8. NLG(2) & End-to-End Dialog Systems

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

5. 12. 2019
NLG-NLU Combo: Self-training

• Create your own additional training data
 • to make the generator more robust & accurate

• needs an NLU trained on original data

• Approach:
 • Train base generator
 • Sample more data from it
 • sample many DAs at random
 • noise injection sampling greedy decoding with Gaussian noise in hidden states
 • use noise injection sampling to get many texts for each DA
 • classify each sampled instance with an NLU
 • discard any texts which don’t correspond to the DA
 • Train generator on original & sampled data (can loop more)

• Near perfect accuracy with basic seq2seq+attention as generator
 • with rule-based or CNN-based NLU, on restaurants data

(25k for each # of slots)
(200 texts per DA)
(42k instances)

(Kedzie & McKeown, 2019)
https://arxiv.org/abs/1911.03373

ensure clean generated data
NLG-NLU Combo: NLU data cleaning

- NLU used to clean training data (see fact grounding)
 - NLU model – BiLSTM + attention & vector distance
- Training NLU iteratively:
 - train initial NLU on all data
 - parse DAs for all data
 - select only data where NLU gives high confidence
 - use high-confidence data to tune the NLU
- NLG (seq2seq+copy) trained on NLU-reparsed data
 - increases semantic accuracy greatly

(Nie et al., 2019)
https://www.aclweb.org/anthology/P19-1256
NLG-NLU Combo: Dual training

• multi-objective optimization
 • basically normal training with regularization for duality:
 \[P(x, y) = P(x)P(y|x, \theta_{x\rightarrow y}) = P(y)P(x|y, \theta_{y\rightarrow x}) \]
 • attempting to model the whole distribution \(P(x, y) \), should work both ways (via both NLU and NLG)
 • regularization term: \(\left(\log P(x) + \log P(y|x, \theta_{x\rightarrow y}) - \log P(y) - \log P(x|y, \theta_{y\rightarrow x}) \right)^2 \)
 • if duality holds, this is 0
 • added to both NLG and NLU training, with given weight

• NLG & NLU = seq2seq (GRU)
• \(P(y) \) = RNN language model
• \(P(x) \) = masked autoencoder
 • create dependencies among slots
 • join multiple possible dependency orders

(Su et al., 2019) http://arxiv.org/abs/1905.06196

(Germain et al., 2015) http://proceedings.mlr.press/v37/germain15.pdf
NLG-NLU Combo: Semi-supervised

• learn from partially unpaired data
 • some DA-text pairs, some loose DAs, some loose texts

• similar to previous: symmetric models, joint optimization
 • loss = $\alpha \cdot \text{loss}_{\text{NLG paired}} + \beta \cdot \text{loss}_{\text{NLG unpaired}} + \gamma \cdot \text{loss}_{\text{NLU paired}} + \delta \cdot \text{loss}_{\text{NLU unpaired}}$
 • losses for paired data are as usual (MLE, seq2seq models)
 • unpaired case: models are connected, reconstruction loss
 • loss is difference from original text/DA when passing through the whole loop
 • greedy decoding
 • making it fully differentiable:
 Straight-Through Gumbel-Softmax
 • Gumbel-Softmax: approximate sampling from categorical token distributions
 • straight-through = real (hard) sampling for forward pass, smooth approximation for backward pass

(Qader et al., 2019)
Gumbel-Softmax

- “reparameterization trick for discrete distributions”
 - reparameterization: $z \sim \mathcal{N}(\mu, \sigma) \rightarrow z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$
 - differentiating w. r. t. μ & σ still works, no hard sampling on that path
- Gumbel-max:
 - categorial distribution π with probabilities π_i
 - sampling from π: $z = \text{onehot}(\arg\max_i (\log \pi_i + g_i))$
- Swap argmax for softmax with temperature τ:
 $$ y_i = \frac{\exp\left(\frac{\log(\pi_i) + g_i}{\tau} \right)}{\sum_{j=1}^{N} \exp\left(\frac{\log(\pi_j) + g_j}{\tau} \right)} $$
 - can differentiate w. r. t. π if $\tau > 0$

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144
“Unsupervised” NLG

- treat an NLG system as a denoising autoencoder
 - “fill in missing/corrupted sentences”
 - DA is a “corrupted sentence” with just the values to generate

- preparing unlabeled data:
 - removing only frequent words (~assuming these are not slot values)
 - shuffling, but keeping original bigrams
 - adding more out-of-domain data (news)

- model: standard seq2seq

- works better than supervised (lower BLEU, but better accuracy)

- only works for simple DAs
 - E2E restaurants: not even a real DA, just slots & values, overlap with text

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>food</th>
<th>family friendly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loch Fyne</td>
<td>restaurant</td>
<td>Indian</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>original</th>
<th>Loch Fyne is a family friendly restaurant providing Indian food</th>
</tr>
</thead>
<tbody>
<tr>
<td>remove random 60%</td>
<td>Fyne is restaurant food .</td>
</tr>
<tr>
<td>remove only words (w_i) with (N(w_i) > 100)</td>
<td>Loch Fyne family friendly Indian</td>
</tr>
<tr>
<td>+ shuffle words</td>
<td>family friendly Indian Loch Fyne</td>
</tr>
</tbody>
</table>

this one is used

(Freitag & Roy, 2018)
http://aclweb.org/anthology/D18-1426
NLG with Pretrained LMs

- **GPT-2** (pretrained Transformer LM)
 - Transformer trained for next-word prediction
 - initialized by preceding context by default
 - tuned to use input data
- word embeddings fixed

- using copy (pointer-generation) on top
 - LM fine-tuned, forced to copy inputs
 - additional loss term for copying

- encoder: field-gating LSTM
 - 2-layers: bottom (table field info) added to cell state of top (values)

- learns from very few training examples
 - reasonable outputs with 200 training instances

(Chen et al., 2019)
http://arxiv.org/abs/1904.09521

<table>
<thead>
<tr>
<th>Attribute (R)</th>
<th>name</th>
<th>nationality</th>
<th>occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (Y)</td>
<td>Walter Extra</td>
<td>German</td>
<td>aircraft designer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and manufacturer</td>
<td>...</td>
</tr>
</tbody>
</table>

input: WikiBio – tables

generate from LM or copy from input?
during training: to find out where to copy inputs
End-to-end dialogue systems

• Separate components:
 • more flexible
 • error accumulation
 • improved components don’t mean improved system
 • possibly joint optimization by RL

• End-to-end:
 • joint optimization by backprop
 • if fully differentiable
 • still can work via RL (with supervised initialization)
 • architectures typically still decompose into original DS components
 • and often still need DA-level annotation

• Not all systems join all components
 • e.g. just NLU + tracker + policy, NLG excluded
Training end-to-end systems

• Supervised
 • sometimes components still trained separately
 • e.g. hard knowledge base lookup
 • sometimes all in one
 • can’t learn from users
 • problems with train-test mismatch

• RL
 • can learn from users, can learn all-in-one
 • doesn’t work great if done on word-level
 • RL doesn’t care about fluency/naturalness
 • either avoid word-level, or mix with supervised

Supervised with component nets

- “seq2seq augmented with history (tracker) & DB”
- end-to-end, but has components
 - LSTM **intent network**/encoder (latent intents)
 - CNN+RNN **belief tracker** (prob. dist. over slot values)
 - lexicalized + delexicalized CNN features
 - turn-level RNN (output is used in next turn hidden state)
 - MLP **policy** (feed-forward)
 - LSTM **generator**
 - conditioned on policy output, delexicalized
 - **DB**: rule-based, takes most probable belief values
 - creates boolean vector of selected items
 - vector compressed to 6-bin 1-hot (no match, 1 match… >5 matches) on input to policy
 - 1 matching item selected at random & kept for lexicalization after generation

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042
Supervised with component nets

- belief tracker trained separately
- rest trained by cross-entropy on generator outputs
- data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
 - workers take turns to be user & system, always just add 1 turn

<table>
<thead>
<tr>
<th>Encoder</th>
<th>Tracker</th>
<th>Decoder</th>
<th>Match(%)</th>
<th>Success(%)</th>
<th>T5-BLEU</th>
<th>T1-BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Istm</td>
<td>Istm</td>
<td>-</td>
<td>-</td>
<td>0.150</td>
<td>0.1718</td>
</tr>
<tr>
<td></td>
<td>Istm</td>
<td>turn recurrence</td>
<td>Istm</td>
<td>-</td>
<td>0.1813</td>
<td>0.1861</td>
</tr>
<tr>
<td>Variant</td>
<td>Istm</td>
<td>rnn-cnn, w/o req.</td>
<td>Istm</td>
<td>89.70</td>
<td>30.60</td>
<td>0.1769</td>
</tr>
<tr>
<td></td>
<td>cnn</td>
<td>rnn-cnn</td>
<td>Istm</td>
<td>88.82</td>
<td>58.52</td>
<td>0.2354</td>
</tr>
<tr>
<td>Full model w/ different decoding strategy</td>
<td>Istm</td>
<td>rnn-cnn</td>
<td>Istm</td>
<td>86.34</td>
<td>75.16</td>
<td>0.2184</td>
</tr>
<tr>
<td></td>
<td>Istm</td>
<td>rnn-cnn</td>
<td>+ weighted</td>
<td>86.04</td>
<td>78.40</td>
<td>0.2222</td>
</tr>
<tr>
<td></td>
<td>Istm</td>
<td>rnn-cnn</td>
<td>+ att.</td>
<td>90.88</td>
<td>80.02</td>
<td>0.2286</td>
</tr>
<tr>
<td></td>
<td>Istm</td>
<td>rnn-cnn</td>
<td>+ att. + weighted</td>
<td>90.88</td>
<td>83.82</td>
<td>0.2304</td>
</tr>
</tbody>
</table>

- added attention
- length-weighted decoding
- returned correct restaurant
- BLEU for best output
- average on top 5 candidate outputs
- match + answered all requested slots

(base seq2seq) HRED (hierarchical seq2seq) (Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042
Reinforcement Learning: Recurrent Q-Networks

- NLU + state tracking + DM
 - NLG still kept separate
 - actions are either system DAs or updates to state (DB hypothesis)
 - forced to alternate action types by masking
 - rewards from DB for narrowing down selection

- Models a Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560
Hybrid Code Networks

- partially handcrafted, designed for little training data
 - with Alexa-type assistants in mind
- Utterance representations:
 - bag-of-words binary vector
 - average of word embeddings
- **Entity** extraction & tracking
 - domain-specific NER
 - handcrafted tracking
 - returns **action mask**
 - permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)
 - return (optional) handcrafted **context features** (various flags)
- LSTM **state tracker** (output retained for next turn)
 - i.e. no explicit state tracking, doesn’t need tracking annotation
- feed-forward **policy** – produces probability distribution over actions
 - mask applied to outputs & renormalized → choosing action = output template

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274
Hybrid Code Networks

• handcrafted fill-in for entities
 • this way, the learned code can be fully delexicalized
 (depends on context features from entity extraction step)

• actions can trigger API calls
 • APIs can return features for next timesteps

• can be trained using supervised learning
 • beats a fully rule-based system with only 30 training dialogues

• can be further fine-tuned using reinforcement learning
 • REINFORCE with baseline
 • also, RL & SL can be interleaved

• various extensions to the model have been tried
 • especially better input than binary & averaged embeddings

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162
Dual RL optimization: agent & user sim.

- end-to-end agent & end-to-end simulator
- pretrains both with supervised & tunes with RL against each other

Agent network

User simulator network

Agent output utterance

User output utterance

Policy:
1-layer feed-forward + softmax over actions

Belief:
tracking currently requested values (using current action)

Explicit belief state:
1-layer feed-forward + softmax per slot

Goal:
predefined: list of slot values to provide & slots to request, constant for dialogue, binary vector

LSTM state tracker (implicit state)

BiLSTM encoding

Belief: tracking currently requested values (using current action)

NLG: simple templates

Tracker, same as agent

Goal: predefined: list of slot values to provide & slots to request, constant for dialogue, binary vector

Template NLG, same as agent

KB query is one of the actions, this manages the query results

Pointer to k-th KB result

(produced as output of tracker, moved when user requests alternatives)

Make offer

Agent action output

BiLSTM encoding

Agent input encoding
Offer entity No. 1

User input encoding
Request alternative

KB indicator (0/1)

1 (yes) 0 (no)

BiLSTM encoding

Table encoding

User goal encoding
Italian, west, address

BiLSTM encoding

User input encoding
Request alternative

Agent input encoding
Offer entity No. 2
Dual RL optimization: agent & user sim.

• incremental rewards based on % of completed user goal
 • used by both agent & system
• REINFORCE/Advantage Actor-Critic
• iteratively training agent & user simulator
 • fixing one and training the other for 100 dialogues, then swapping
• joint RL training is better than training just the agent
Imitation Learning from Expert Users

- system very similar to previous
 - but only optimizing the system
 - with humans, or simulator
- supervised pretraining
- 2nd step: hybrid SL/RL: \textit{imitation learning} with expert users
 - if the system makes a mistake, user provides correct action & fixed belief
 - needs expert users, laborious – or a good simulator
 - data collected in this way can be used further SL rounds
 - more guidance than RL, but system learns from its own policy
 - no mismatch between training data & policy used by system
- finally: RL with normal user feedback
 - success 0/1 at the end of the dialogue

(Liu et al., 2018) \url{http://arxiv.org/abs/1804.06512}
Sequicity: Fully seq2seq-based model

- less hierarchy, simpler architecture
 - no explicit system action – direct to words
 - still explicit dialogue state
- seq2seq-style:
 - encode: previous dialogue state + prev. system response + current user input
 - decode new state first
 - attend over whole encoder
 - decode system output (delexicalized)
 - attend over state only
 - use KB (one-hot vector added to each generator input)
 - KB: 0/1/more results – vector of length 3
- using copy net (pointer-generator)

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133
Sequicity

- training: supervised – word-level cross-entropy
- RL fine-tuning with turn-level rewards
 - prime the system to decode user-requested slot placeholders
- variants – more supervision
 - use same approach to decode explicit NLU output & system action

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133
Summary

• NLG:
 • NLG + NLU combination:
 • cleaning data, sampling more training data, dual training, semi-supervised
 • NLG as denoising autoencoder
 • fine-tuning for pretrained GPT-2 language model

• End-to-end models:
 • typically NLU/tracker + DM + (sometimes) NLG
 • networks decompose to components, often need dialogue state annotation
 • joint training by backprop (if differentiable)
 • RL (interleaved with supervised / without NLG)
 • dual optimization: system + simulator
 • imitation learning – step-wise learning from users
 • Hybrid Code Nets: partially handcrafted, but end-to-end
 • Sequicity: seq2seq-based, decoding dialogue state
Thanks

Contact us:

odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
(or on Slack)

Get these slides here:

http://ufal.cz,npfl099

References/Inspiration/Further:

• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
 http://arxiv.org/abs/1703.09902
• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267