

Dialogue Systems NPFL123 Dialogové systémy

3. Data & Evaluation

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

17.10.2019

Before you build a dialogue system

Two significant questions, regardless of system architecture:

- 1) What data to base it on?
 - even if you handcraft, you need data
 - people behave differently
 - you can't enumerate all possible inputs off the top of your head
 - ASR can't be handcrafted always needs data

2) How to evaluate it?

- is my system actually helpful?
- did recent changes improve/worsen it?
- actually the same problem as data
 - you can't think of all possible ways to talk to your system

Dialogue Data Collection

Typical options:

- in-house collection using experts (or students)
 - safe, high-quality, but very expensive & time-consuming
 - scripting whole dialogues / Wizard-of-Oz

web crawling

- fast & cheap, but typically not real dialogues
 - may not be fit for purpose
- potentially unsafe (offensive stuff)
- need to be careful about the licensing

crowdsourcing

• compromise: employing (untrained) people over the web

Wizard-of-Oz (WoZ)

- for in-house data collection
 - also: to prototype/evaluate a system before implementing it!
- users believe they're talking to a system
 - different behaviour than when talking to a human
 - typically simpler
- system in fact controlled
 by a human "wizard" (=you)
 - typically selecting options (free typing too slow)

https://en.wikipedia.org/wiki/The_Turk

hire people over the web

- create a webpage with your task
 - data collection / evaluation
- no need for people to come to your lab
- faster, larger scale, cheaper
- platforms/marketplaces
 - Amazon Mechanical Turk
 - CrowdFlower/FigureEight
- problems
 - can't be used in some situations (physical robots, high quality audio...)
 - crowd workers tend to game the system noise/lower quality data
 - a lot of English speakers, but forget about e.g. Czechs

Using the following information: from=Penn Station, to=Central Park

Respond in a natural and fitting English sentence

Please confirm that you understand this user request: yes i need a ride from Penn Station to Central Park Operator (your) reaction: Your reply is missing the following information: Central Park Alright, a ride from Penn Station, let me see.

> Dušek & Jurčíček, RE-WOCHAT 2016

Available Dialogue Datasets

- There's a number of research datasets available
 - (see labs assignment 1)
 - typically built as part of various research projects
 - license: some of them research-only, some completely free
- Various types:
 - human-human, human-machine, Wizard-of-Oz
 - task-oriented or non-task-oriented
 - text-based, multimodal, (audio + text rare)
- Common drawbacks:
 - domain choice is rather limited
 - but it's getting better
 - non-task-oriented are still not ideal (mostly discussion forums, subtitles)
 - size is very often not enough big AI firms have much more
 - this is also improving
 - vast majority is English only

- Never evaluate on data you used for training
 - memorizing training data would give you 100% accuracy
 - you want to know how well your model works **on new, unseen data**
- Typical dataset split:
 - **training set** = to train your model
 - **development/validation set** = for evaluation during system development
 - this influences your design decisions, model parameter settings, etc.
 - **test/evaluation set** = only use for final evaluation
 - need sufficient sizes for all portions
- Cross-validation when data is scarce:
 - split data into 5/10 equal portions, run 5/10x & test on different part each time

Dialogue System Evaluation

- Depends on dialogue system type / specific component
- Types:
 - **extrinsic** = how the system/component works in its intended purpose
 - effect of the system on something outside itself, in the real world (i.e. user)
 - **intrinsic** = checks properties of systems/components in isolation, self-contained
 - subjective = asking users' opinions, e.g. questionnaires (~manual/human)
 - should be more people, so overall not so subjective [©]
 - objective = measuring properties directly from data (~automatic)
 - might or might not correlate with users' perception
- Evaluation discussed here is mostly **quantitative**
 - i.e. measuring & processing numeric values
 - (*qualitative* ~ e.g. in-depth interviews, more used in social science)

Getting the Subjects (for human evaluation)

ÚFAL

- Can't do without people
 - **simulated user** = another (simple) dialogue system
 - can help & give guidance sometimes, but it's not the real thing more for intrinsic
- In-house = ask people to come to your lab
 - students, friends/colleagues, hired people
 - expensive, time-consuming, doesn't scale (difficult to get subjects)
- Crowdsourcing = hire people over the web
 - much cheaper, faster, scales (unless you want e.g. Czech)
 - not real users mainly want to get their reward
- **Real users** = deploy your system and wait
 - best, but needs time & advertising & motivation
 - you can't ask too many questions

Intrinsic – NLU

• Slot Precision & Recall & F-measure (F1)

(F1 is evenly balanced & default, other F variants favor *P* or *R*)

3 2

precision	$P = \frac{\text{#correct slots}}{\text{#detected slots}}$	how much of the identified stuff is identified correctly	
recall	$R = \frac{\text{#correct slots}}{\text{#true slots}}$	how much of the true stuff is identified at all	
F-measure	$F = \frac{2PR}{P+R}$	harmonic mean – you want both <i>P</i> and <i>R</i> to be high (if one of them is low, the mean is lo	

true: inform(name=Golden Dragon, food=Chinese)	P = 1/3
NLU: inform(name=Golden Dragon, food=Czech, price=high)	R = 1/2
	<i>F</i> = 0.2

Intrinsic – NLU

- Accuracy (% correct) used for intent/act type
 - intent detection is multi-class classification (1 utterance \rightarrow 1 intent)
- alternatively also **exact matches** on the whole semantic structure
 - easier, but ignores partial matches
- Assumes one true answer, which might not be accurate
 - there's ambiguity in some user inputs
 - it's still used since it's too hard to account for multiple correct options
- NLU on ASR outputs vs. human transcriptions
 - both options make sense, but measure different things!
 - intrinsic NLU errors vs. robustness to ASR noise

Intrinsic – Dialogue Manager

- Objective measures (task success rate, duration) can be measured with a user simulator
 - works on dialogue act level
 - responds to system actions
- Simulator implementation
 - handcrafted (rules + a bit of randomness)
 - *n*-gram models over DA/dialogue turns + sampling from distribution
 - **agenda-based** (goal: constraints, agenda: stack of pending DAs)
 - reinforcement learning policy
- Problem: simulator implementation cost
 - the simulator is basically another dialogue system

Intrinsic – NLG / Extrinsic

- No single correct answer here
 - many ways to say the same thing
- Word-overlap with reference text(s): BLEU score

- *n*-gram = span of adjacent *n* tokens
 - 1-gram (one word) = unigram, 2-gram (2 words) = bigram, 3-gram = trigram

Example:

output: The Richmond's address is 615 Balboa Street. The phone number is 4153798988.

- <u>ref1</u>: The number for Richmond is 4153798988, the address is 615 Balboa.
- ref2: The Richmond is located at 615 Balboa Street and their number is 4153798988.

matching unigrams: the (2x), Richmond, address, is (2x), 615, Balboa, . (only 1x!), number, 4153798988 $p_1 = 11/15$

matching bigrams: The Richmond, address is, is 615, 615 Balboa, Balboa Street, number is, is 4153798988, 4153798988.

 $p_2 = 8 / 14$ $p_3 = 5 / 13, p_4 = 2 / 12, BP = 1, BLEU = 0.4048$

• BLEU is not very reliable (people still use it anyway)

- correlation with humans is questionable
- never use for a single sentence, only over whole datasets

Intrinsic – NLG / Extrinsic

Alternatives (not much):

- Other word-overlap metrics (NIST, METEOR, ROUGE ...)
 - there are many, more complex, but frankly not much better
- Slot error rate only for delexicalized NLG in task-oriented systems
 - delexicalized → generates placeholders for slot values
 - compare placeholders with slots in the input DA #missed+added+wrong_value slots
 #total slots
- **Diversity** mainly for non-task-oriented
 - can our system produce different replies? (if it can't, it's boring)

$$D = \frac{\#\text{distinct } x}{\#\text{total } x}$$
, where $x = \text{unigrams}$, bigrams, sentences

Intrinsic NLG / Extrinsic

Entropy / perplexity

 $H(p) = -\sum_{x} p(x) \log p(x), 2^{H(p)}$

- intrinsic for **language modelling** / word prediction
 - fitting the test set / reference outputs: lower is better
 - actually cross-entropy
- extrinsic model output **diversity** (Shannon entropy)
 - looking at model outputs per se, no references
 - higher is better, more diverse
 - Variant: n-gram conditional entropy
 - entropy with known previous context

NLG Supervised Quality Estimation

- Training a supervised model to...
- check if an NLG system output is good or not (give rating)
 - just given the output + corresponding NLG input (dialogue act)
 - without using reference texts
 - can be used at runtime: should we trigger a fallback?
- check which output is the best out of multiple
 - selecting from n-best list

MR:	<pre>inform_only_match(name='hotel drisco', area='pacific heights')</pre>	-
NLG output:	the only match i have for you is the hotel drisco in the pacific heights area.	Ì

Rating: 4 (on a 1-6 scale)

NLG QE Model

(Dušek et al., 2017; 2019) https://arxiv.org/abs/1708.01759 https://arxiv.org/abs/1910.04731

- Encoders for input DA + NLG output(s) \rightarrow fully connected \rightarrow linear
- Ranking: use 2 identical networks for 2 outputs
 - can learn both things jointly
- More reliable than BLEU
 - but still quite bad absolute (noise in the ratings?)

Extrinsic – Objective

- **Analyzing the logs** of people/testers interacting with the system Metrics:
- **Task success** (task-oriented): did the user get what they wanted?
 - testers with agenda → check if they found what they were supposed to
 - [warning] sometimes people go off script
 - basic check: did we provide any information at all? (any bus/restaurant)
- Duration: number of turns
 - task oriented: fewer is better, non-task-oriented: more is better
- Other (not so standard):
 - % returning users
 - % turns with null semantics (task-oriented)
 - % swearing / thanking

Extrinsic – Subjective (Questionnaires)

- Questionnaires for users/testers
 - based on what information you need (overall satisfaction, individual components)
- Question types
 - Open-ended qualitative
 - Yes/No questions
 - Likert scales agree ... disagree (typically 3-7 points)
 - with a middle point (odd number) or forced choice (even number)
 - "Continuous" scales e.g. 0-100 (or no numbers shown)
- Question guidelines:
 - easy to understand
 - not too many
 - neutral: not favouring/suggesting any of the replies

Question Examples

- Success rate (task-oriented): Did you get all the information you wanted?
 - typically different from objective measures!
- Future use: Would you use the system again?
- Likeability/engagement: Did you enjoy the conversation?
- **ASR/NLU**: Do you think the system understood you well?
- **NLG**: Were the system replies fluent/well-phrased?
- **TTS**: Was the system's speech natural?

System	# calls	Subjective Success Rate	Objective Success Rate
HDC	627	$82.30\% \ (\pm 2.99)$	$62.36\%~(\pm 3.81)$
NBC	573	$84.47\% \ (\pm 2.97)$	$63.53\%~(\pm 3.95)$
NAC	588	$89.63\% \ (\pm 2.46)$	$66.84\% \ (\pm 3.79)$
NABC	566	$90.28\% \ (\pm 2.44)$	$65.55\%~(\pm 3.91)$

Jurčíček et al., Comp. Speech & Language 2012

Question Types

• Aiming at rater consistency (multiple people rating the same)

(Santhanam & Shaikh, 2019) http://arxiv.org/abs/1909.10122

- high intraclass correlation coefficient
- Likert vs. continuous
 - Continuous scales seem to increase consistency
- alternatives: mainly for individual system outputs
 - too hard to do for whole dialogue
 - also better than Likert
 - Relative ranking / Best-worst scaling
 - sort outputs from best to worst
 - variants: ties allowed / not
 - Magnitude estimation
 - Show reference, with a value (e.g. 100)
 - rank-based: ask to assign values to multiple outputs
 - indirect ranking

https://en.wikipedia.org/wiki/Intraclass correlation

Retrieval metrics

(Henderson, 2019) https://www.aclweb.org/anthology/P19-1536

- For retrieval/ranking systems
- Recall: $R_N@k$
 - assuming N candidates, 1 relevant response
 - % of time the relevant one is among top-k rated
 - e.g. $R_{100}@1$ only the 1st out of 100 candidates
- *R_N*@1 given context = **next utterance classification** (NUC)
- precision possible in theory, but not used very much
 - "% of top-k rated that are relevant"
 - actually $P_N@1 = R_N@1$, assuming 1 relevant response
 - $R_N@k$ grows with higher $k, P_N@k \rightarrow 0$ with higher k
 - not many datasets have multiple outputs tagged as relevant

Turn-level Quality Estimation

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019) https://doi.org/10.1016/j.specom.2015.06.003 https://doi.org/10.21437/Interspeech.2017-1032 https://aclweb.org/anthology/W19-5902/

- turns annotated by experts (Likert 1-5)
- trained model (SVM/RNN)
 - very low-level features
 - mostly ASR-related

Interaction Quality

- multi-class classification
- result is domain-independent
 - trained on a very small corpus (~200 dialogues)
 - same model applicable to different datasets
- can be used in a RL reward signal
 - works better than task success

		Parameter	Description
	1	ASRRecognitionStatus	ASR status: success, no match, no input
	Exchange level	ASRConfidence	confidence of top ASR results
		RePrompt?	
current			same as in the previous turn?
turn		ActivityType	
carri	E		statement, question
		Confirmation?	is system action confirm?
		MeanASRConfidence	mean ASR confidence if ASR
	vel		is success
whala	e le	#Exchanges	number of exchanges (turns)
whole	gue	#ASRSuccess	count of ASR status is success
whole dialogue	Dialogue level	%ASRSuccess	rate of ASR status is success
41410 840	Dić		count of ASR status is reject
		%ASRRejections	rate of ASR status is reject
		{Mean}ASRConfidence	mean ASR confidence if ASR
	1		is success
1	eve		count of ASR is success
last 3	v le	{#}ASRRejections	count of ASR status is reject
turns	Window level	{#}RePrompts	count of times RePromt? is
231113	Vin		true
	7	{#}SystemQuestions	count of ActivityType is ques-

tion

Deservator Description

"reject" = ASR output doesn't match in-domain LM

- BLEU problem for dialogue: multiple answers are OK
 - but most dialogue datasets only have 1 reference
- ΔBLEU: "discriminative" BLEU
 - get multiple references
 - have them rated (~crowdsourcing)
 - - appropriateness $\in [-1,1]$
 - weigh each n-gram match by highest-scoring reference in which it is found
 - this highest score can be negative \rightarrow negative contribution to Δ BLEU
 - identical to multi-ref BLEU if all weights = 1
 - better correlation with humans

ΔBLEU test set creation

26

- Context-message-response triples
 - context: only 1 preceding message, ignoring the rest (sparse data)
- 1. Get messages with high-quality responses
- 2. Use IR to get alternative responses (IR on messages in training set)
- 3. Have other responses rated (don't discard low-rated)
- Rating: crowdsourced, 1-5 Likert-scale (5 raters average scaled to [-1,1])

	Context c	Message m	Response r	Score
	i was about to text you and my two cousins got excited cause they thought you were "rihanna"	aww, i can imagine their disappointment	they were very disappointed!!!	0.6
	yes. my ex-boyfriend, killed my cat. like i say, it was the start of a bad time	i can imagine!	yes. luckily, the whole thing feels very much of the past now.	0.8
	its good for some reason i can't name stand out tracks but i've been playing it since it dropped	i can imagine, banks doesn't disappoint	na this is anything but a disappointment	0.6
	at my lil cousins dancing to "dance for you". these kids are a mess.	lmaoo i can imagine.	they were belly rolling, filarious.	0.4
	what's sick about it?? do you know how long it is?? no so how is it sick?	i can imagine it	your imagination is wrong, very wrong at that.	-0.1
L099 L3 2019	it's saad oh yeah the snow is very beautiful	yeah i can imagine	the weather in russia is very cool.	-0.7

ADEM (Automatic Dialogue Evaluation Model)

- Supervised model for dialogue response evaluation
- Inputs encoded by GRU RNNs:
 - context *c*: all prior turns (hierarchical)
 - reference gold-standard response r
 - system output response \hat{r}
- Output: dot product
 - with some (trained) transformation to keep it ∈ [0,5]
 - trained using human ratings
- Better correlated with human ratings than BLEU/ROUGE
- Robust to previously unseen models

(Lowe et al., 2017)

system-level correlation

Metric	Pearson
BLEU-1	-0.079 (0.921)
BLEU-2	0.308 (0.692)
BLEU-3	-0.537 (0.463)
BLEU-4	-0.536 (0.464)
ROUGE	0.268 (0.732)
ADEM	0.981 (0.019)

ADEM training data

- Twitter dataset
- Responses from 4 different models:
 - TF-IDF retrieval chatbot
 - neural retrieval chatbot
 - generative chatbot
 - humans (- crowdsourced original alternative replies, not seeing references)
- Crowdsourced Likert scale (1-5) ratings
 - raters with low agreement removed
 - only measured overall score
 - other (topicality, informativeness...): low agreement / high correlation with overall

# Examples	4104
# Contexts	1026
# Training examples	2,872
# Validation examples	616
# Test examples	616
κ score (inter-annotator	0.63
correlation)	

Adversarial Evaluation

- bidi-LSTM encoder + attention → sigmoid classification layer
 - is the dialogue (preceding context + response) human-generated or not?
 - context limited 1-2 utterances
- trained on 3 concatenated datasets (movies, phone transcripts)
 - negative examples: randomly sampled
- intrinsic evaluation: both model & humans aren't great
 - accuracy around 0.7, low inter-annotator agreement (~0.3)
- detecting seq2seq outputs vs. real discriminator better than humans
 - humans totally random, discriminator accuracy ~0.6-0.7
- might be a problem with the dataset movies are messy

Topic-based Evaluation

- automatic evaluation for chatbots
- based on a topic classifier
 - "attentional deep averaging networks"
 - using topic-specific saliency ∀ word
 ~ per-topic attentions
 - few fully connected layers + final classification
 - given a turn, assign topic
 - two levels: coarse / fine (e.g. *entertainment / movies*)
- conversation topic breadth & depth
 - breadth: average number of distinct topics in each dialogue
 - depth: average length of sub-dialogue (consecutive turns on the same topic)
- correlates well with human overall dialogue ratings

(Guo et al, 2017)

Significance Testing

- Higher score is not enough to prove your model is better
 - Could it be just an accident?
- Need **significance tests** to actually prove it
 - Statistical tests, H₀ (**null hypothesis**) = "both models performed the same"
 - H_0 rejected with >95% confidence \rightarrow pretty sure it's not just an accident
 - more test data = more independent results → can get higher confidence (99+%)
- Various tests with various sensitivity and pre-conditions
 - Student's *t*-test– assumes normal distribution of values
 - Mann-Whitney *U* test any ordinal, same distribution
 - Bootstrap resampling doesn't assume anything
 - 1) randomly re-draw your test set (same size, some items 2x/more, some omitted)
 - 2) recompute scores on re-draw, repeat $1000x \rightarrow obtain range of scores$
 - 3) check if range overlap is less than 5% (1%...)

Summary

- You need data (corpus) to build your systems
 - various sources: human-human, human-machine, generated
 - various domains
 - size matters
- Evaluation needs to be done on a test set
 - intrinsic (component per se) / extrinsic (in application)
 - objective (measurements) / subjective (asking humans)
 - don't forget to check significance
- Evaluation is non-trivial
 - there is no ideal metric humans, BLEU, recall... all have their problems
 - you can try training a model for evaluation might work better
- Next week: NLU

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz room 424 (but email me first)

Get the slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Deriu et al. (2019): Survey on Evaluation Methods for Dialogue Systems: <u>http://arxiv.org/abs/1905.04071</u>
- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Oliver Lemon & Arash Eshghi's slides (Heriot-Watt University): <u>https://sites.google.com/site/olemon/conversational-agents</u>
- Helen Hastie's slides (Heriot-Watt University): <u>http://letsdiscussnips2016.weebly.com/schedule.html</u>

Labs today 14:00 SW1