
Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

8. NLG(2) &
End-to-End Dialog Systems

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

5. 12. 2019

http://ufal.cz/npfl099

NLG-NLU Combo: Self-training
• Create your own additional training data

• to make the generator more robust & accurate

• needs an NLU trained on original data

• Approach:
• Train base generator

• Sample more data from it
• sample many DAs at random

• noise injection sampling greedy decoding with Gaussian noise in hidden states
• use noise injection sampling to get many texts for each DA

• classify each sampled instance with an NLU
• discard any texts which don’t correspond to the DA

• Train generator on original & sampled data (can loop more)

• Near perfect accuracy with basic seq2seq+attention as generator
• with rule-based or CNN-based NLU, on restaurants data

2

(Kedzie & McKeown, 2019)
https://arxiv.org/abs/1911.03373

(25k for each # of slots)

(200 texts per DA)

(42k instances)

ensure clean
generated data

https://arxiv.org/abs/1911.03373

NLG-NLU Combo: NLU data cleaning

• NLU used to clean training data (see fact grounding)
• NLU model – BiLSTM + attention & vector distance

• Training NLU iteratively:

• train initial NLU on all data

• parse DAs for all data

• select only data where NLU gives high confidence

• use high-confidence data to tune the NLU

• NLG (seq2seq+copy) trained on NLU-reparsed data
• increases semantic accuracy greatly

NPFL099 L8 2019

plain supervised NLU

original data

iterative NLU training

handcrafted NLU

softmax(dist)

∑

(Nie et al., 2019)
https://www.aclweb.org/anthology/P19-1256

https://www.aclweb.org/anthology/P19-1256

NLG-NLU Combo: Dual training
• multi-objective optimization

• basically normal training with regularization for duality:
𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦 𝑥, 𝜃𝑥→𝑦 = 𝑃 𝑦 𝑃(𝑥|𝑦, 𝜃𝑦→x)

• attempting to model the whole distribution 𝑃(𝑥, 𝑦), should work both ways
(via both NLU and NLG)

• regularization term: log𝑃 𝑥 + log𝑃 𝑦 𝑥, 𝜃𝑥→𝑦 − log𝑃 𝑦 − log𝑃 𝑥 𝑦, 𝜃𝑦→x
2

• if duality holds, this is 0

• added to both NLG and NLU training, with given weight

• NLG & NLU = seq2seq (GRU)

• 𝑃(𝑦) = RNN language model

• 𝑃(𝑥) = masked autoencoder
• create dependencies among slots

• join multiple possible dependency orders

4NPFL099 L8 2019

(Su et al., 2019)
http://arxiv.org/abs/1905.06196

NLUNLGDAs
(empirical dist. used)

texts
(empirical dist. used)

prediction
order

(Germain et al., 2015) http://proceedings.mlr.press/v37/germain15.pdf

http://arxiv.org/abs/1905.06196
http://proceedings.mlr.press/v37/germain15.pdf

orig.
DA

pred.
DA

predicted
text

original
text

NLG-NLU Combo: Semi-supervised
• learn from partially unpaired data

• some DA-text pairs, some loose DAs, some loose texts

• similar to previous: symmetric models, joint optimization

• loss = 𝛼 ⋅ lossNLG
paired

+ 𝛽 ⋅ lossNLG
unpaired

+ 𝛾 ⋅ lossNLU
paired

+ 𝛿 ⋅ lossNLU
unpaired

• losses for paired data are as usual (MLE, seq2seq models)

• unpaired case: models are connected, reconstruction loss
• loss is difference from original text/DA when passing through the whole loop

• greedy decoding

• making it fully differentiable:
Straight-Through Gumbel-Softmax
• Gumbel-Softmax: approximate sampling

from categorial token distributions

• straight-through = real (hard) sampling for forward pass,
smooth approximation for backward pass

(Qader et al., 2019)
https://arxiv.org/abs/1910.03484

for unpaired data

https://arxiv.org/abs/1910.03484

Gumbel-Softmax

• “reparameterization trick for discrete distributions”
• reparameterization: 𝑧~𝒩(𝜇, 𝜎) → 𝑧~𝜇 + 𝜎 ⋅ 𝒩 0,1

• differentiating w. r. t. 𝜇 & 𝜎 still works, no hard sampling on that path

• Gumbel-max:
• categorial distribution 𝜋 with probabilities 𝜋𝑖
• sampling from 𝜋: 𝑧 = onehot(argmax

𝑖
log 𝜋𝑖 + 𝑔𝑖)

• Swap argmax for softmax with temperature 𝜏:

• can differentiate w. r. t. 𝜋 if 𝜏 > 0

NPFL099 L8 2019

𝑦𝑖 =
exp

log 𝜋𝑖 + 𝑔𝑖
𝜏

∑𝑗=1
𝑁 exp

log 𝜋𝑗 + 𝑔𝑗
𝜏

Gumbel noise:

𝑔𝑖 = − log − log Uniform 0,1

𝜏 → 0: more like one-hot 𝜏 → ∞: more like uniform

Normal noise

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144

https://arxiv.org/abs/1611.01144

“Unsupervised” NLG
• treat an NLG system as a denoising autoencoder

• “fill in missing/corrupted sentences”

• DA is a “corrupted sentence” with just the values to generate

• preparing unlabeled data:
• removing only frequent words

(~assuming these are not slot values)

• shuffling, but keeping original bigrams

• adding more out-of-domain data (news)

• model: standard seq2seq

• works better than supervised (lower BLEU, but better accuracy)

• only works for simple DAs
• E2E restaurants: not even a real DA, just slots & values, overlap with text

7NPFL099 L8 2019

(Freitag & Roy, 2018)
http://aclweb.org/anthology/D18-1426

this one is used

+

http://aclweb.org/anthology/D18-1426

NLG with Pretrained LMs
• GPT-2 (pretrained Transformer LM)

• Transformer trained for next-word prediction

• initialized by preceding context by default
→ tuned to use input data

• word embeddings fixed

• using copy (pointer-generation) on top
• LM fine-tuned, forced to copy inputs

• additional loss term for copying

• encoder: field-gating LSTM
• 2-layers: bottom (table field info)

added to cell state of top (values)

• learns from very few training examples
• reasonable outputs with 200 training instances

(Chen et al., 2019)
http://arxiv.org/abs/1904.09521

newly trained LM context

generate from LM
or copy from input?

during training:
to find out where to copy inputs

input: WikiBio – tables

http://arxiv.org/abs/1904.09521

End-to-end dialogue systems
• Separate components:

• more flexible

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• End-to-end:
• joint optimization by backprop

• if fully differentiable

• still can work via RL (with supervised initialization)

• architectures typically still decompose into original DS components
• and often still need DA-level annotation

• Not all systems join all components
• e.g. just NLU + tracker + policy, NLG excluded

9

Training end-to-end systems

• Supervised
• sometimes components still trained separately

• e.g. hard knowledge base lookup

• sometimes all in one

• can’t learn from users

• problems with train-test mismatch

• RL
• can learn from users, can learn all-in-one

• doesn’t work great if done on word-level
• RL doesn’t care about fluency/naturalness

• either avoid word-level, or mix with supervised

10NPFL099 L8 2019
https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-
artificial-intelligence-ai-chatbot-new-language-research-openai-google-
a7869706.html

https://towardsdatascience.com/the-truth-behind-
facebook-ai-inventing-a-new-language-37c5d680e5a7

Supervised with component nets
• “seq2seq augmented with history (tracker) & DB”

• end-to-end, but has components
• LSTM intent network/encoder (latent intents)

• CNN+RNN belief tracker (prob. dist. over slot values)
• lexicalized + delexicalized CNN features

• turn-level RNN (output is used in next turn hidden state)

• MLP policy (feed-forward)

• LSTM generator
• conditioned on policy output, delexicalized

• DB: rule-based, takes most probable belief values
• creates boolean vector of selected items

• vector compressed to 6-bin 1-hot (no match, 1 match… >5 matches)
on input to policy

• 1 matching item selected at random & kept for lexicalization after generation
11

1-layer with tanh

LSTM encoder
(latent intent representation)

slot value prob. dist. CNN

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

RNN

https://www.aclweb.org/anthology/E17-1042

Supervised with component nets

• belief tracker trained separately

• rest trained by cross-entropy on generator outputs

• data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
• workers take turns to be user & system, always just add 1 turn

12NPFL099 L8 2019

base seq2seq
HRED
(hierarchical
seq2seq)

length-weighted
decoding

average on top 5 candidate outputs

BLEU for best output

match + answered all requested slots

returned correct restaurant

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

added
attention

https://www.aclweb.org/anthology/E17-1042

Reinforcement Learning:

Recurrent Q-Networks
• NLU + state tracking + DM

• NLG still kept separate

• actions are either system DAs or updates to state
(DB hypothesis)

• forced to alternate action types by masking

• rewards from DB for narrowing down selection

• Models a Q-network as a LSTM
• or rather LSTM underlying multiple MLPs

• LSTM maintains internal state representation

• 1 MLP for system DAs

• 1 MLP per slot (action=select value X)

NPFL099 L6 2019

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560

(masked out)
Q for
system DA
actions

Q for DB actions

user observation
(bag-of-bigrams)previous action

(one-hot)

DB observation

http://arxiv.org/abs/1606.02560

Hybrid Code Networks
• partially handcrafted, designed for little training data

• with Alexa-type assistants in mind

• Utterance representations:
• bag-of-words binary vector
• average of word embeddings

• Entity extraction & tracking
• domain-specific NER
• handcrafted tracking
• returns action mask

• permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)

• return (optional) handcrafted context features (various flags)

• LSTM state tracker (output retained for next turn)

• i.e. no explicit state tracking, doesn’t need tracking annotation

• feed-forward policy – produces probability distribution over actions
• mask applied to outputs & renormalized → choosing action = output template

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274

http://arxiv.org/abs/1702.03274

Hybrid Code Networks

• handcrafted fill-in for entities
• this way, the learned code can be fully delexicalized

(depends on context features from entity extraction step)

• actions can trigger API calls
• APIs can return features for next timesteps

• can be trained using supervised learning
• beats a fully rule-based system with only 30 training dialogues

• can be further fine-tuned using reinforcement learning
• REINFORCE with baseline

• also, RL & SL can be interleaved

• various extensions to the model have been tried
• especially better input than binary & averaged embeddings

15NPFL099 L8 2019

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162

https://arxiv.org/abs/1811.12148
http://arxiv.org/abs/1907.12162

Dual RL optimization: agent & user sim.

• end-to-end agent & end-to-end simulator
• pretrains both with supervised & tunes with RL against each other

NPFL099 L8 2019

(Liu & Lane, 2017) http://arxiv.org/abs/1709.06136

Agent network

User simulator network

LSTM state tracker
(implicit state)

explicit belief state:
1-layer feed-forward

+ softmax per slot

policy:
1-layer feed-forward

+ softmax over actions

KB query is one of the actions,
this manages the query results

pointer to k-th KB result
(produced as output of tracker,
moved when user requests
alternatives)

NLG: simple templates

BiLSTM encoding

tracker, same as agent

BiLSTM encoding

goal predefined:
list of slot values to provide

& slots to request,
constant for dialogue,

binary vector

policy,
same as agent

belief: tracking currently
requested values

(using current action)

template NLG,
same as agent

http://arxiv.org/abs/1709.06136

Dual RL optimization: agent & user sim.

• incremental rewards based on % of completed user goal
• used by both agent & system

• REINFORCE/Advantage Actor-Critic

• iteratively training agent & user simulator
• fixing one and training the other for 100 dialogues, then swapping

• joint RL training is better than training just the agent

(Liu & Lane, 2017) http://arxiv.org/abs/1709.06136

time

http://arxiv.org/abs/1709.06136

Imitation Learning from Expert Users
• system very similar to previous

• but only optimizing the system

• with humans, or simulator

• supervised pretraining

• 2nd step: hybrid SL/RL:
imitation learning with expert users
• if the system makes a mistake, user provides correct action & fixed belief

• needs expert users, laborious – or a good simulator

• data collected in this way can be used further SL rounds

• more guidance than RL, but system learns from its own policy
• no mismatch between training data & policy used by system

• finally: RL with normal user feedback
• success 0/1 at the end of the dialogue

feed-forward
action classifier

templates

(Liu et al., 2018) http://arxiv.org/abs/1804.06512

http://arxiv.org/abs/1804.06512

Sequicity: Fully seq2seq-based model

• less hierarchy, simpler architecture
• no explicit system action – direct to words

• still explicit dialogue state

• seq2seq-style:
• encode: previous dialogue state

+ prev. system response
+ current user input

• decode new state first
• attend over whole encoder

• decode system output (delexicalized)
• attend over state only

+ use KB (one-hot vector added to each generator input)
• KB: 0/1/more results – vector of length 3

• using copy net (pointer-generator)
19

en
co

d
er

d
eco

d
er

keep hidden
state here

decode new
dialogue state

decode system output,
attend over state only,
add KB vector to inputs,
delexicalized

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133

https://www.aclweb.org/anthology/P18-1133

Sequicity

• training: supervised – word-level cross-entropy

• RL fine-tuning with turn-level rewards
• prime the system to decode user-requested slot placeholders

• variants – more supervision
• use same approach to decode explicit NLU output & system action

20NPFL099 L8 2019

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133
(Liang et al., 2019) http://arxiv.org/abs/1909.05528

https://www.aclweb.org/anthology/P18-1133
http://arxiv.org/abs/1909.05528

Summary
• NLG:

• NLG + NLU combination:
• cleaning data, sampling more training data, dual training, semi-supervised

• NLG as denoising autoencoder

• fine-tuning for pretrained GPT-2 language model

• End-to-end models:
• typically NLU/tracker + DM + (sometimes) NLG

• networks decompose to components, often need dialogue state annotation

• joint training by backprop (if differentiable)

• RL (interleaved with supervised / without NLG)

• dual optimization: system + simulator

• imitation learning – step-wise learning from users

• Hybrid Code Nets: partially handcrafted, but end-to-end

• Sequicity: seq2seq-based, decoding dialogue state
21

Thanks
Contact us:

odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
(or on Slack)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
http://arxiv.org/abs/1703.09902

• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267

22NPFL099 L8 2019

No labs today

mailto:odusek@ufal.mff.cuni.cz
mailto:hudecek@ufal.mff.cuni.cz
http://ufal.cz/npfl099
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf
https://arxiv.org/abs/1809.08267

