

Statistical Dialogue Systems NPFL099 Statistické Dialogové systémy

8. NLG(2) & End-to-End Dialog Systems

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

5.12.2019

NLG-NLU Combo: Self-training

- Create your own additional training data
 - to make the generator more robust & accurate
- needs an NLU trained on original data
- Approach:
 - Train base generator
 - Sample more data from it
 - sample many DAs at random
 - noise injection sampling greedy decoding with Gaussian noise in hidden states

(42k instances)

- use noise injection sampling to get many texts for each DA (200 texts per DA)
- classify each sampled instance with an NLU ensure clean generated data
 - discard any texts which don't correspond to the DA
 - Train generator on original & sampled data (can loop more)
 - Near perfect accuracy with basic seq2seq+attention as generator
 - with rule-based or CNN-based NLU, on restaurants data

(Kedzie & McKeown, 2019) https://arxiv.org/abs/1911.03373

(25k for each # of slots)

(Nie et al., 2019) https://www.aclweb.org/anthology/P19-1256

NLG-NLU Combo: NLU data cleaning

- NLU used to clean training data (see fact grounding)
 - NLU model BiLSTM + attention & vector distance
- Training NLU iteratively:
 - train initial NLU on all data
 - parse DAs for all data
 - select only data where NLU gives high confidence
 - use high-confidence data to tune the NLU
- NLG (seq2seq+copy) trained on NLU-reparsed data
 - increases semantic accuracy greatly

NLG-NLU Combo: Dual training

- multi-objective optimization
 - basically normal training with regularization for duality:

$$P(x,y) = P(x)P(y|x,\theta_{x\to y}) = P(y)P(x|y,\theta_{y\to x})$$

- attempting to model the whole distribution P(x, y), should work both ways (via both NLU and NLG)
- regularization term: $\left(\log P(x) + \log P(y|x, \theta_{x \to y}) \log P(y) \log P(x|y, \theta_{y \to x})\right)^2$

(Su et al., 2019)

http://arxiv.org/abs/1905.06196

- added to both NLG and NLU training, with given weight
- NLG & NLU = seq2seq (GRU)
- P(y) = RNN language model
- P(x) = masked autoencoder
 - create dependencies among slots
 - join multiple possible dependency orders

(Germain et al., 2015) http://proceedings.mlr.press/v37/germain15.pdf

NLG-NLU Combo: Semi-supervised

ÚFAL

• learn from partially unpaired data

(Qader et al., 2019) https://arxiv.org/abs/1910.03484

- some DA-text pairs, some loose DAs, some loose texts
- similar to previous: symmetric models, joint optimization
 - $loss = \alpha \cdot loss_{NLG}^{paired} + \beta \cdot loss_{NLG}^{unpaired} + \gamma \cdot loss_{NLU}^{paired} + \delta \cdot loss_{NLU}^{unpaired}$
 - losses for paired data are as usual (MLE, seq2seq models)
 - unpaired case: models are connected, reconstruction loss
 - loss is difference from original text/DA when passing through the whole loop
 - greedy decoding
 - making it fully differentiable: Straight-Through Gumbel-Softmax
 - Gumbel-Softmax: approximate sampling from categorial token distributions
 - straight-through = real (hard) sampling for forward pass, smooth approximation for backward pass

Gumbel-Softmax

(Jang et al., 2017) https://arxiv.org/abs/1611.01144

Categorical

category

sample

- "reparameterization trick for discrete distributions"
 - reparameterization: $z \sim \mathcal{N}(\mu, \sigma) \rightarrow z \sim \mu + \sigma \cdot \mathcal{N}(0, 1)$
 - differentiating w. r. t. $\mu \& \sigma$ still works, no hard sampling on that path
- Gumbel-max:
 - categorial distribution π with probabilities π_i
 - sampling from $\pi: z = \text{onehot}(\arg\max_i (\log \pi_i + g_i))$

Gumbel noise:

Normal noise

$$g_i = -\log(-\log(\text{Uniform}(0,1)))$$

• Swap argmax for softmax with temperature τ :

• can differentiate w. r. t. π if $\tau > 0$

"Unsupervised" NLG

- treat an NLG system as a denoising autoencoder
 - "fill in missing/corrupted sentences"
 - DA is a "corrupted sentence" with just the values to generate
- preparing unlabeled data:
 - removing only frequent words (~assuming these are not slot values)
 - shuffling, but keeping original bigrams
 - adding more out-of-domain data (news)
- model: standard seq2seq
- works better than supervised (lower BLEU, but better accuracy)
- only works for simple DAs
 - E2E restaurants: not even a real DA, just slots & values, overlap with text

original	Loch Fyne is a family friendly restaurant providing Indian food .		
remove random 60%	Fyne is restaurant food .		
remove only words w_i with $N(w_i) > 100$	Loch Fyne family friendly Indian		
shuffle words	family friendly Indian Loch Fyne		
this one is use	be		

food

type Loch Fyne restaurant Indian

family friendly

ves

(Freitag & Roy, 2018)

http://aclweb.org/anthology/D18-1426

name

NLG with Pretrained LMs

- GPT-2 (pretrained Transformer LM)
 - Transformer trained for next-word prediction
 - initialized by preceding context by default
 → tuned to use input data
 - word embeddings fixed
- using copy (pointer-generation) on top
 - LM fine-tuned, forced to copy inputs
 - additional loss term for copying
- encoder: field-gating LSTM
 - 2-layers: bottom (table field info) added to cell state of top (values)
- learns from very few training examples
 - reasonable outputs with 200 training instances

Attribute (R)	name	nationality	occupation	
Value (V)	Walter Extra	German	aircraft designer and manufacturer	

input: WikiBio – tables

generate from LM or copy from input?

(Chen et al., 2019) http://arxiv.org/abs/1904.09521

End-to-end dialogue systems

- Separate components:
 - more flexible
 - error accumulation
 - improved components don't mean improved system
 - possibly joint optimization by RL
- End-to-end:
 - joint optimization by backprop
 - if fully differentiable
 - still can work via RL (with supervised initialization)
 - architectures typically still decompose into original DS components
 - and often still need DA-level annotation
- Not all systems join all components
 - e.g. just NLU + tracker + policy, NLG excluded

Training end-to-end systems

- Supervised
 - sometimes components still trained separately
 - e.g. hard knowledge base lookup
 - sometimes all in one
 - can't learn from users
 - problems with train-test mismatch
- RL
 - can learn from users, can learn all-in-one
 - doesn't work great if done on word-level
 - RL doesn't care about fluency/naturalness
 - either avoid word-level, or mix with supervised

https://towardsdatascience.com/the-truth-behindfacebook-ai-inventing-a-new-language-37c5d680e5a7

Facebook abandoned an experiment after two artificially intelligent programs appeared to be chatting to each other in a strange language only they understood.

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebookartificial-intelligence-ai-chatbot-new-language-research-openai-googlea7869706.html

Supervised with component nets

- "seq2seq augmented with history (tracker) & DB"
- end-to-end, but has components
 - LSTM intent network/encoder (latent intents)
 - CNN+RNN **belief tracker** (prob. dist. over slot values)
 - lexicalized + delexicalized CNN features
 - turn-level RNN (output is used in next turn hidden state)
 - MLP **policy** (feed-forward)
 - LSTM generator
 - conditioned on policy output, delexicalized
 - **DB**: rule-based, takes most probable belief values
 - creates boolean vector of selected items
 - vector compressed to 6-bin 1-hot (no match, 1 match... >5 matches) on input to policy
 - 1 matching item selected at random & kept for lexicalization after generation

(Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042

(latent intent representation)

(Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042

Supervised with component nets

- belief tracker trained separately
- rest trained by cross-entropy on generator outputs
- data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
 - workers take turns to be user & system, always just add 1 turn

Reinforcement Learning: Recurrent Q-Networks

- NLU + state tracking + DM
 - NLG still kept separate
 - actions are either system DAs or updates to state (DB hypothesis)
 - forced to alternate action types by masking
 - rewards from DB for narrowing down selection
- Models a Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

Hybrid Code Networks

- partially handcrafted, designed for little training data
 - with Alexa-type assistants in mind
- Utterance representations:
 - bag-of-words binary vector
 - average of word embeddings
- Entity extraction & tracking
 - domain-specific NER
 - handcrafted tracking
 - returns action mask

• permitted actions in this step (e.g. can't place a phone call if we don't know who to call yet)

- return (optional) handcrafted context features (various flags)
- LSTM state tracker (output retained for next turn)
 - i.e. no explicit state tracking, doesn't need tracking annotation
- feed-forward **policy** produces probability distribution over actions
 - mask applied to outputs & renormalized → choosing action = output template

(Williams et al., 2017)

http://arxiv.org/abs/1702.03274

Hybrid Code Networks

- handcrafted fill-in for entities
 - this way, the learned code can be fully delexicalized (depends on context features from entity extraction step)
- actions can trigger API calls
 - APIs can return features for next timesteps
- can be trained using supervised learning
 - beats a fully rule-based system with only 30 training dialogues
- can be further fine-tuned using reinforcement learning
 - REINFORCE with baseline
 - also, RL & SL can be interleaved
- various extensions to the model have been tried
 - especially better input than binary & averaged embeddings

Dual RL optimization: agent & user sim. $\overset{U}{F_{A}}L$

(Liu & Lane, 2017) <u>http://arxiv.org/abs/1709.06136</u>

- end-to-end agent & end-to-end simulator
 - pretrains both with supervised & tunes with RL against each other

Dual RL optimization: agent & user sim. $\overset{U}{F_{A}L}$

(Liu & Lane, 2017) <u>http://arxiv.org/abs/1709.06136</u>

- incremental rewards based on % of completed user goal
 - used by both agent & system
- REINFORCE/Advantage Actor-Critic
- iteratively training agent & user simulator
 - fixing one and training the other for 100 dialogues, then swapping
- joint RL training is better than training just the agent

Imitation Learning from Expert Users

- system very similar to previous
 - but only optimizing the system
 - with humans, or simulator
- supervised pretraining
- 2nd step: hybrid SL/RL: imitation learning with expert users
 - if the system makes a mistake, user provides correct action & fixed belief
 - needs expert users, laborious or a good simulator
 - data collected in this way can be used further SL rounds
 - more guidance than RL, but system learns from its own policy
 - no mismatch between training data & policy used by system
- finally: RL with normal user feedback
 - success 0/1 at the end of the dialogue

attend over state only,

delexicalized

add KB vector to inputs,

(Lei et al., 2018) <u>https://www.aclweb.org/anthology/P18-1133</u>

Sequicity: Fully seq2seq-based model

- less hierarchy, simpler architecture
 - no explicit system action direct to words
 - still explicit dialogue state
- seq2seq-style:
 - encode: previous dialogue state
 + prev. system response
 + current user input
 - decode new state first
 - attend over whole encoder
 - decode system output (delexicalized)
 - attend over state only
 - + use KB (one-hot vector added to each generator input)
 - KB: 0/1/more results vector of length 3
- using copy net (pointer-generator)

(Lei et al., 2018)https://www.aclweb.org/anthology/P18-1133(Liang et al., 2019)http://arxiv.org/abs/1909.05528

- training: supervised word-level cross-entropy
- RL fine-tuning with turn-level rewards
 - prime the system to decode user-requested slot placeholders
- variants more supervision
 - use same approach to decode explicit NLU output & system action

21

Summary

• NLG:

- NLG + NLU combination:
 - cleaning data, sampling more training data, dual training, semi-supervised
- NLG as denoising autoencoder
- fine-tuning for pretrained GPT-2 language model
- End-to-end models:
 - typically NLU/tracker + DM + (sometimes) NLG
 - networks decompose to components, often need dialogue state annotation
 - joint training by backprop (if differentiable)
 - **RL** (interleaved with supervised / without NLG)
 - dual optimization: system + simulator
 - imitation learning step-wise learning from users
 - Hybrid Code Nets: partially handcrafted, but end-to-end
 - Sequicity: seq2seq-based, decoding dialogue state

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz (or on Slack)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation <u>http://arxiv.org/abs/1703.09902</u>
- My PhD thesis (2017), especially Chapter 2: <u>http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf</u>
- Gao et al. (2019): Neural Approaches to Conversational AI: <u>https://arxiv.org/abs/1809.08267</u>

No labs today