6. Dialogue Policy

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

7. 11. 2019
Dialogue Management

• Two main components:
 • **State tracking** (last lecture)
 • **Action selection/Policy** (today)

• action selection – deciding what to do next
 • based on the current belief state – under uncertainty
 • following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 • controlling the coherence & flow of the dialogue
 • actions: linguistic & non-linguistic

• DM/policy should:
 • manage uncertainty from belief state
 • recognize & follow dialogue structure
 • plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require
Action Selection Approaches

• Finite-state machines
 • simplest possible
 • dialogue state is machine state

• Frame-based (VoiceXML)
 • slot-filling + providing information – basic agenda
 • rule-based in essence

• Rule-based
 • any kind of rules (e.g. Python code)

• Statistical
 • typically using reinforcement learning
DM with supervised learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features

• Yes, but…
 • You’d **need** sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s **no single correct next action** – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • DSs **should** behave differently – make the best of what they have
DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
- **agent** in an *environment*:
 - has internal **state** \(s_t \in S \) (~ dialogue state)
 - takes **actions** \(a_t \in \mathcal{A} \) (~ system dialogue acts)
 - actions chosen according to **policy** \(\pi: \mathcal{S} \to \mathcal{A} \)
 - gets **rewards** \(r_t \in \mathbb{R} \) & state changes from the environment
- rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
- Markov property – state defines everything
 - no other temporal dependency
- policy may be **deterministic** or **stochastic**
 - stochastic: prob. dist. of actions, sampling

(from Milica Gašić’s slides)
Partially-observable MDPs

- **POMDPs** – belief states instead of dialogue states
 - true states (“what the user wants”) are not observable
 - observations (“what the system hears”) depend on states
 - belief – probability distribution over states
 - can be viewed as **MDPs with continuous-space states**

- All MDP algorithms work...
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex

- Deep RL typically works out of the box
 - function approximation approach, allows continuous states

Grey = observed
White = unobserved

(from Milica Gašić’s slides)

https://en.wikipedia.org/wiki/Voronoi_diagram
Reinforcement learning

• RL = finding a **policy that maximizes long-term reward**
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

= accumulated long-term reward

\[
R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}
\]

\(\gamma \in [0,1] = \text{discount factor}\)
(i.e. immediate vs. future reward trade-off)

\(\gamma < 1 : R_t \text{ is finite (if } r_t \text{ is finite)}\)
\(\gamma = 0 : \text{greedy approach (ignore future rewards)}\)

• state transition is stochastic \(\rightarrow\) maximize **expected return**

\[\mathbb{E}[R_t | \pi, s_0]\] expected \(R_t\) if we start from state \(s_0\) and follow policy \(\pi\)
State-value Function

• Using return, we define the value of a state s under policy π: $V^\pi(s)$
 • Expected return for starting in state s and following policy π
• Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
• This gives us a recursive equation (Bellman Equation):

\[
V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s'))
\]

• $V^\pi(s)$ defines a greedy policy:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\text{# of } a's} & \text{for } a = \text{arg max} \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V^\pi(s')) \\
0 & \text{otherwise}
\end{cases}
\]
Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of taking action a in state s, under policy π
 - Same principle as value $V^\pi(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s' | s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)$$

- $Q^\pi(s, a)$ also defines a greedy policy:
 - again, “actions that look best for the next step”
 - simpler: no need to enumerate s', no need to know $p(s' | s, a)$ and $r(s, a, s')$
 - but Q function itself tends to be more complex than V
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

- π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi'$, $\forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_\pi V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_\pi Q^\pi(s, a)$

- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either $\pi^*, V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agent Taxonomy

- Quantity to optimize:
 - value function – critic
 - policy – actor
 - both – actor-critic

- Environment model:
 - model-based (assume known $p(s'|s, a), r(s, a, s)$)
 - model-free (don’t assume anything, sample)
 - this is where using Q instead of V comes handy
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
Deep Reinforcement Learning

• Exactly the same as “plain” RL
 • agent & environment, actions & rewards
• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy
• function approximation approach
 • Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 • enumerating in a table would take up too much space, be too sparse
 • the parameters θ are optimized
• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states
• needs tricks to make it stable

(Sutton & Barto, 2018)
Q-Learning

- temporal difference – update Q as you go
- off-policy – directly estimates best Q^*
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily

- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 - $s \leftarrow s'$

Q-Learning uses best a', regardless of current policy: a' is not necessarily taken in the actual episode.

Any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge.

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
Deep Q-Networks

• Q-learning, where Q function is represented by a neural net

• Causes of poor convergence in basic Q-learning with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown → numeric instability

• Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_{a'} Q (s', a'; \overline{\theta}) - Q (s, a; \theta))^2 \right]
\]

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

"generate your own ‘supervised’ training data"

"have a fixed target, like in supervised learning"
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ-greedy policy based on $Q(\theta)$
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$
 - once every k steps:
 - sample a batch B of random (s, a, r', s')'s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]$
 - once every λ steps:
 - $\overline{\theta} \leftarrow \theta$

often \rightarrow once every k steps:
- “replay” a. k. a. training

rarely \rightarrow once every λ steps:
- storing experience
DQN for Atari

• 4-layers:
 • 2x CNN
 • 2x fully connected with ReLU activations

• Another trick:
 • output values for all actions at once
 • \sim vector $Q(s)$ instead of $Q(s, a)$
 • a is not fed as a parameter
 • faster computation

• Learns many games at human level
 • with the same network structure
 • no game-specific features

https://youtu.be/V1eYniJ0Rnk?t=18

input: Atari 2600 screen, downsized to 84x84 (grayscale)
4 last frames

(values for all actions (joysticks moves))

(from David Silver’s slides)
DQN for Dialogue Systems

- DQN can drive action selection
- **warm start** needed to make the training actually work:
 - pretrain the network using supervised learning
 - replay buffer spiking – initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

Rule-based simulator with agenda running on DA level

DQN – feed-forward, 1 hidden ReLU layer

Error Model Controller (simulating ASR/NLU noise)

Movie ticket booking: better than rule-based

Replay memory initialized using a simple handcrafted policy

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

(Lipton et al., 2018)
BBQ – Bayes-by-Backprop Q-Networks

• better exploration than ϵ-greedy – explore uncertain regions

• **Bayes-by-Backprop** – prob. dist. over network weights
 • start from prior $p(\theta)$, learn posterior $p(\theta|D)$ for training data D
 • posterior approximated by Gaussians $q(\theta|w)$, each $\theta_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 • now learning $w_i = \{(\mu_i, \rho_i)\}$ where $\sigma_i = \log(1 + \exp \rho_i)$, to keep σ_i positive
 • VAE-style: minimizing KL divergence between q and p, reparameterization trick

• using BB to represent DQN + posterior (Thompson) sampling
 • actions sampled acc. to posterior prob. they’re optimal in current state
 • just sample θ_t from q, then choose $a_t = \arg\max_a Q(s_t, a; \theta_t)$

• no need to sample for the target network, just use $\bar{\mu}$
 • faster, actually more stable

BBQ performance

MLP with 2 hidden layers, ReLU, width=256
movie booking task
one-hot dialogue state representation (268 dim)
39 actions (basic \texttt{hello()}, \texttt{deny()}, \texttt{thanks()} etc. + inform/request for each slot)

(enhanced rewards with surprisal)

no sampling from frozen network
sampling from frozen network
\(\epsilon\)-greedy

(Lipton et al., 2018)
Recurrent Q-Networks

- Joint dialogue tracking & action selection
 - actions are either system DAs or updates to state (DB hypothesis)
 - forced to alternate action types by masking
 - rewards from DB for narrowing down selection
- Models the Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560
Policy Gradients

• instead of value functions, train a network to represent the policy
• allows better sampling – acc. to actual stochastic policy
• performance metric: $J(\theta) = V^{\pi_\theta}(s_0)$
 • expected return in starting state when following π_θ
 • we want to directly optimize this using gradient ascent

• **Policy Gradient Theorem**:
 • expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s, \theta)$

\[
\nabla J(\theta) \propto \sum_s \mu(s) \sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) = E_\pi \left[\sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) \right]
\]

$\mu(s)$ is state probability under π – this is the same as expected value E_π
REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\theta) = V^{\pi_\theta}(s_0)$
- choose learning rate α, initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta)$

variant – advantage instead of returns:
- discounting a baseline $b(s)$ (predicted by any model)
- $A_t = R_t - b(s_t)$ instead of R_t

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$
a good $b(s)$ is actually $V(s)$

this is stochastic $\nabla J(\theta)$:
- from policy gradient theorem
- using single action sample a_t
- expressing Q^π as R_t (under E_π)
- using $\nabla \ln x = \frac{\nabla x}{x}$

this will guarantee the right state distribution/frequency $\mu(s)$

(Sutton & Barto, 2018; p. 327f)
Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates – better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^θ, α^w
- loop forever:
 - set initial state s for the episode
 - for each step t of the episode:
 - sample action a from $\pi(\cdot|s, \theta)$, take a and observe reward r and new state s'
 - compute advantage $A \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w)$
 - update $\theta \leftarrow \theta + \alpha^\theta \gamma^t \nabla \ln \pi(a|s, \theta)$, $w \leftarrow w + \alpha^w \cdot \nabla \hat{V}(s, w)$
 - $s \leftarrow s'$

TD: update after each step

actor (policy update) critic (value function update)

same as REINFORCE, except:
- we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)

http://arxiv.org/abs/1707.00130

(Su et al., 2017)
ACER: Actor-Critic with Experience Replay

- off-policy actor-critic – using experience replay buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using “old” $\tilde{\theta}$), it’s considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 - sampling behaviour from $\pi_{\tilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias – importance sampling: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled
 - objective: $\hat{E}_t [\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t]$ using advantage instead of returns

NPFL099 L6 2019

(Wang et al., 2017) http://arxiv.org/abs/1611.01224
(Su et al., 2017) http://arxiv.org/abs/1707.00130
TRACER: Trust-Region ACER

- basic ACER may be unstable/slow to learn
 - prone to excessively large updates
 - need to set learning rates low
 - high learning rate = unstable, high variance
 - low learning rate = too slow
 - limit on KL-divergence change b/t updated policy θ & average policy $\bar{\theta}$
 - $\bar{\theta}$ is a moving average of past policies: $\bar{\theta} \leftarrow \alpha \bar{\theta} + (1 - \alpha)\theta$
 - modified policy gradient g is defined as: $\min_g \frac{1}{2} \left| \nabla \theta - g \right|^2$
 - so that $\nabla KL[\pi_{\bar{\theta}}(s_t)|\pi_{\theta}(s_t)]^T g \leq \xi$
 - i.e. the closest you can get to the gradient, but don’t increase KL between the average and new policy too much
 - quadratic programming, has closed solution

(Wang et al., 2017) http://arxiv.org/abs/1611.01224
(Su et al., 2017) http://arxiv.org/abs/1707.00130
Proximal Policy Optimization

• Changing the objective to be more like trust-region
 • without the need to adjust gradients & do the optimization

• Basically clipping the objective
 • define $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\bar{\theta}}(a_t|s_t)}$ – ratio to old params
 • starting from $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\bar{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta)\hat{A}_t]$ (see ACER)
 • using $\hat{E}_t \left[\min \left(r_t(\theta)\hat{A}_t, \text{clip} \left[r_t(\theta)\hat{A}_t \right]^{1+\epsilon} \right) \right]$

original \hspace{1cm} clipped to stay close to 1

minimum – lower bound on the unclipped objective

(Schulman et al., 2017) http://arxiv.org/abs/1707.06347
Summary

• Action selection = deciding what to do next
 • following a policy

• Approaches:
 • FSM, Frames, Rule-based
 • Machine learning (RL better than supervised)

• RL – agent in an environment, taking actions, getting rewards
 • optimizing value function \((V/Q) \) or policy
 • learning on-policy or off-policy (act by the policy you learn/not)
 • DQN – optimizing \(Q \) function with a network
 • batches, freezing, experience replay
 • Policy gradients – optimizing policy
 • Actor-Critic – optimizing policy & value function
 • ACER, PPO
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
(or on Slack)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html