

Statistical Dialogue Systems

NPFL099 Statistické Dialogové systémy

4. Language Understanding

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

24. 10. 2019

Natural Language Understanding

- words → meaning
 - whatever "meaning" is can be different tasks
 - typically structured, explicit representation
- alternative names/close tasks:
 - spoken language understanding
 - semantic decoding/parsing
- integral part of dialogue systems, also explored elsewhere
 - stand-alone semantic parsers
 - other applications:
 - human-robot interaction
 - question answering
 - machine translation (not so much nowadays)

NPFL099 L4 2019

NLU Challenges

non-grammaticality

find something cheap for kids should be allowed

uhm I'm looking for a cheap

uhm I want something in the west the west part of town

uhm find something uhm something cheap no I mean moderate

- disfluencies
 - hesitations pauses, fillers, repetitions
 - fragments
 - self-repairs (~6%!)
- ASR errors
- synonymy

I'm looking for a for a chip Chinese rest or rant

• out-of-domain utterances

oh yeah I've heard about that place my son was there last month

Chinese city centre
uhm I've been wondering if you could find me
a restaurant that has Chinese food close to
the city centre please

NPFL099 L4 2019

Semantic representations

- syntax/semantic **trees**
 - typical for standalone semantic parsing
 - different variations

frames

- technically also trees, but smaller, more abstract
- (mostly older) DSs, some standalone parsers
- graphs (AMR)
 - trees + co-reference
 (e.g. pronouns referring to the same object)
- dialogue acts = intent + slots & values
 - flat no hierarchy
 - most DSs nowadays

SENTENCE

oui l'hôtel don't le prix ne dépasse pas cent dix euros

response: oui refLink: co-ref. singular BDObject: hotel

room

ment: amount

comparative: les integer: 11 unit: eu

https://www.isca-speech.org/ archive/interspeech 2005/i05 3457.htm

Handling ASR noise

- ASR produces multiple hypotheses
- Combine & get resulting NLU hypotheses
 - NLU: p(DA|text)
 - ASR: *p*(text|audio)
 - we want p(DA|audio)
- Easiest: sum it up

$$p(DA|audio) = \sum_{texts} P(DA|text)P(text|audio)$$

Alternative: confusion nets with weighted words

```
0.33 — I am looking for a bar

0.26 — I am looking for the bar

0.11 — I am looking for a car

0.09 — I am looking for the car

0.59 — inform(task=find, venue=bar)

0.20 — null()
```

(from Filip Jurčíček's slides)

Out-of-domain queries

(Larson et al., 2019) http://arxiv.org/abs/1909.02027

You have \$1.847.51

in-domain

across your 3 accounts.

What is my balance?

misrecognized out-of-domain

How are my sports teams

Your last payday was on the 1st of November.

correctly captured out-of-domain

Who has the best record in the NBA?

Sorry, I can only answer questions about banking

- Handcrafted: no pattern matches → out-of-domain
- Datasets rarely taken into account!
- Low confidence on any intent → out-of-domain?
 - might work, but likely to fail (no explicit training for this)
- Out-of-domain data + specific intent
 - adding OOD from a different dataset
 - problem: "out-of-domain" should be broad, not just some different domain
 - collecting out-of-domain data specifically
 - worker errors for in-domain
 - replies to specifically chosen irrelevant queries
 - always need to ensure that they don't match any intent randomly
 - not so many instances needed (expected to be rare)

NLU as classification

- using DAs treating them as a set of semantic concepts
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept
- consistency problems
 - conflicting intents (e.g. *affirm* + *negate*)
 - conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 - need to be solved externally, e.g. based on classifier confidence

NPFL099 L4 2019

NER + delexicalization

Approach:

What is the phone number for Golden Dragon? What is the phone number for <restaurant-name>?

I'm looking for a Japanese restaurant in Notting Hill.

- 1) identify slot values/named entities
- 2) delexicalize = replace them /'m looking for a <food> restaurant in <area>.
 with placeholders (indicating entity type)
 - or add the NE tags as more features for classification
- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers
- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - in-domain gazetteers, in-domain training data

NLU Classifier models

- note that data is usually scarce!
- handcrafted / rules
 - simple mapping: word/n-gram/regex match → concept
 - can work really well for a limited domain
 - no training data, no retraining needed (tweaking on the go)

linear classifiers

- logistic regression, SVM...
- need handcrafted features
- neural nets

NPFL099 L4 2019

NN neural classifiers

- intent multi-class (softmax)
- slot tagging set of binary classifiers (logistic loss)
- using word embeddings (task-specific or pretrained)
 - no need for handcrafted features
 - still needs delexicalization (otherwise data too sparse)

https://colinraffel.com/publications/iclr2016feed.pdf

- different architectures possible
 - bag-of-words feed-forward NN
 - RNN / CNN encoders + classification layers
 - attention-based

- get slot values directly no need for delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach
- rules + classifiers still work
 - a) keywords/regexes found at specific position
 - b) apply classifier to each word in the sentence left-to-right
- linear classifiers are still an option

I need a flight from Boston to New York tomorrow

B-dept O B-arr I-arr B-date

Neural sequence tagging

- Basic neural architecture:
 RNN (LSTM/GRU) → softmax over hidden states
 - + some different model for intents (such as classification)
- Sequence tagging problem: overall consistency
 - slots found elsewhere in the sentence might influence what's classified now
 - may suffer from label bias
 - trained on gold data single RNN step only
 - during inference, cell state is influenced by previous steps danger of cascading errors
 - solution: structured/sequence prediction
 - conditional random fields
 - can run CRF over NN outputs

Joint Intent & Slots Model

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

- Same network for both tasks
- Bidirectional encoder
 - 2 encoders: left-to-right, right-to-left
 - "see everything before you start tagging"
- Decoder tag word-by-word, inputs:
 - a) attention
 - b) input encoder hidden states ("aligned inputs")
 - c) both
- Intent classification: softmax over last encoder state
 - + specific intent context vector c_{intent} (attention)

NN for Joint Intent & Slots

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

- Extended version: use slot tagging results in intent classification
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder
 - attention over slots decoder states
- Training for both intent & slot detection improves results on ATIS flights data
 - this is multi-task training [©]
 - intent error lower $(2\% \rightarrow 1.5\%)$
 - slot filling slightly better (F1 95.7% → 95.9%)
- Variant: treat intent detection as slot tagging
 - append <EOS> token & tag it with intent

5k instances

17 intents ~100 slots

Joint intents & slots (Gupta et a http://arxiv

(Gupta et al., 2019) http://arxiv.org/abs/1903.08268

- shared "word contextualization"
 - feed-forward \sum word + trained position embeddings
 - CNNs
 - (Transformer-style) attention with relative position
 - trained relative position embeddings instead of Transformer fixed absolute position embedding
 - LSTM
- task-specific network parts
 - intent: weighted sum of contextualized embeddings + softmax
 - slots tagging:
 - independent non-recurrent, depend only on current embedding: $P(l_i|\mathbf{h}_i)$
 - label-recurrent depend on past labels & current embedding: $P(l_i|l_{1,...i-1},\mathbf{h}_i)$
 - faster than word-recurrent

Joint intents & slots w/context embeddings Fall

- CNN > LSTM > attention > feed-forward
 - CNNs are also faster than anything other than FF
- label-recurrent models mostly better than independent
 - except intent classification (non-recurrent task) on 1 dataset

Model	label recurrent	l	classif. uracy	slot labelling F1		Inference ms/utterance	Epochs to converge	s/epoch	# params
		Snips	ATIS	Snips	ATIS				Parame
FEED-FORWARD	No	98.56	97.14	53.59	69.68	0.61	48	1.82	17k
FEED-FORWARD	Yes	98.54	97.46	75.35	88.72	1.82	83	2.52	19k
CNN, 5KERNEL, 1L	No	98.56	98.40	85.88	94.11	0.82	23	1.90	42k
CNN, 5KERNEL, 3L	No	99.04	98.42	92.21	96.68	1.37	55	2.16	91k
CNN, 3KERNEL, 4L	No	98.81	98.32	91.65	96.75	1.28	57	2.29	76k
CNN, 5KERNEL, 1L	Yes	98.85	98.36	93.12	96.39	2.13	51	2.77	43k
CNN, 5KERNEL, 3L	Yes	99.10	98.36	94.22	96.95	2.68	59	3.34	93k
CNN, 3KERNEL, 4L	Yes	98.96	98.32	93.71	96.95	2.60	53	3.43	78k
ATTN, 1HEAD, 1L, NO-POS	No	98.50	97.51	53.61	69.31	1.95	25	1.94	22k
ATTN, 1HEAD, 1L	No	98.53	97.74	75.55	93.22	4.75	117	4.34	23k
ATTN, 1HEAD, 3L	No	98.74	98.10	81.51	94.07	7.68	160	4.32	33k
ATTN, 2HEAD, 3L	No	98.31	98.10	83.02	94.61	7.86	79	4.87	47k
ATTN, 1HEAD, 1L, NO POS	Yes	98.63	97.68	74.94	88.60	3.24	60	2.66	24k
ATTN, 1HEAD, 1L	Yes	98.61	98.00	86.72	94.53	6.12	89	5.53	24k
ATTN, 1HEAD, 3L	Yes	98.51	98.26	88.04	94.99	9.03	109	6.06	34k
ATTN, 2HEAD, 3L	Yes	98.48	98.26	89.31	95.86	9.17	93	6.54	49k
LSTM, 1L	No	98.82	98.34	91.83	97.28	2.65	45	2.91	47k
LSTM, 2L	No	98.77	98.20	93.10	97.36	4.72	58	5.09	77k
LSTM, 1L	Yes	98.68	98.36	93.83	97.37	3.98	54	4.62	49k
LSTM, 2L	Yes	98.71	98.30	93.88	97.28	6.03	69	6.82	79k

Seq2seq-based NLU

(Zhao & Feng, 2018) https://www.aclweb.org/anthology/P18-2068/

Model	P	R	\mathbf{F}
CNN	93.5	78.5	85.3
Seq2Seq w/ attention	87.5	82.7	
Our model	89.0	82.8	85.8

DSTC2 results

- seq2seq with copy mechanism = pointer-generator net
 - normal **seq2seq** with attention generate output tokens (softmax over vocabulary)
 - pointer net: select tokens from input (attention over input tokens)
 - prediction = weighted combination of →
- can work with out-of-vocabulary
 - e.g. previously unseen restaurant names
 - (but IOB tagging can, too)
- generating slots/values + intent
 - it's not slot tagging (doesn't need alignment)
 - works for slots expressed implicitly or not as consecutive phrases
 - treats intent as another slot to generate

Can I bring my kids along to this restaurant?

I want a Chinese place with a takeaway option.

confirm(kids_friendly=yes)
inform(food=Chinese_takeaway)

BERT-based NLU

- slot tagging on top of pre-trained BERT
 - standard IOB approach
 - just feed final hidden layers to softmax over tags
 - classify only at 1st subword in case of split words (don't want tag changes mid-word)
- special start token tagged with intent
- optional CRF on top of the tagger
 - for global sequence optimization

intent tag			slot tags	
		/		only 1 tag for whole word
PlayMusic	0		I-track	
Trm	Trm		Trm Trm	Trm Trm
Trm	Trm		Trm Trm	Trm Trm
E ₁	E ₂		E ₂ E _{T-2}	E _{T-1} E _T
[CLS]	play		red ##bre (##ast [SEP]
†			subwords	5
start toke	en			

slightly different numbers, most probably a reimplementation

	Models	Snips			ATIS		
	Wiodels		Slot	Sent	Intent	Slot	Sent
	RNN-LSTM (Hakkani-Tür et al., 2016)	96.9	87.3	73.2	92.6	94.3	80.7
•	AttenBiRNN (Liu and Lane, 2016)	96.7	87.8	74.1	91.1	94.2	78.9
	Slot-Gated (Goo et al., 2018)	97.0	88.8	75.5	94.1	95.2	82.6
	Joint BERT	98.6	97.0	92.8	97.5	96.1	88.2
	Joint BERT + CRF	98.4	96.7	92.6	97.9	96.0	88.6
		1	-				

accuracy

% completely correct sentences

Regex + NN NLU

(Luo et al., 2018) http://arxiv.org/abs/1805.05588

- Regexes as manually specified features
 - binary: any matching sentence (for intents)
 - + any word in a matching phrase (for slots)
 - regexes meant to represent an intent/slot
 - combination at different levels
 - "input": aggregate word/sent + regex embeddings (at sentence level for intent, word level for slots)
 - "network": per-label supervised attentions (log loss for regex matches)
 - 3) "output": alter final softmax (add weighted regex value)
- Good for limited amounts of training data
 - works with 10-20 training examples per slot/intent
 - still improves a bit on full ATIS data —

Model	Intent	Slot		
Model	Macro-F1/Accuracy	Macro-F1/Micro-F1		
Liu&Lane (2016)	- / 98.43	- / 95.98		
no regex (BiLSTM)	92.50 / 98.77	85.01 / 95.47		
(1) input	91.86 / 97.65	86.7 / 95.55		
(3) output	92.48 / 98.77	86.94 / 95.42		
(2) network	96.20 / 98.99	85.44 / 95.27		

NLU as semantic parsing

(Damonte et al., 2019) http://arxiv.org/abs/1903.04521

transition-based parsing

- actions over input build semantic tree gradually
- using stack:
 - create terminal node (+ select what kind)
 - create non-terminal node (+ select what kind)
 - reduce pop node from stack
- can parse into intent-slot-value shallow trees
- found to improve cross-domain performance
 - multi-task learning/transfer learning (pretrain + tune)

FindCinemaIntent which cinemas screen Star Title Wars Title tonight Time FindCinema Title Title Time tonight Wars

Involving Syntax

- not an ideal NLU representation by itself
- can help with the representation
 - statistical parsing + rules on top
 - statistical parser output as features for statistical NLU models
 - incl. multi-task training
- dependencies > phrase trees
 - relationships within noun phrases
 - standard structures: Universal Dependencies
 - works for many different languages
 - puts important relations to the top of the tree
- not much used in DSs, yet
 - dialogue training dataset only came out recently
 - parsers trained on written texts (news etc.) don't work well syntax is different

(Davidson et al., 2019)

http://arxiv.org/abs/1909.03317

Universal Intents

General (Task)

- typically DAs are domain-dependent
- ISO 24617-2 DA tagging standard
 - pretty complex: multiple dimensions
 - Task, Social, Feedback...
 - DA types (intents) under each dimension
- Simpler approach non-hierarchical
 - union looking at different datasets
- Mapping from datasets manual/semi-automatic
 - mapping tuned on classifier performance
- Intent tagging improved using multiple datasets/domains
 - generic intents only
- Slots stay domain-specific

ack, affirm, bye, deny, inform, repeat, requist, restart, thank-you, user-confirm, sys-impl-confirm, sys-expl-confirm, sys-hi, user-hi, sys-negate, user-negate, sys-notify-failure, sys-notify-success, sys-offer

(Mezza et al, 2018)

https://www.aclweb.org/anthology/C18-1300

(Paul et al, 2019)

http://arxiv.org/abs/1907.03020

Unsupervised NLU

(Shi et al., 2018) https://www.aclweb.org/anthology/D18-1072/

- Clustering intents & slots
- Features:
 - word embeddings
 - POS
 - word classes
 - topic modelling (biterm)

feature choice + AE seem to work quite well

71110					
Models	Intent Labeling Acc (%)				
topic model	25.4				
CDSSM vector	20.7				
glove embedding	25.6				
auto-dialabel	84.1				

ATIS

- Autoencoder to normalize # of dimensions for features
- Dynamic hierarchical clustering
 - decides # of clusters stops if cluster distance exceeds threshold
- Slot clustering word-level
 - over nouns, using intent clustering results

Unsupervised NLU with semantic frames

FAL

(Vojta's current work)

- Frame semantic parsing
 - Too general, not usable directly
 - Some frames redundant
- What about intents?

Unsupervised NLU

Unsupervised NLU

- Intent detection
 - Cluster utterances based on features
 - Number of clusters have to be chosen

27

Unsupervised NLU

- Slot induction
 - Based on frame semantic parser output
 - Multiple scoring functions
 - Ranking algorithm
 - Topic detection to group the frames

NPF

Unsupervised NLU - results

Camrest676

price	area	food	average
.353	.426	.584	.454

MultiWOZ-hotel

price	area	people	day	type	average
.059	.181	.652	.866	.000	.352

Unsupervised NLU - drawbacks

- How to estimate the output quality?
- How to use the inducted slots?
 - What do they represent?
 - How to align with db?
- How determine the number of intents?

Summary

- NLU is mostly intent classification + slot tagging
- Rules + simple methods work well with limited domains
- Neural NLU:
 - various architectures possible: CNN, LSTM, attention, seq2seq + pointer nets
 - slot tagging: sequence prediction label bias
 - it helps to do joint intent + slots
 - BERT et al. can help too, but these models are huge & expensive
 - NNs can be combined with regexes/handcrafted features
 - helps with limited data
- Experimental/alternative neural NLU:
 - using parsing (syntactic, semantic)
 - unsupervised approaches

Thanks

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz room 424 (but email me first)

Get the slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- mostly papers referenced from slides
- Milica Gašić's slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- Raymond Mooney's slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Hao Fang's slides (University of Washington): https://hao-fang.github.io/ee596 spr2018/syllabus.html
- Gokhan Tur & Renato De Mori (2011): Spoken Language Understanding

No labs today But choose your team on Slack!

Next week: with Vojta lecture on Dialogue State Tracking possible projects discussions