nearest neighbour" approaches
  - corpus can contain past conversations with users (Jaberwacky/XiaoIce)
  - chatbots differ in the sophistication of reply selection
- **generative** (typically) seq2seq-based models
  - trained typically on static corpora
  - (theoretically) able to handle unseen inputs, produce original replies
  - basic seq2seq architecture is weak (dull responses) → many extensions

### **Eliza** (rule-based chatbots)

- very basic pattern-matching rules
  - minimal context (typically just the last utterance)
  - keyword-match rules & precedence
    - e.g. alike  $\rightarrow$  what is the connection
  - fallbacks
    - I see. <next question>
    - Please go on
    - refer & respond to some previous utterance
- signalling understanding
  - repeating & reformulating user's phrasing
- it's all about the framing
- it's easier to appear human as a therapist (or paranoid schizophrenic) NPFL099 L10 2019

7

LL

LL

EFFFF

Welcome to

Eliza is a mock Rogerian psychotherapist. The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

IIII

II

| Is something troubling you ?                                  |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|
| Men are all alike.                                            |  |  |  |  |
| What is the connection, do you suppose ?                      |  |  |  |  |
| They're always bugging us about something or other.           |  |  |  |  |
| Can you think of a specific example ?                         |  |  |  |  |
| Well, my boyfriend made me come here.                         |  |  |  |  |
| Is it important to you that your boyfriend made you come here |  |  |  |  |
| He says I'm depressed much of the time.                       |  |  |  |  |
| I am sorry to hear that you are depressed.                    |  |  |  |  |
| It's true. I am unhappy.                                      |  |  |  |  |
| Can you explain what made you unhappy ?                       |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |

https://en.wikipedia.org/wiki/ELIZA

AAAAA

AA

AA

AA

AA

#### **AIML** (Pandorabots rules)

- XML-based markup language for chatbots
  - keyword spotting, not much smarter than Eliza
  - less powerful than regular expressions 🕤
- main concepts:
  - **category** basic unit of knowledge
    - groups patterns & templates
  - pattern user input pattern (with wildcards)
  - **set** lists of things of the same type
    - e.g. animals, musical instruments
    - can be used in patterns
  - template response specification
    - allows multiple options
  - srai symbolic reduction
    - used in patterns to redirect to another pattern
    - groups synonymous inputs
  - variable can be set/retrieved in templates
    - e.g. remember user name



### **Retrieval-based chatbots**

- remember a large corpus
  - 1) check for similar inputs in the corpus
  - 2) retrieve & rerank corresponding outputs
- needs 2 steps
  - 1) rough retrieval
    - needs to be fast to search the whole corpus
    - e.g. TF-IDF
  - 2) more accurate **reranking** for candidates
    - most research focuses on this step
- problems:
  - can't produce unseen sentences
  - reply consistency isn't great
- solution (XiaoIce, Cleverbot):
  - use postprocessing, combine with rules





### **Ranking responses**

- Machine learning **learning to rank** 
  - **pointwise**: binary classifier
    - good=1, bad=0, ranking score = P(good)
  - pairwise: just learn to rank good > bad
    - incur loss for inversions
  - architecture anything possible
    - typical neural: dual encoder
      - 2 RNNs, for context & response + fully connected
- training data problem:
  - datasets = positive examples only
    - but other responses might be good, too
  - need negative examples
    - manual annotation (expensive!)
    - random sampling (not very efficient)
    - smarter sampling (e.g., replies from "bad" dialogues where long = good & short = bad)

10





(Shalyminov et al., 2018) <u>https://www.aclweb.org/anthology/W18-5701</u>

#### (Ritter et al., 2011) http://www.aclweb.org/anthology/D11-1054

- Early generative approach convert to phrase-based MT
  - 1) align phrases in inputs & responses -
    - build phrase table
  - 2) build responses by covering input
    - cover each phrase in input with likely response phrase
    - order & select phrases according to a language model (n-gram LM)
- it's harder than MT
  - possible responses are much more variable than possible translations
    - using more sensitive phrase building (occurrence correlation) 🔸
    - discouraging input repetition (← would be vanilla MT behaviour)
- works, but...
  - fluency is not ideal
  - limited context

U: i want to go to a bonfire right about now. S: that does sound fun bonfire i wan na go !

U: riding to the arc on my bike. Hopefully I won't melt into the pavement. S: good luck on your bike ride arc

U: I really hate watching movies in the living room. S: me too , what movies are you doing in room ?



| Source       | Target         |
|--------------|----------------|
| rt [retweet] | thanks for the |
| potter       | harry          |
| ice          | cream          |
| how are you  | you ?          |
| good         | morning        |
| chuck        | norris         |
| watching     | movie          |
| i miss       | miss you too   |
| are you      | i'm            |
| my birthday  | happy birthday |
| wish me luck | good luck      |
| how was      | it was         |
| miss you     | i miss         |
| swine        | flu            |
| i love you   | love you too   |
| how are      | are you ?      |
| did you      | i did          |
| jackson      | michael        |
| how are you  | i 'm good      |
| michael      | mj             |



## **Using RNN LMS** (still MT-inspired)

- Non-LSTM solution:
  - a) Vanilla **RNN LM, force-decode** input, decode response

(Sordoni et al., 2015)

- problem: conditioned too loosely
- LM with **extra conditioning** b)
  - encode input into a fixed vector (using bag-of-words + feed-forward)

https://www.aclweb.org/anthology/N15-1020

- inject it into each LM decode step
- more fluent than phrase-based, problems with long replies
  - long replies get less fluent & wander off-topic
- Vanilla Seq2seq model
  - encode input, decode response
  - sounds great, but...  $(\rightarrow)$

(Vinyals & Le, 2015) https://arxiv.org/abs/1506.05869

U: who is skywalker? S: he is a hero.

U: who is bill clinton? S: he 's a billionaire.

U: what is the purpose of life? S: to serve the greater good.

C[S]: nothin much, and how's the book?!

U: its good but i'm only like halfway through cuz i don't feel like reading. i'm so bored ... S: that's good! i have the book but i'm bored too.

C[S]: thanks. yeah i am good thanks! good, but angry! U: sorry you're angry, been there, i hope it dies down. S: i hope so too, i'm not angry!!



bag-of-words for context (c) + input (m)



NPFL099 L10 2019

# Seq2seq Chatbot Problems

- generic/dull responses
  - short, low-entropy, repetitive
  - see phrase-based model: too many possible outputs
    - hard to train with MLE & use softmax both prefer 1 option
    - models settle on safe replies, applicable to any context
    - they become over-confident (LM rules)

#### limited context

- encoding long contexts is slow & ineffective
- contexts are too sparse to learn much

#### inconsistency

- ask the same question twice, get two different answers
- no notion of own personality

U: How old are you? S: 16 and you? U: What's your age? S: 18.

U: Where do you live now?

U: In which city do you live now?

S: I live in Los Angeles.

(Wei et al., 2019) https://arxiv.org/abs/1712.02250 https://ieeexplore.ieee.org/document/8682634

(Li et al., 2016)



Having lunch

(Jiang & De Rijke, 2018) https://www.aclweb.org/anthology/W18-5712



Sleeping Watching movie

(b) Dialog systems

## **Diversity/Coherence**

Reranking

(Li et al., 2016) https://www.aclweb.org/anthology/N16-1014

• avoid dull replies that work anywhere

| Input | t: what is your name? |       |                    |
|-------|-----------------------|-------|--------------------|
| -0.91 | I don't know.         |       |                    |
| -0.92 | I don't know!         | -1.55 | My name is Robert. |
| -0.92 | I don't know, sir.    | -1.58 | My name is John.   |
| -0.97 | Oh, my god!           | -1.59 | My name's John.    |
|       |                       |       |                    |

- instead of maximizing P(T|S), maximize mutual information
  - actually can be rewritten as a trade-off between P(T|S) and P(S|T)
- can't train it easily, so train normally & rerank beams afterwards
- Longer context: HRED (Hierarchical Recurrent Encoder-Decoder)
  - 2<sup>nd</sup>, turn-level LSTM encoder, with word-level LSTM hidden state as input



 $MI = \log \cdot$ 

#### (Gao et al., 2019) http://arxiv.org/abs/1902.11205

15

### Diversity

- joining seq2seq (next turn generation) & autoencoding
  - multi-task learning
  - shared decoder
  - additional "fusion loss" enforcing same encoding for both tasks
- Inference: adding a little noise to produce different outputs









(Xu et al., 2018) http://arxiv.org/abs/1809.06873 (Wu et al., 2019) http://arxiv.org/abs/1907.00448

#### • CVAE with a coherence measure

- GLoVe average embedding cosine similarity
- training data: coherence of target response known
  - also good for data filtering
- inference: set coherence very high: 0.95/1.0

#### • GAN-style for consistent order

- detect if three turns are consecutive or not
  - given 1 ordered, 1 misordered triple from previous dialogue history
- use in dialogue generation learning: good replies are easy to check for order
  - see if misorder is easy to detect with a generated reply
  - GAN: train generator to produce good replies (where misorder is easy to detec) train detector to detect misorder in real sentences, not in generated





16

### Personality

(Li et al., 2016) https://www.aclweb.org/anthology/P16-1094



#### Persona embeddings

- improve consistency
- train speaker embeddings
  - this is a little data-picky
- use speaker + word embeddings in the decoder
  - can also be used in the encoder

#### Persona copy-net

• using a hierarchical pointer-generator net

(Yavuz et al., 2019)

 context includes short personal bio





#### Hybrid / Ensemble Chatbots a.k.a. most Alexa Prize Entries



- State-of-the-art today: **combining all methods** 
  - rule-based for sensitive/frequent/important questions
  - retrieval for jokes, trivia etc.
  - task-oriented-like systems for specific topics (handcrafted/specially trained)
    - news, weather etc.
  - seq2seq only as a backoff or not at all
- NLU is typically shared, with advanced NLP pipelines
  - NER is very important can get relevant news & trivia
- Decision among bots
  - a) based on NLU topic detection
  - b) ranking multiple answers
  - profanity detection censoring outputs

### **Alana** (2017 & 2018 3<sup>rd</sup>)

#### (Heriot-Watt University)

- Bots:
  - Rule-based chit-chat
  - Ontologies knowledge graph walk

User

- movies, music, sports, books
- Retrieval
  - Reddit trivia
  - news
  - Wikipedia
  - fun facts
- Specific services
- Bots compete for reply
  - priority list
  - bots can "lock"

http://arxiv.org/abs/1712.07558

http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alana.pdf





### **Alana Example dialogue**

coherence: stay on topic & ask further guestions



- Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?
  - **User:** Vanilla Sky -> I'm looking forward to watching Vanilla Sky [Ellipsis resolution]



User: Interesting



- **Alana:** I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]
- **User:** I want to talk about music



**Alana:** So, talking about music. Who is a singer that you like? I really like Taylor Swift [...] **User:** Kendrick Lamar



**Alana:** Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What's a band that you would like to see? [...]

any news about him -> any news about Kendrick Lamar [Coreference resolution] User:

### **Alana Example dialogue**

user model: name + preferred topics





- **Alana:** Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this? User: could we talk about something else

bot personality



**Alana:** So John, since I know you like books, what have you read recently? I am reading [...] **User:** Let's talk about Tom Hardy



- **Alana:** Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?
- I mean the novelist User:



**Alana:** Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia] **User:** What do you know about pizza?



**Alana:** I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.

# Alquist (Czech Technical University, 2017&2018 2nd)

- full NLU pipeline (similar to Alana)
- 2017 handcrafted state machines
  - traversing sub-dialogue graphs
    - dividing for easier maintenance
  - well scripted
    - easy to break, but users play along
    - hand-added variation
- 2018 adding machine learning
  - Hybrid Code Networks
    - RNN-based dialogue management
    - for each sub-dialogue/topic
  - topic switch detector
    - RNN-based architecture similar to HCN

#### <u>http://alquistai.com/</u>

http://alexaprize.s3.amazonaws.com/2017/technical-article/alquist.pdf

http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alquist.pdf

https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f



NPFL099 L10 2019

## Sounding Board (Uni Washington, 2017 winner)



- full focus on content & user engagement
  - conversation itself is rather crude
    - menu-selections for conversation topics
  - tracking user sentiment
    - change topic if user doesn't like the current one
  - attempting at diversity & coherence
    - juggling different sub-bots
    - trying to continue on the same or related topic
  - explaining itself conversation grounding 4
- tries to detect understanding errors
  - uses ASR n-best lists for NLU
  - 1<sup>st</sup> reaction: apologize & try to recover
  - 2<sup>nd</sup> reaction: change topic

| sub-bot:    | Turn | User              | Sounding Board                                                  |
|-------------|------|-------------------|-----------------------------------------------------------------|
| greeting    | 1    | Let's chat        | Hi! This is an Alexa Prize socialbot. How's your<br>day?        |
|             | 2    | I'm <u>five</u> . | Glad to hear it! We could talk about robots,                    |
| negotiation |      |                   | Batman, or Superman. Say "next", to chat about<br>other things. |
|             | 3    | Superman.         | It looks like you wanna chat about Superman. I                  |
| thoughts    |      |                   | was high up in the cloud when I realized: If                    |
|             |      |                   | people don't recognize Clark Kent as Superman                   |
|             |      |                   | because of his glasses, does his eye doctor know                |
|             |      |                   | his true identity?                                              |
| facts       | 4    | l guess so.       | Did you know that Henry Cavill almost missed the                |
| lucia       |      |                   | call for the role of Superman cause he was                      |
|             | -    |                   | playing "World of Warcraft"                                     |
| movies      | 5    | Really, I         | Weird, right? Speaking of Superman, Did you see:                |
| movies      |      | didn't know       | Superman? It was released in 1997. It's a                       |
|             |      | that.             | comedy.                                                         |
| movies      | 6    | Yes, it was       | I'm glad you feel this is hilarious. Which part do              |
|             |      | hilarious.        | you like best about this movie?                                 |
|             | 7    | The part          | Interesting. Meccartin and Raffi co-directed this               |
| movies      |      | when he           | film. The movie has a 6.3 out of 10 on IMDB.                    |
| movies      |      | met <u>Lewis</u>  | which seems pretty good! do you like the movie's                |
|             |      | <u>Leah</u> .     | director?                                                       |

http://arxiv.org/abs/1804.10202

https://s3.amazonaws.com/alexaprize/2017/technical-article/soundingboard.pdf https://sounding-board.github.io/

### **Gunrock** (UC Davis, 2018 winner)

Gunrock



- Improving ASR
  - error correction KB fuzzy matching (allow for "typos")
  - sentence segmentation (RNN-based)
- NLU keyphrase extraction
  - focus on noun phrases
- Dialog manager stack
  - return to previous topics
  - related topics
  - a lot of different topics with domain-specific KBs
    - games, psychology, travel...



### Alexa Prize bottom line

ÚFAL FAL

- understanding is the bottleneck
  - ASR problems chat-specific ASR improved things, but it's by far not perfect
  - vague concept of dialogue state, despite full NLP pipelines
    - result: typically very crude intents + list of named entities
  - recognizing multiple/fine-grained intents is a problem
- it's still more about social engineering than "AI"
  - a lot of strategies for not-understanding (switching topics, questions...)
- machine learning helps, but pure ML is not enough
  - lack of annotated data → often relatively simple methods
  - ML helps mainly in NLU, end-to-end seq2seq doesn't work
- interesting content is crucial
  - the more handcrafted topics, the better
  - fluent NLG not so much (but prosody helps!)
- brutal variance in the evaluation very subjective

### Summary

ÚFAL

- chatbots non-task oriented systems
  - targets: conversation length & user engagement
  - impersonating a human Turing test
- approaches
  - rule-based keyword spotting, scripting
  - **retrieval** copy & paste from large databases
  - generative seq2seq etc. trained on corpora of dialogues
    - too many possible responses don't go well with MLE  $\rightarrow$  safe, short, dull
    - many extensions: personality, coherence, diversity
    - still doesn't work very well
  - hybrid combining all of the above
    - typically mainly rule-based + retrieval, machine learning in NLU only
- open-domain NLU is still an unsolved problem
  - despite that, many people enjoy conversations with chatbots
  - interesting content is crucial





#### **Contact us:**

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz or on Slack

#### Project updates next week!

#### Get these slides here:

http://ufal.cz/npfl099

#### **References/Inspiration/Further:**

- Mainly individual papers referenced directly on slides
- Ram et al. (2018): Conversational AI: The Science Behind the Alexa Prize https://arxiv.org/abs/1801.03604
- Khatri et al. (2018): Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize <u>https://arxiv.org/abs/1812.10757</u>
- Shum et al. (2018): From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots <u>https://link.springer.com/article/10.1631/FITEE.1700826</u>
- Vlahos (2018): Inside the Alexa Prize <u>https://www.wired.com/story/inside-amazon-alexa-prize/</u>
- Wikipedia: <u>AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner Prize Mitsuku PARRY Turing test Xiaoice</u> <u>Zo (bot)</u>