Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

4. Language Understanding

Ondřej Dušek & Vojtěch Hudeček
http://ufal.cz/npfl099
24. 10. 2019
Natural Language Understanding

• words → meaning
 • whatever “meaning” is – can be different tasks
 • typically structured, explicit representation

• alternative names/close tasks:
 • spoken language understanding
 • semantic decoding/parsing

• integral part of dialogue systems, also explored elsewhere
 • stand-alone semantic parsers
 • other applications:
 • human-robot interaction
 • question answering
 • machine translation (not so much nowadays)
NLU Challenges

• non-grammaticality
• disfluencies
 • hesitations – pauses, fillers, repetitions
 • fragments
 • self-repairs (~6%)
• ASR errors
• synonymy
• out-of-domain utterances

find something cheap for kids should be allowed

uhm I want something in the west the west part of town
uhm find something uhm something cheap no I mean moderate
uhm I’m looking for a cheap

I’m looking for a for a chip Chinese rest or rant

Chinese city centre
uhm I’ve been wondering if you could find me
a restaurant that has Chinese food close to
the city centre please

oh yeah I’ve heard about that place my son was there last month
Semantic representations

- **syntax/semantic trees**
 - typical for standalone semantic parsing
 - different variations

- **frames**
 - technically also trees, but smaller, more abstract
 - (mostly older) DSs, some standalone parsers

- **graphs** (AMR)
 - trees + co-reference (e.g. pronouns referring to the same object)

- **dialogue acts** = intent + slots & values
 - flat – no hierarchy
 - most DSs nowadays

```
inform(date=Friday, stay="2 nights")
```
Handling ASR noise

• ASR produces multiple hypotheses
• Combine & get resulting NLU hypotheses
 • NLU: \(p(DA|\text{text}) \)
 • ASR: \(p(\text{text}|\text{audio}) \)
 • we want \(p(DA|\text{audio}) \)
• Easiest: **sum it up**
 \[
p(DA|\text{audio}) = \sum_{\text{texts}} P(DA|\text{text}) P(\text{text}|\text{audio})
\]
• Alternative: confusion nets with weighted words

0.33 – I am looking for a bar
0.26 – I am looking for the bar
0.11 – I am looking for a car
0.09 – I am looking for the car
0.59 – inform(task=find, venue=bar)
0.20 – null()

(from Filip Jurčiček’s slides)
Out-of-domain queries

• Handcrafted: no pattern matches → out-of-domain
• Datasets – rarely taken into account!
• Low confidence on any intent → out-of-domain?
 • might work, but likely to fail (no explicit training for this)
• Out-of-domain data + specific intent
 • adding OOD from a different dataset
 • problem: “out-of-domain” should be broad, not just some different domain
 • collecting out-of-domain data specifically
 • worker errors for in-domain
 • replies to specifically chosen irrelevant queries
• always need to ensure that they don’t match any intent randomly
• not so many instances needed (expected to be rare)
NLU as classification

- using DAs – treating them as a **set of semantic concepts**
 - concepts:
 - intent
 - slot-value pair
 - binary classification: is concept Y contained in utterance X?
 - independent for each concept

- consistency problems
 - conflicting intents (e.g. **affirm + negate**)
 - conflicting values (e.g. **kids-allowed=yes + kids-allowed=no**)
 - need to be solved externally, e.g. based on classifier confidence
NER + delexicalization

Approach:

1) **identify** slot values/named entities
2) **delexicalize** = replace them with placeholders (indicating entity type)
 • or add the NE tags as more features for classification
 • generally needed for NLU as classification
 • otherwise in-domain data is too sparse
 • this can vastly reduce the number of concepts to classify & classifiers

• NER is a problem on its own
 • but general-domain NER tools may need to be adapted
 • in-domain gazetteers, in-domain training data

What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.
NLU Classifier models

• note that data is usually scarce!

• **handcrafted / rules**
 • simple mapping: word/n-gram/regex match → concept
 • can work really well for a limited domain
 • no training data, no retraining needed (tweaking on the go)

• **linear classifiers**
 • logistic regression, SVM…
 • need handcrafted features

• **neural nets**
NN neural classifiers

- intent – multi-class (softmax)
- slot tagging – set of binary classifiers (logistic loss)
- using word embeddings (task-specific or pretrained)
 - no need for handcrafted features
 - still needs delexicalization (otherwise data too sparse)
- different architectures possible
 - bag-of-words feed-forward NN
 - RNN / CNN encoders + classification layers
 - attention-based

Slot filling as sequence tagging

• get slot values directly – no need for delexicalization
 • each word classified
 • classes = slots & **IOB format** (inside-outside-beginning)
 • slot values taken from the text (where a slot is tagged)
 • NER-like approach

• rules + classifiers still work
 a) keywords/regexes found at specific position
 b) apply classifier to each word in the sentence left-to-right

• linear classifiers are still an option


```plaintext
I need a flight from Boston to New York tomorrow
O O O O B-dept O B-arr I-arr B-date
```
Neural sequence tagging

• Basic neural architecture:
 RNN (LSTM/GRU) → softmax over hidden states
 • + some different model for intents (such as classification)

• Sequence tagging problem: overall consistency
 • slots found elsewhere in the sentence might influence what’s classified now
 • may suffer from label bias
 • trained on gold data – single RNN step only
 • during inference, cell state is influenced by previous steps – danger of cascading errors

• solution: structured/sequence prediction
 – conditional random fields
 • can run CRF over NN outputs

Joint Intent & Slots Model

(Liu & Lane, 2016)
http://arxiv.org/abs/1609.01454

- Same network for both tasks
- Bidirectional encoder
 - 2 encoders: left-to-right, right-to-left
 - “see everything before you start tagging”
- Decoder – tag word-by-word, inputs:
 a) attention
 b) input encoder hidden states ("aligned inputs")
 c) both
- Intent classification: softmax over last encoder state
 - + specific intent context vector c_{intent}(attention)
NN for Joint Intent & Slots

- Extended version: use slot tagging results in intent classification
 - Bidi encoder
 - Slots decoder with encoder states & attention
 - Intent decoder
 - attention over slots decoder states
- Training for both intent & slot detection improves results on ATIS flights data
 - this is multi-task training 😊
 - intent error lower (2% → 1.5%)
 - slot filling slightly better (F1 95.7% → 95.9%)
- Variant: treat intent detection as slot tagging
 - append <EOS> token & tag it with intent

(Liu & Lane, 2016)
http://arxiv.org/abs/1609.01454

(Hakkani-Tür et al, 2016)
https://doi.org/10.21437/Interspeech.2016-402
Joint intents & slots with contextual embeddings

• shared “word contextualization”
 • feed-forward – ∑ word + trained position embeddings
 • CNNs
 • (Transformer-style) attention with relative position
 • trained relative position embeddings instead of Transformer fixed absolute position embedding
• LSTM

• task-specific network parts
 • intent: weighted sum of contextualized embeddings + softmax
 • slots tagging:
 • independent – non-recurrent, depend only on current embedding: \(P(l_i|h_i) \)
 • label-recurrent – depend on past labels & current embedding: \(P(l_i|l_1,...,l_{i-1}, h_i) \)
 • faster than word-recurrent

(Gupta et al., 2019) http://arxiv.org/abs/1903.08268
Joint intents & slots w/ context embeddings

- CNN > LSTM > attention > feed-forward
 - CNNs are also faster than anything other than FF
- label-recurrent models mostly better than independent
 - except intent classification (non-recurrent task) on 1 dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>label recurrent</th>
<th>intent classif. accuracy</th>
<th>slot labelling F1</th>
<th>Inference ms/utterance</th>
<th>Epochs to converge</th>
<th>s/epoch</th>
<th># params</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Snips ATIS</td>
<td>Snips ATIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEED-FORWARD</td>
<td>No</td>
<td>98.56 97.14</td>
<td>53.59 69.68</td>
<td>0.61</td>
<td>48</td>
<td>1.82</td>
<td>17k</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>98.54 97.46</td>
<td>75.35 88.72</td>
<td>1.82</td>
<td>83</td>
<td>2.52</td>
<td>19k</td>
</tr>
<tr>
<td>CNN, 5KERNEL, 1L</td>
<td>No</td>
<td>98.56 98.40</td>
<td>85.88 94.11</td>
<td>0.82</td>
<td>23</td>
<td>1.90</td>
<td>42k</td>
</tr>
<tr>
<td>CNN, 5KERNEL, 3L</td>
<td>No</td>
<td>99.04 98.42</td>
<td>92.21 96.68</td>
<td>1.37</td>
<td>55</td>
<td>2.16</td>
<td>91k</td>
</tr>
<tr>
<td>CNN, 3KERNEL, 4L</td>
<td>No</td>
<td>98.81 98.32</td>
<td>91.65 96.75</td>
<td>1.28</td>
<td>57</td>
<td>2.29</td>
<td>76k</td>
</tr>
<tr>
<td>CNN, 5KERNEL, 1L</td>
<td>Yes</td>
<td>98.85 98.36</td>
<td>93.12 96.39</td>
<td>2.13</td>
<td>51</td>
<td>2.77</td>
<td>43k</td>
</tr>
<tr>
<td>CNN, 5KERNEL, 3L</td>
<td>Yes</td>
<td>99.10 98.36</td>
<td>94.22 96.95</td>
<td>2.68</td>
<td>59</td>
<td>3.34</td>
<td>93k</td>
</tr>
<tr>
<td>CNN, 3KERNEL, 4L</td>
<td>Yes</td>
<td>98.96 98.32</td>
<td>93.71 96.95</td>
<td>2.60</td>
<td>53</td>
<td>3.43</td>
<td>78k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 1L, NO-POS</td>
<td>No</td>
<td>98.50 97.51</td>
<td>53.61 69.31</td>
<td>1.95</td>
<td>25</td>
<td>1.94</td>
<td>22k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 1L</td>
<td>No</td>
<td>98.50 97.74</td>
<td>75.55 93.22</td>
<td>4.75</td>
<td>117</td>
<td>4.34</td>
<td>23k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 3L</td>
<td>No</td>
<td>98.74 98.10</td>
<td>81.51 94.07</td>
<td>7.68</td>
<td>160</td>
<td>4.32</td>
<td>33k</td>
</tr>
<tr>
<td>ATTN, 2HEAD, 3L</td>
<td>No</td>
<td>98.31 98.10</td>
<td>83.02 94.61</td>
<td>7.86</td>
<td>79</td>
<td>4.87</td>
<td>47k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 1L, NO POS</td>
<td>Yes</td>
<td>98.63 97.68</td>
<td>74.91 88.60</td>
<td>3.24</td>
<td>56</td>
<td>2.66</td>
<td>24k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 1L</td>
<td>Yes</td>
<td>98.61 98.00</td>
<td>86.72 94.53</td>
<td>6.12</td>
<td>89</td>
<td>5.53</td>
<td>24k</td>
</tr>
<tr>
<td>ATTN, 1HEAD, 3L</td>
<td>Yes</td>
<td>98.51 98.26</td>
<td>88.04 94.99</td>
<td>9.03</td>
<td>109</td>
<td>6.06</td>
<td>34k</td>
</tr>
<tr>
<td>ATTN, 2HEAD, 3L</td>
<td>Yes</td>
<td>98.48 98.26</td>
<td>89.31 95.86</td>
<td>9.17</td>
<td>93</td>
<td>6.54</td>
<td>49k</td>
</tr>
<tr>
<td>LSTM, 1L</td>
<td>No</td>
<td>98.82 98.34</td>
<td>91.83 97.28</td>
<td>2.65</td>
<td>45</td>
<td>2.91</td>
<td>47k</td>
</tr>
<tr>
<td>LSTM, 2L</td>
<td>No</td>
<td>98.77 98.20</td>
<td>93.10 97.36</td>
<td>4.72</td>
<td>58</td>
<td>5.09</td>
<td>77k</td>
</tr>
<tr>
<td>LSTM, 1L</td>
<td>Yes</td>
<td>98.68 98.36</td>
<td>93.83 97.37</td>
<td>3.98</td>
<td>54</td>
<td>4.62</td>
<td>49k</td>
</tr>
<tr>
<td>LSTM, 2L</td>
<td>Yes</td>
<td>98.71 98.30</td>
<td>93.88 97.28</td>
<td>6.03</td>
<td>69</td>
<td>6.82</td>
<td>79k</td>
</tr>
</tbody>
</table>
Seq2seq-based NLU

- seq2seq with **copy mechanism** = **pointer-generator net**
 - normal **seq2seq** with attention – generate output tokens (softmax over vocabulary)
 - **pointer net**: select tokens from input (attention over input tokens)
 - prediction = **weighted combination** of \(\rightarrow \)

- can work with out-of-vocabulary
 - e.g. previously unseen restaurant names
 - (but IOB tagging can, too)

- generating slots/values + intent
 - it’s not slot tagging (doesn’t need alignment)
 - works for slots expressed implicitly or not as consecutive phrases
 - treats intent as another slot to generate

Can I bring my kids along to this restaurant?

I want a Chinese place with a takeaway option.

confirm(kids_friendly=yes)

inform(food=Chinese_takeaway)
BERT-based NLU

- slot tagging on top of pre-trained BERT
 - standard IOB approach
 - just feed final hidden layers to softmax over tags
 - classify only at 1st subword in case of split words (don’t want tag changes mid-word)
- special start token tagged with intent
- optional CRF on top of the tagger
 - for global sequence optimization

(chen et al., 2019)

http://arxiv.org/abs/1902.10909

<table>
<thead>
<tr>
<th>Models</th>
<th>Snips Intent</th>
<th>Snips Slot</th>
<th>Snips Sent</th>
<th>ATIS Intent</th>
<th>ATIS Slot</th>
<th>ATIS Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN-LSTM (Hakkani-Tür et al., 2016)</td>
<td>96.9</td>
<td>87.3</td>
<td>73.2</td>
<td>92.6</td>
<td>94.3</td>
<td>80.7</td>
</tr>
<tr>
<td>Atten.-BiRNN (Liu and Lane, 2016)</td>
<td>96.7</td>
<td>87.8</td>
<td>74.1</td>
<td>91.1</td>
<td>94.2</td>
<td>78.9</td>
</tr>
<tr>
<td>Slot-Gated (Goo et al., 2018)</td>
<td>97.0</td>
<td>88.8</td>
<td>75.5</td>
<td>94.1</td>
<td>95.2</td>
<td>82.6</td>
</tr>
<tr>
<td>Joint BERT</td>
<td>98.6</td>
<td>97.0</td>
<td>92.8</td>
<td>97.5</td>
<td>96.1</td>
<td>88.2</td>
</tr>
<tr>
<td>Joint BERT + CRF</td>
<td>98.4</td>
<td>96.7</td>
<td>92.6</td>
<td>97.9</td>
<td>96.0</td>
<td>88.6</td>
</tr>
</tbody>
</table>
Regex + NN NLU

- Regexes as manually specified features
 - binary: any matching sentence (for intents) + any word in a matching phrase (for slots)
 - regexes meant to represent an intent/slot
 - combination at different levels
 1) “input”: aggregate word/sent + regex embeddings (at sentence level for intent, word level for slots)
 2) “network”: per-label supervised attentions (log loss for regex matches)
 3) “output”: alter final softmax (add weighted regex value)

- Good for limited amounts of training data
 - works with 10-20 training examples per slot/intent
 - still improves a bit on full ATIS data

<table>
<thead>
<tr>
<th>Model</th>
<th>Intent</th>
<th>Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Macro-F1/Accuracy</td>
<td>Macro-F1/Micro-F1</td>
</tr>
<tr>
<td>Liu&Lane (2016)</td>
<td>- / 98.43</td>
<td>- / 95.98</td>
</tr>
<tr>
<td>no regex (BiLSTM)</td>
<td>92.50 / 98.77</td>
<td>85.01 / 95.47</td>
</tr>
<tr>
<td>(1) input</td>
<td>91.86 / 97.65</td>
<td>86.7 / 95.55</td>
</tr>
<tr>
<td>(2) network</td>
<td>92.48 / 98.77</td>
<td>86.94 / 95.42</td>
</tr>
<tr>
<td>(3) output</td>
<td>96.20 / 98.99</td>
<td>85.44 / 95.27</td>
</tr>
</tbody>
</table>

(Luo et al., 2018)
http://arxiv.org/abs/1805.05588
NLU as semantic parsing
(Damonte et al., 2019)
http://arxiv.org/abs/1903.04521

• transition-based parsing
 • actions over input build semantic tree gradually
 • using stack:
 • create terminal node (+ select what kind)
 • create non-terminal node (+ select what kind)
 • reduce – pop node from stack

• can parse into intent-slot-value shallow trees
• found to improve cross-domain performance
 • multi-task learning/transfer learning (pretrain + tune)

(Dyer et al, 2015)
http://arxiv.org/abs/1505.08075

(FindCinemaIntent)
which cinemas screen Star|Title Wars|Title tonight|Time

(FindCinema)
Title Star
Title Wars
Time tonight
Involving Syntax

• not an ideal NLU representation by itself
• can help with the representation
 • statistical parsing + rules on top
 • statistical parser output as features for statistical NLU models
 • incl. multi-task training
• dependencies > phrase trees
 • relationships within noun phrases
 • standard structures: **Universal Dependencies**
 • works for many different languages
 • puts important relations to the top of the tree
• not much used in DSs, yet
 • dialogue training dataset only came out recently
 • parsers trained on written texts (news etc.) don’t work well – syntax is different

images made using https://corenlp.run/, for Universal Dependencies formalism see https://universaldependencies.org/
Universal Intents

• typically DAs are domain-dependent
• ISO 24617-2 DA tagging standard
 • pretty complex: multiple dimensions
 • Task, Social, Feedback…
 • DA types (intents) under each dimension
• Simpler approach – non-hierarchical
 • union looking at different datasets
• Mapping from datasets – manual/semi-automatic
 • mapping tuned on classifier performance
• Intent tagging improved using multiple datasets/domains
 • generic intents only
• Slots stay domain-specific

(Mezza et al, 2018)
https://www.aclweb.org/anthology/C18-1300
(Paul et al, 2019)
http://arxiv.org/abs/1907.03020
Unsupervised NLU

(Shi et al., 2018)
https://www.aclweb.org/anthology/D18-1072/

• Clustering intents & slots
 • Features:
 • word embeddings
 • POS
 • word classes
 • topic modelling (biterm)
 • Autoencoder to normalize # of dimensions for features
 • Dynamic hierarchical clustering
 • decides # of clusters – stops if cluster distance exceeds threshold
 • Slot clustering – word-level
 • over nouns, using intent clustering results

ATIS

<table>
<thead>
<tr>
<th>Models</th>
<th>Intent Labeling Acc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>topic model</td>
<td>25.4</td>
</tr>
<tr>
<td>CDSSM vector</td>
<td>20.7</td>
</tr>
<tr>
<td>glove embedding</td>
<td>25.6</td>
</tr>
<tr>
<td>auto-dialabel</td>
<td>84.1</td>
</tr>
</tbody>
</table>

feature choice + AE seem to work quite well
Unsupervised NLU with semantic frames

(Vojta’s current work)

- Frame semantic parsing
 - Too general, not usable directly
 - Some frames redundant
- What about intents?
Unsupervised NLU

User utterances
- No, thanks.
- I want Chinese food.
- That's all, bye.
- What's their phone number?
- Can I have a number and address?
- I am looking for an expensive place in downtown.
- Thank you.
- What's their address?

Intent detection

Clustering

Intent 1
- I want Chinese food.
- Some cheap Italian bistro in any area.

Intent 2
- I am looking for expensive place in the north part.

Frame semantic parser
- \{Origin: Chinese, Desire: want, ...\}
- \{Expensiveness: cheap, Origin: Italian, ...\}
- \{Expensiveness: cheap, Direction: north, ...\}

Slot induction

Ranking model

Frame Freq.	Coh.	Instances
Origin | 0.16 | 0.88 | italian, chinese, british, ...
Direction | 0.11 | 0.89 | north, west, straight, ...
Path | 0.12 | 0.90 | north, west, east, ...

Topic detection
Unsupervised NLU

- Intent detection
 - Cluster utterances based on features
 - Number of clusters have to be chosen
Unsupervised NLU

- Slot induction
 - Based on frame semantic parser output
 - Multiple scoring functions
 - Ranking algorithm
 - Topic detection to group the frames

```
+-----------------------+----------------------------------+
| Frame semantic parser | {Origin: Chinese, Desire: want, ...} |
|                      | {Expensiveness: cheap, Origin: italian, ...} |
|                      | {Expensiveness: cheap, Direction: north, ...} |
+-----------------------+----------------------------------+
<p>| Ranking model         |                                  |
|                      |                                  |</p>
<table>
<thead>
<tr>
<th>Frame</th>
<th>Freq.</th>
<th>Coh.</th>
<th>Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>0.16</td>
<td>0.88</td>
<td>italian, chinese, british, ...</td>
</tr>
<tr>
<td>Direction</td>
<td>0.11</td>
<td>0.89</td>
<td>north, west, straight, ...</td>
</tr>
<tr>
<td>Path</td>
<td>0.12</td>
<td>0.90</td>
<td>north, west, east, ...</td>
</tr>
</tbody>
</table>
+-----------------------+----------------------------------+
| Topic detection       |                                  |
+-----------------------+----------------------------------+
```

NPFL099 L4 2019
Unsupervised NLU - results

Camrest676

<table>
<thead>
<tr>
<th></th>
<th>price</th>
<th>area</th>
<th>food</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.353</td>
<td>.426</td>
<td>.584</td>
<td>.454</td>
</tr>
</tbody>
</table>

MultiWOZ-hotel

<table>
<thead>
<tr>
<th></th>
<th>price</th>
<th>area</th>
<th>people</th>
<th>day</th>
<th>type</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.059</td>
<td>.181</td>
<td>.652</td>
<td>.866</td>
<td>.000</td>
<td>.352</td>
</tr>
</tbody>
</table>
Unsupervised NLU - drawbacks

• How to estimate the output quality?
• How to use the inducted slots?
 • What do they represent?
 • How to align with db?
• How determine the number of intents?
Summary

• NLU is mostly intent classification + slot tagging
• Rules + simple methods work well with limited domains
• Neural NLU:
 • various architectures possible: CNN, LSTM, attention, seq2seq + pointer nets
 • slot tagging: sequence prediction – label bias
 • it helps to do joint intent + slots
 • BERT et al. can help too, but these models are huge & expensive
 • NNs can be combined with regexes/handcrafted features
 • helps with limited data
• Experimental/alternative neural NLU:
 • using parsing (syntactic, semantic)
 • unsupervised approaches
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
room 424 (but email me first)

Get the slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• mostly papers referenced from slides
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
• Gokhan Tur & Renato De Mori (2011): Spoken Language Understanding

No labs today
But choose your team on Slack!

Next week: with Vojta
lecture on Dialogue State Tracking
possible projects discussions