5. Dialogue State Tracking

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

31. 10. 2019
Dialogue State Tracking

• Dialogue management consist of:
 • State update ← here we need DST
 • Action selection (later)

• Dialogue State needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.
Dialogue State Contents

• “All that is used when the system decides what to say next” (Henderson, 2015)

• **User goal/preferences ~ NLU output**
 - slots & values provided (search constraints)
 - information requested

• **Past system actions**
 - information provided
 - slots and values
 - list of venues offered
 - slots confirmed
 - slots requested

• **Other semantic context**
 - user/system utterance: bye, thank you, repeat, restart etc.
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – **belief state**
Belief State

• Assume we don’t know the true current dialogue state s_t
 • states *(what the user wants)* influence observations o_t *(what the system hears)*
 • based on observations o_t & system actions a_t, we can estimate a probability distribution $b(s)$ over all possible states – **belief state**

• More robust than using dialogue state directly
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
 • but not only them – rule-based, too
Belief State

1. I'm looking for a Thai restaurant.
 - **Observations:**
 - `hello(type=restaurant)` with probability 0.6
 - `inform(type=restaurant, food=Thai)` with probability 0.4

2. Thai.
 - **Observations:**
 - `hello()` with probability 0.5
 - `inform(food=Turkish)` with probability 0.3
 - `inform(food=Thai)` with probability 0.2

Belief States and Actions

- **No Probability Accumulation (1-best, no state):**
 - Actions: You are looking for a restaurant right?
 - Belief States:
 - `type`: 0.6, 0.4
 - `food`: 0.4, 0.6

- **Accumulating Over NLU n-best List (still no state):**
 - Actions: What kind of food would you like?
 - Belief States:
 - `type`: 0.6, 0.4
 - `food`: 0.2, 0.3

- **Accumulating Over NLU n-best + turns:**
 - Actions: Did you say Thai or Turkish?
 - Belief States:
 - `type`: 0.8, 0.2
 - `food`: 0.2, 0.3

This is what we need (=belief state)

(from Milica Gašić's slides)
Basic Discriminative Belief Tracker

- **Partition the state** by assuming conditional independence
 - simplify – assume each slot is independent:
 - state $s = [s^1, \ldots, s^N]$, belief $b(s_t) = \prod_i b(s^i_t)$

- **Always trust the NLU**
 - this makes the model parameter-free
 - …and basically rule-based
 - but very fast, with reasonable performance

Update rule

$$b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})$$

discriminative model

- substitution

$$p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) = \begin{cases} p(o^i_t) & \text{if } s^i_t = o^i_t \land o^i_t \neq \text{ Pill } \\ p(o^i_t) & \text{if } s^i_t = s^i_{t-1} \land o^i_t = \text{ Pill } \\ 0 & \text{otherwise} \end{cases}$$

- user silent about slot i

$$(\text{Žilka et al., 2013})$$

http://www.aclweb.org/anthology/W13-4070
Basic Feed-forward Tracker

• a simple feed-forward network
 • input – features (w.r.t. slot-value \(v \) & time \(t \))
 • SLU score of \(v \)
 • n-best rank of \(v \)
 • user & system act type
 • … – domain-independent, low-level NLU outputs
• 3 tanh layers
• output – softmax (= probability distribution over values)

• static – does not model dialogue as a sequence
 • uses a sliding window – current time \(t \) + few steps back + \(\sum \) previous

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
- does not need NLU
 - turn features = lexicalized + delexicalized n-grams from ASR n-best list, weighted by confidence
- delexicalization very harsh: <slot> <value>
 - you don’t even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- **dynamic** – explicitly models dialogue as sequence
 - using the network recurrence

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190
Neural/Rule Hybrid

- explicit update over belief
 - per-slot model (separate for each slot)
 - simple update rule R
 - for a value: add $a \cdot$ current NLU confidence, normalize
 - differentiable, can be trained end-to-end
 - trained models F, G provide a
 - F is generic LSTM, G is value specific feed-forward

- needs an NLU, but postprocesses it
 - input & output of tracker NLU step
 - $= \text{prob. dist. of informs over slot values in current turn}$
 - generic & specific part again

(Vodolán et al., 2017)
http://arxiv.org/abs/1702.06336
Incremental Recurrent Tracker

- simple: LSTM over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)
 - classification can occur after each word, right as it comes in from ASR
- also dynamic/sequential
- also doesn’t use any NLU
 - infrequent values are delexicalized (otherwise it can’t learn them)
- slightly worse performance – possible causes:
 - only uses ASR 1-best
 - long recurrences (no hierarchy)

(Žilka & Jurčiček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471
NBT

\[\mathbf{m}_r = (\mathbf{c}_s \cdot \mathbf{t}_q) \mathbf{r} \]

\[\mathbf{m}_c = (\mathbf{c}_s \cdot \mathbf{t}_s)(\mathbf{c}_v \cdot \mathbf{t}_v) \mathbf{r} \]

\[\mathbf{c} = \sigma(\mathbf{W}_c^s(\mathbf{c}_s + \mathbf{c}_v) + \mathbf{b}_c^s) \]

\[\mathbf{d} = \mathbf{r} \otimes \mathbf{c} \]

\[\mathbf{y} = \phi_2(\phi_{100}(\mathbf{d}) + \phi_{100}(\mathbf{m}_r) + \phi_{100}(\mathbf{m}_c)) \]
NBT

• Better use of data: Getting rid of delexicalization
 • pre-trained word vectors – important!
 • shared parameters
 • RNN/CNN feature extractors
• Discriminative learning slot values

Belief state update

\[P(s, v \mid h^{1:t}, sys^{1:t-1}) = \lambda P(s, v \mid h^t, sys^{t-1}) + (1 - \lambda) P(s, v \mid h^{1:t-1}, sys^{1:t-2}) \]

<table>
<thead>
<tr>
<th>DST Model</th>
<th>DSTC2 Goals</th>
<th>DSTC2 Requests</th>
<th>WOZ 2.0 Goals</th>
<th>WOZ 2.0 Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delexicalisation-Based Model</td>
<td>69.1</td>
<td>95.7</td>
<td>70.8</td>
<td>87.1</td>
</tr>
<tr>
<td>Delexicalisation-Based Model + Semantic Dictionary</td>
<td>72.9*</td>
<td>95.7</td>
<td>83.7*</td>
<td>87.6</td>
</tr>
<tr>
<td>Neural Belief Tracker: NBT-DNN</td>
<td>72.6*</td>
<td>96.4</td>
<td>84.4*</td>
<td>91.2*</td>
</tr>
<tr>
<td>Neural Belief Tracker: NBT-CNN</td>
<td>73.4*</td>
<td>96.5</td>
<td>84.2*</td>
<td>91.6*</td>
</tr>
</tbody>
</table>

(Mrkšić et al., 2017)
https://www.aclweb.org/anthology/P17-1163
Candidate Ranking

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

• Previous systems consider all values for each slot
 • this is a problem for open-ended slots (e.g. restaurant name)
 • enumerating over all takes ages, some are previously unseen

• Alternative: always consider just K candidates
 • use last K candidates from system actions and NLU output
 • NB: only way history is incorporated here!
 • select from them using a per-slot softmax

representation of i-th candidate:
utterance/slot/candidate features (next slide)

2 sigmoid layers

additional values to consider (even if not mentioned in NLU)
Candidate Ranking – representation

- Using BiGRU over lexicalized & delexicalized utterance

- Features:
 - **utterance** – last GRU state + indicators for non-slot DAs (user & prev. system)
 - **slot** – indicators for DAs with this slot (user & prev. system) + last turn scores for *null* & *dontcare*
 - **candidate** – GRU states over matched value words + indicators for DAs with this slot & value (user & prev. system)
Multi-value Candidate Ranking

• What if multiple values are true?
 • previous approach picks one (softmax)
 • use set of binary classifiers (log loss) instead
• + more flexible regarding candidates
 • can be past \(k \) from NLU, but also just current ASR n-grams
 • this model keeps track of context by itself

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891
Hybrid Classify/Rank

- Ranking is faster & more flexible
- Classification over all values is more accurate
 - at least for most slots, where # of values is limited
- Solution: combine classification & ranking
 - choose best model for each slot based on dev data performance
- Ranking approach – multi-value from previous slide
- Classification approach – straightforward: hierarchical LSTM + per-slot feed-forward + softmax

metric: \textit{joint goal accuracy}

- exact match on dialogue state
- (most probable value only)

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority Baseline</td>
<td>1.5%</td>
</tr>
<tr>
<td>MultiWOZ-2.0 Benchmark</td>
<td>25.83%</td>
</tr>
<tr>
<td>Ranking only</td>
<td>31.11% (29.73%)</td>
</tr>
<tr>
<td>Classification only</td>
<td>40.74% (38.42%)</td>
</tr>
<tr>
<td>Hybrid</td>
<td>44.24% (42.33%)</td>
</tr>
</tbody>
</table>

ensemble (majority vote of 3 models)
single model

separate for each slot

shared across slots

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883
Using BERT

- Very basic:
 - run BERT over previous system & current user utterance
 - from 1st token’s representation, get a decision: none/dontcare/span
 - per-slot (BERT is shared, but the final decision is slot-specific)
 - span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes
 - carry-over across multiple turns is rule-based:
 - if none is predicted, keep previous value, otherwise change it

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040
Slot-Utterance Matching Belief Tracker

- different take on BERT trackers
 - inspired by reading comprehension
 - considers “domain – slot” a question & tries to find the value in the input utterance
- tracker over BERT
 - attention + turn-based RNN
 - attention in current utterance
 - RNN (LSTM/GRU) for carry-over of past values
 - layer normalization to match BERT outputs
 - BERT includes layer normalization by default
 - trained to match the correct values in the utterance
 - loss: distance of true value BERT encoding from the tracker output (Euclidean/Cosine)

(Lee et al., 2019)
http://arxiv.org/abs/1907.07421
• Also uses BERT, but not necessarily
 • works slightly worse with random-initialized word embeddings

• sequence of 3 decisions
 • do we carry over last turn’s prediction? (Yes/No)
 • if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 • if span: predict span’s start and end

2 prediction softmaxes:
1 for span start, 1 for end

input: whole dialogue, concatenated

this can be BERT

slot embedding

final LSTM states in both directions

binary vector over M slots
Dialogue State as SQL

• User goal is a query → why not SQL query?
• Text-to-SQL models used for tracking
 • with contextual enhancements, input:
 • all user inputs so far
 • previous system response
 • database schema
• Seq2seq-based model example:
 • hierarchical LSTM for encoding user & system
 • database column embeddings
 = averaged embeddings over table + column name
 • decoder:
 • decide between SQL keyword vs. column
 • then select which keyword / column via softmax
• So far, experimental – performance is low

Yu et al., 2019
Summary

• State tracking is needed to maintain user goal over multiple turns
• Best to make the state probabilistic – belief state
• Architectures – many options
 • good NLU + rules – works well!
 • neural, hybrid
 • static (sliding-window) vs. dynamic (recurrent, modelling dialogue as sequence)
 • with/without NLU
 • classifiers vs. candidate rankers vs. reading comprehension
 • classifiers are more accurate than rankers but slower, limited to seen values
 • reading comprehension is a very new approach, works nicely but probably slow
 • BERT & co. as usual – good but slow
 • incremental – not used too much so far
• Alternative/experimental: SQL instead of slots/values
Thanks

Contact us:
 odusek@ufal.mff.cuni.cz
 hudecek@ufal.mff.cuni.cz

Get these slides here:
 http://ufal.cz/npfl099

References/Inspiration/Further:

 • Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
 https://ai.google/research/pubs/pub44018