

Statistical Dialogue Systems

NPFL099 Statistické Dialogové systémy

6. Dialogue Policy

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

7.11.2019

Dialogue Management

- Two main components:
 - State tracking (last lecture)
 - Action selection/Policy (today)

(from Milica Gašić's slides)

- action selection deciding what to do next
 - based on the current belief state under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic
- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don't be repetitive

e.g. ask for all information you require

Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state
- Frame-based (VoiceXML)
 - slot-filling + providing information basic agenda
 - rule-based in essence
- Rule-based
 - any kind of rules (e.g. Python code)
- Statistical
 - typically using reinforcement learning

DM with supervised learning

- Action selection ~ classification → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features
- Yes, but...
 - You'd **need** sufficiently large **human-human data** hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there's no single correct next action—multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won't behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs should behave differently make the best of what they have

NPFL099 L6 2019

DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - agent in an environment:
 - has internal **state** $s_t \in \mathcal{S}$ (~ dialogue state)
 - takes **actions** $a_t \in \mathcal{A}$ (~ system dialogue acts)
 - actions chosen according to **policy** $\pi: \mathcal{S} \to \mathcal{A}$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
 - Markov property state defines everything
 - no other temporal dependency
 - policy may be deterministic or stochastic
 - stochastic: prob. dist. of actions, sampling

Partially-observable MDPs

grey = observed
white = unobserved

- POMDPs belief states instead of dialogue states
 - true states ("what the user wants") are not observable
 - observations ("what the system hears") depend on states
 - belief probability distribution over states
 - can be viewed as MDPs with continuous-space states
- All MDP algorithms work…
 - if we quantize/discretize the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- Deep RL typically works out of the box
 - function approximation approach, allows continuous states

Reinforcement learning

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

alternative – **episodes**: only count to T when we encounter a terminal state (e.g. 1 episode = 1 dialogue)

accumulated long-term reward

$$R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$$
 $\gamma \in [0,1] =$ discount factor (immediate vs. future reward trade-off)

 $\gamma < 1 : R_t$ is finite (if r_t is finite)

 $\gamma = 0$: greedy approach (ignore future rewards)

state transition is stochastic → maximize expected return

 $\mathbb{E}[R_t|\pi,s_0]$ expected R_t if we start from state s_0 and follow policy π

State-value Function

- Using return, we define the **value of a state** s under policy $\pi: V^{\pi}(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (Bellman Equation):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$\underset{a \text{ from } s \text{ under } \pi}{\text{probs. of choosing transition probs.}} \text{transition immediate reward}$$

• $V^{\pi}(s)$ defines a **greedy policy**:

actions that look best for the next step

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg\max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) (r(s,a,s') + \gamma V^{\pi}(s')) \\ 0 \text{ otherwise} \end{cases}$$

Action-value (Q-)Function

- $Q^{\pi}(s,a)$ -return of taking action a in state s, under policy π
 - Same principle as value $V^{\pi}(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s, a_{0} = a\right] = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left(r(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s',a') \pi(s',a')\right)$$

• $Q^{\pi}(s,a)$ also defines a greedy policy: _again, "actions that look best for the next step"

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg\max_{a} Q^{\pi}(s,a) & -\text{simpler: no need to enumerate } s', \\ 0 \text{ otherwise} & -\text{no need to know } p(s'|s,a) \text{ and } r(s,a,s') \end{cases}$$

but Q function itself tends to be more complex than V

Optimal Policy in terms of V and Q

- optimal policy π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
 - $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \rightarrow$ use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \ge V^{\pi'}(s) \ \forall \pi', \forall s \in \mathcal{S}$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s,a) \coloneqq \max_{\pi} Q^{\pi}(s,a)$
- greedy policies with $V^*(s)$ and $Q^*(s,a)$ are optimal
 - we can search for either π^* , $V^*(s)$ or $Q^*(s,a)$ and get the same result
 - each has their advantages and disadvantages

NPFL099 L6 2019

RL Agent Taxonomy

- Quantity to optimize:
 - value function **critic**
 - policy actor
 - both actor-critic
- Environment model:
 - model-based (assume known p(s'|s,a), r(s,a,s))
 - model-free (don't assume anything, sample)
 - this is where using Q instead of V comes handy

(from David Silver's slides)

RL Approaches

- How to optimize:
 - dynamic programming find the exact solution from Bellman equation
 - iterative algorithms, refining estimates
 - expensive, assumes known environment
 - Monte Carlo learning learn from experience
 - sample, then update based on experience
 - **Temporal difference** learning like MC but look ahead (bootstrap)
 - sample, refine estimates as you go
- Sampling & updates:
 - on-policy improve the policy while you're using it for decisions
 - off-policy decide according to a different policy

NPFL099 L6 2019 12

Deep Reinforcement Learning

ÚFAL EURSTROOM

- Exactly the same as "plain" RL
 - agent & environment, actions & rewards
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- function approximation approach
 - Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 - enumerating in a table would take up too much space, be too sparse
 - the parameters θ are optimized
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states
- needs tricks to make it stable

Q-Learning

- temporal difference update Q as you go
- off-policy directly estimates best Q^{*}
 - regardless of policy used for sampling

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge

Action taken: Nort
Action with max Q
value at S': East

- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:

- $a = \begin{cases} \arg\max_{a} Q(s, a) \text{ with probability } 1 \epsilon \\ \operatorname{random action with probability } \epsilon \end{cases}$
- choose a from s according to ϵ -greedy policy based on Q
- take action a, observe observe reward r and state s'

•
$$Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a')\right)$$

• $s \leftarrow s'$

update uses best a', regardless of current policy:

a' is not necessarily taken in the actual episode

TD: moving estimates

State: S' Action taken: North (any action)

Deep Q-Networks

(Mnih et al., 2013, 2015) http://arxiv.org/abs/1312.5602 http://www.nature.com/articles/nature14236

- Q-learning, where Q function is represented by a neural net
- Causes of poor convergence in basic Q-learning with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using Q in computing updates to Q)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- Fixes in DQN:
 - a) minibatches (updates by averaged n samples, not just one)

cool!

- b) experience replay
- c) freezing target Q function

d) clipping rewards __

____ common NN tricks

NPFL099 L6 2019

DQN tricks ~ making it more like supervised learning

• Experience replay – break correlated samples

generate your own 'supervised' training data"

- run through some episodes (dialogues, games...)
- store all tuples (s, a, r', s') in a buffer —
- for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
- overwrite buffer as you go, clear buffer on ce in a while
- only possible for off-policy

loss :=
$$\mathbb{E}_{(s,a,r',s')\in \text{buf}}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\boldsymbol{\theta})$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ -greedy policy based on $Q(\theta)$ take a observe reward r' and new state s'
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$

often \longrightarrow • once every k steps:

- sample a batch B of random (s, a, r', s')'s from D• update $\boldsymbol{\theta}$ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^2\right]$ "replay" a. k. a. training

rarely \longrightarrow • once every λ steps:

•
$$\overline{\theta} \leftarrow \theta$$

storing experience

DQN for Atari

input: Atari 2600 screen, downsized to 84x84 (grayscale) 4 last frames

(Mnih et al., 2015)

- 4-layers:
 - 2x CNN
 - 2x fully connected with ReLU activations
- Another trick:
 - output values for all actions at once
 - \sim vector Q(s) instead of Q(s, a)
 - *a* is not fed as a parameter
 - faster computation
- Learns many games at human level
 - with the same network structure
 - no game-specific features

Fully connected values for all actions (joystick moves) $\hat{q}(s,a_1,\mathbf{w}) \cdots \hat{q}(s,a_m,\mathbf{w})$ â(s,a,**w**) (from David Silver's slides)

https://youtu.be/V1eYniJ0Rnk?t=18

DQN for Dialogue Systems

(Li et al., 2017) https://arxiv.org/abs/1703.01008 https://github.com/MiuLab/TC-Bot

DQN can drive action selection

(Lipton et al., 2018) https://arxiv.org/abs/1608.05081

- warm start needed to make the training actually work:
 - pretrain the network using supervised learning
 - replay buffer spiking initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

movie ticket booking: better than rule-based

replay memory initialized using a simple handcrafted policy

BBQ – Bayes-by-Backprop Q-Networks

- better exploration than ϵ -greedy explore uncertain regions
- Bayes-by-Backprop prob. dist. over network weights
 - start from prior $p(\theta)$, learn posterior $p(\theta|D)$ for training data D
 - posterior approximated by Gaussians $q(\theta|w)$, each $\theta_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 - now learning $w_i = \{(\mu_i, \rho_i)\}$ where $\sigma_i = \log(1 + \exp \rho_i)$, to keep σ_i positive
 - VAE-style: minimizing KL divergence between q and p, reparameterization trick
- using BB to represent DQN + posterior (Thompson) sampling
 - actions sampled acc. to posterior prob. they're optimal in current state
 - just sample θ_t from q, then choose $a_t = \arg \max_a Q(s_t, a; \theta_t)$
- no need to sample for the target network, just use $\overline{\mu}$
 - faster, actually more stable

BBQ performance

MLP with 2 hidden layers, ReLU, width=256 movie booking task one-hot dialogue state representation (268 dim) 39 actions (basic *hello()*, *deny()*, *thanks()* etc. + inform/request for each slot)

Recurrent Q-Networks

(Zhao & Eskenazi, 2016) http://arxiv.org/abs/1606.02560

Joint dialogue tracking & action selection

- actions are either system DAs or updates to state (DB hypothesis)
- forced to alternate action types by masking
- rewards from DB for narrowing down selection
- Models the Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

Policy Gradients

- instead of value functions, train a network to represent the policy
- allows better sampling acc. to actual stochastic policy
- performance metric: $J(\theta) = V^{\pi_{\theta}}(s_0)$
 - expected return in starting state when following π_{θ}
 - we want to directly optimize this using gradient ascent

Policy Gradient Theorem:

• expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s,\theta)$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) = E_{\pi} \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) \right]$$

 $\mu(s)$ is state probability under π – this is the same as expected value E_{π}

REINFORCE: Monte Carlo Policy Gradients

this will guarantee

distribution/frequency $\mu(s)$

the right state

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot \mid \cdot, \boldsymbol{\theta})$
 - for each $t = 0.1 \dots T$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \boldsymbol{\theta})$

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

variant - advantage instead of returns:

discounting a **baseline**

b(s) (predicted by any model)

 $A_t = R_t - b(s_t)$ instead of R_t gives better performance

a good b(s) is actually V(s)

this is stochastic $\nabla J(\boldsymbol{\theta})$:

- from policy gradient theorem
- using single action sample a_t
- expressing Q^{π} as R_t (under E_{π})
- using $\nabla \ln x = \frac{\nabla x}{x}$

Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates α^{θ} , α^{w}
- loop forever:
 - set initial state *s* for the episode
 - for each step *t* of the episode:

• compute **advantage** $A \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w)$

• update
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t A \nabla \ln \pi(a|s,\boldsymbol{\theta}), \boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha^{\boldsymbol{w}} \cdot A \nabla \hat{V}(s,\boldsymbol{w})$$

• $s \leftarrow s'$

actor (policy update)

critic (value function update)

same as REINFORCE, except:

- we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)

TD: update

after each step

ACER: Actor-Critic with Experience Replay

- off-policy actor-critic using experience replay buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using "old" $\tilde{\theta}$), it's considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 - sampling behaviour from $\pi_{\widetilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias **importance sampling**: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled

TRACER: Trust-Region ACER

- basic ACER may be unstable/slow to learn
 - prone to excessively large updates
 - need to set learning rates low
 - high learning rate = unstable, high variance
 - low learning rate = too slow

- limit on KL-divergence change b/t updated policy θ & average policy $\overline{\theta}$
 - $\overline{\theta}$ is a moving average of past policies: $\overline{\theta} \leftarrow \alpha \overline{\theta} + (1 \alpha)\theta$
 - modified policy gradient g is defined as: $\min_g \frac{1}{2} ||\nabla \theta g||_2^2$ so that $\nabla KL[\pi_{\overline{\theta}}(s_t)||\pi_{\theta}(s_t)]^Tg \leq \xi$
 - i.e. the closest you can get to the gradient, but don't increase KL between the average and new policy too much
 - quadratic programming, has closed solution

sum of squared differences (square of L2)

Proximal Policy Optimization

- Changing the objective to be more like trust-region
 - without the need to adjust gradients & do the optimization
- Basically clipping the objective
 - define $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)}$ ratio to old params
 - starting from $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\widetilde{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta) \hat{A}_t]$ (see ACER)
 - using $\hat{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip} \left[r_t(\theta) \hat{A}_t \right]_{1-\epsilon}^{1+\epsilon} \right) \right]$ original clipped to stay close to 1

minimum – lower bound on the unclipped objective

Summary

- Action selection = deciding what to do next
 - following a policy
- Approaches:
 - FSM, Frames, Rule-based
 - Machine learning (RL better than supervised)
- RL agent in an environment, taking actions, getting rewards
 - optimizing value function (V/Q) or policy
 - learning on-policy or off-policy (act by the policy you learn/not)
 - DQN optimizing Q function with a network
 - batches, freezing, experience replay
 - Policy gradients optimizing policy
 - Actor-Critic optimizing policy & value function
 - ACER, PPO

NPFL099 L6 2019

Thanks

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz (or on Slack) Labs today 14:00 SW1 Projects updates

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
- Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf