

Statistical Dialogue Systems

NPFL099 Statistické Dialogové systémy

2. Machine Learning Toolkit

Ondřej Dušek & Vojtěch Hudeček

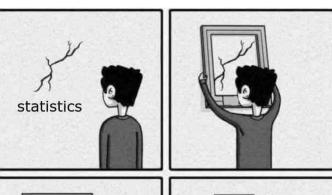
http://ufal.cz/npfl099

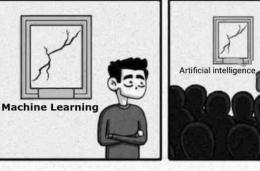
10. 10. 2019

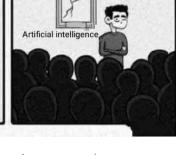
Machine Learning

ML is basically function approximation

- function: data (**features**) → **labels**
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)
- training/learning = adjusting function parameters to minimize error







https://towardsdatascience.com/ no-machine-learning-is-not-just-glorifiedstatistics-26d3952234e3

- **supervised** learning = based on data + labels given in advance
- reinforcement learning = based on exploration & rewards given online

Neural networks

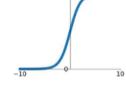
- Can be used for both classification & sequence models
- Non-linear functions, composed of basic building blocks
 - stacked into layers
- Layers are built of activation functions:
 - linear functions
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

$$\operatorname{softmax}(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$$

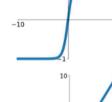
- Fully differentiable training by gradient descent
 - network output incurs loss/cost
 - gradients **backpropagated** from loss to all parameters (composite function differentiation)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

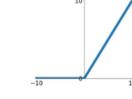


tanh



ReLU

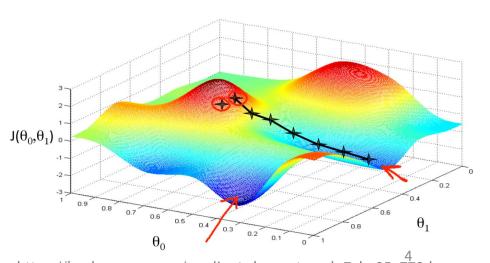
$$\max(0,x)$$



https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Gradient Descent

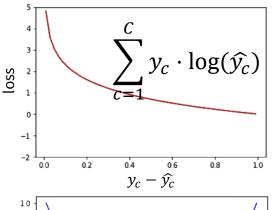
- supervised training- gradient descent methods
 - minimizing a cost/loss function
 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - learning rate = how fast do we go (needs to be tuned)
- gradient typically computed over mini-batches
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not so slow as computing over whole data
 - stochastic gradient descent

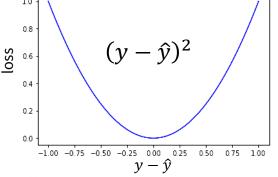


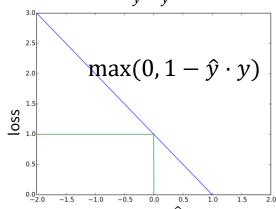
Cost/Loss Functions

ÚFÁL MODES HOLLES

- differ based on what we're trying to predict
- logistic / log loss ("cross entropy")
 - for classification / softmax including word prediction
 - classes from the whole dictionary
 - pretty stupid for sequences, but works
 - sequence shifted by 1 ⇒ everything wrong
- squared error loss for regression
 - forcing the predicted float value to be close to actual
- hinge loss for binary classification (SVMs), ranking
 - forcing correct sign
- many others, variants

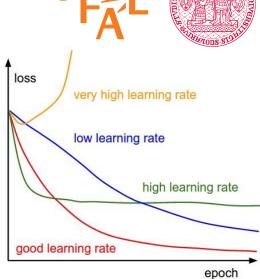




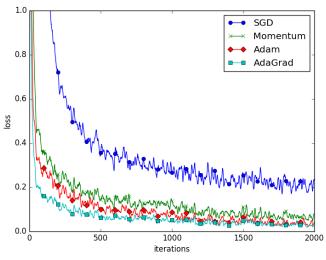


Gradient Descent: Learning Rate

- Learning rate (α) is tricky
 - too high α = may not find optimum
 - too low α = may take forever
- Learning rate decay: start high, lower α gradually
- Momentum: moving average
 - $m = \beta \cdot m \alpha \cdot \Delta$, update by m
- Better options per-parameter
 - look at how often each single weight gets updated
 - AdaGrad all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide learning rate by $\sqrt{(\sum \Delta_t^2)}$
 - Adam per-parameter momentum
 - moving averages for $\Delta \& \Delta^2$: $m = \beta_1 \cdot m + (1 \beta_1)\Delta$, $v = \beta_2 \cdot v + (1 \beta_2)\Delta^2$
 - use m instead of Δ , divide learning rate by $\sqrt{(v)}$

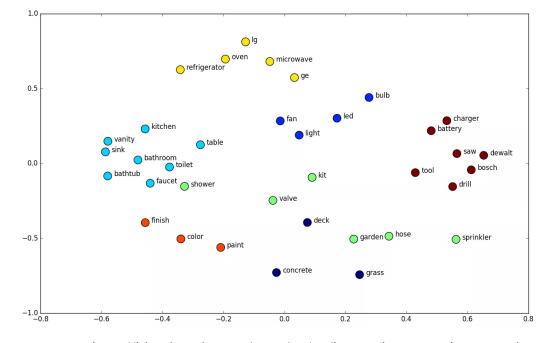


http://cs231n.github.io/neural-networks-3,

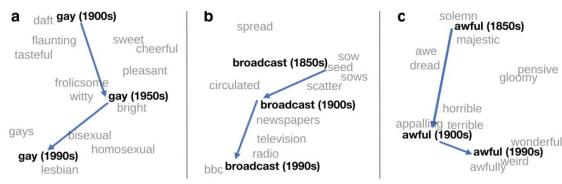


Word Embeddings

- let the network learn features by itself
 - input is just words (vocabulary is numbered)
- distributed word representation
 - each word = vectors of floats
- part of network parameters trained
 - a) random initialization
 - b) pretraining
- network learns which words are used similarly
 - they end up having close embedding values
 - different embeddings for different tasks



http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/



Word Embeddings

- Vocabulary is unlimited, embedding matrix isn't
 - + the bigger the embedding matrix, the slower your models
- Special out-of-vocabulary token <unk>
 - "default" / older option
 - all words not found assigned this entry
 - can be trained using some rare words in the data
 - problem for generation you don't want these on the output
- Using limited sets
 - characters very small set
 - works, but makes for very long sequences
 - subwords decided e.g. by byte-pair encoding

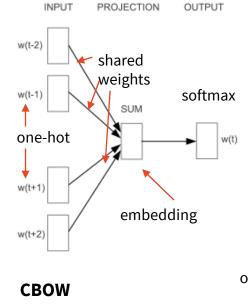
(Sennrich et al., 2016) https://www.aclweb.org/anthology/P16-1162/

- start from individual characters
- iteratively merge most frequent bigram, until you get desired # of subwords
- sub@@ word the @@ marks "no space after"

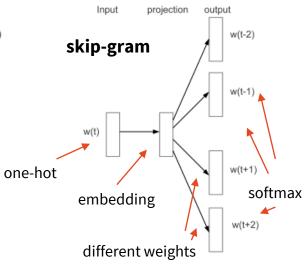
Pretrained Word Embeddings

Word2Vec

- Continuous Bag-of-Words
 - predict a word, given $\pm k$ words window
 - disregarding word order within the window
- Skip-gram: reverse
 - given a word, predict its $\pm k$ word window
 - now word order matters (closer words = higher weight)



(Mikolov et al., 2013) http://arxiv.org/abs/1301.3781



GloVe

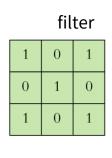
- optimized directly from corpus co-occurrences (= w_1 close to w_2)
- target: $e_1 \cdot e_2 = \log(\#\text{co-occurrences})$
 - number weighted by distance, weighted down for low totals
- trained by minimizing reconstruction loss on a co-occurrence matrix

(Pennington et al., 2014) http://aclweb.org/anthology/D14-1162

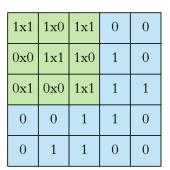
Convolutional Networks

- Designed for computer vision inspired by human vision
 - works for language in 1D, too!
- Use less parameters than fully connected
 - filter/kernel
- Apply filter repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - => produce 1 element of output
- Stride how many steps to skip
 - less overlap, reducing output dimension
- Pooling no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling

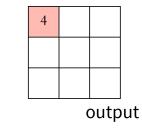


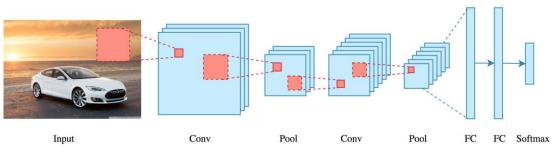


input



input x filter

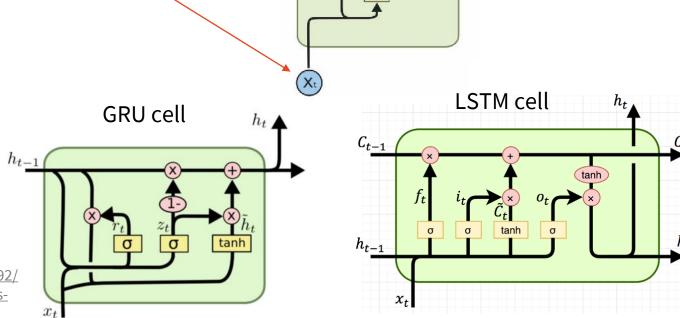




Recurrent Neural Networks

basic/RNN cell

- Many identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = **hidden state** fed to the next step
 - additional input next token features
- Cell types
 - basic RNN: linear + tanh
 - problem: vanishing gradients
 - can't hold long recurrences
 - **GRU, LSTM**: more complex, to make backpropagation work better
 - "gates" to keep old values



Encoder-Decoder Networks

(Sequence-to-sequence)

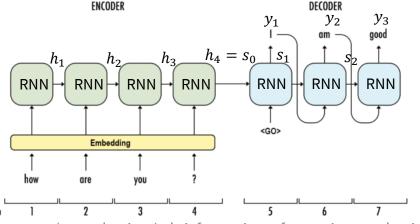
 $\mathbf{h}_0 = \mathbf{0}$ $\mathbf{h}_t = \operatorname{cell}(\mathbf{x}_t, \mathbf{h}_{t-1})$

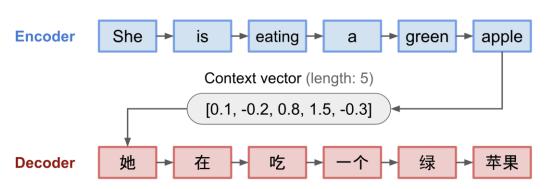
 $s_0 = h_T$

 $p(y_t|y_1, \dots y_{t-1}, \mathbf{x}) = \operatorname{softmax}(\mathbf{s}_t)$

 $\mathbf{s}_t = \operatorname{cell}(\mathbf{y}_{t-1}, \mathbf{s}_{t-1})$

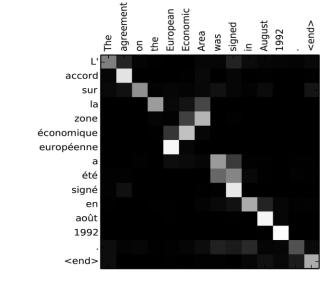
- Default RNN paradigm for sequences/structure prediction
 - ullet encoder RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - used in MT, dialogue, parsing...
 - more complex structures linearized to sequences



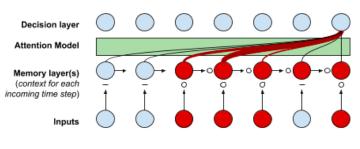


Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- **Self-attention** over previous decoder steps
 - increases consistency when generating long sequences



13



https://skymind.ai/wiki/attention-mechanism-memory-network

NPFL099 L2 2019 Time 1 2 3 4 5 6 7

Attention Mechanism

Bahdanau & Luong Attention

(Bahdanau et al., 2015) http://arxiv.org/abs/1409.0473 (Luong et al., 2015) http://arxiv.org/abs/1508.04025

- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation

attention weights = alignment model

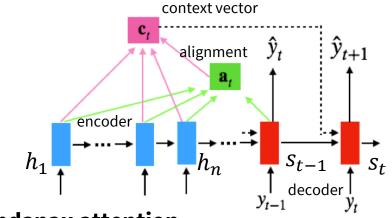
Bahdanau: $\alpha_{ti} = \operatorname{softmax}(\boldsymbol{v}_{\alpha} \cdot \tanh(\mathbf{W}_{\alpha} \cdot \boldsymbol{s}_{t-1} + \mathbf{U}_{\alpha} \cdot \boldsymbol{h}_{i})) - \operatorname{encoder} \operatorname{hidden} \operatorname{state}$

Luong: $\alpha_{ti} = \operatorname{softmax}(\boldsymbol{h}_i^{\mathsf{T}} \cdot \boldsymbol{s}_t)$ decoder state encoder hidden state

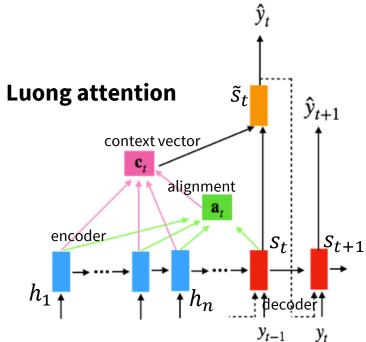
attention value = context vector

same for both – sum encoder hidden states weighted by α_{ti}

$$c_t = \sum_{i=1}^n \alpha_{ti} \boldsymbol{h}_i$$



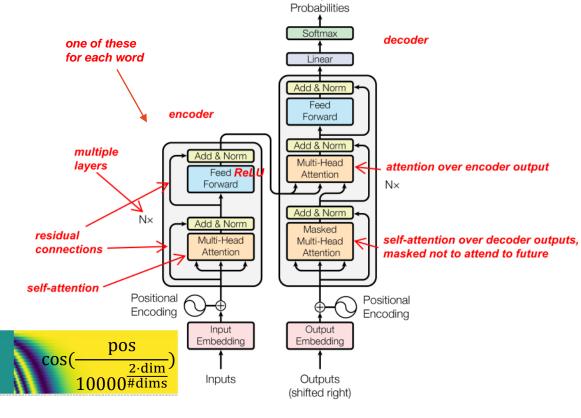
Bahdanau attention

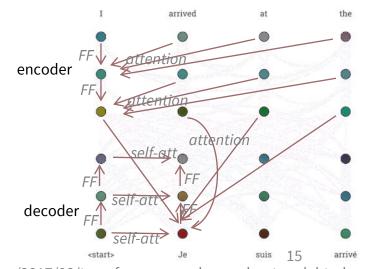


Transformer

(Waswani et al., 2017) https://arxiv.org/abs/1706.03762

- getting rid of (encoder) recurrences
 - replace everything with attention
 + feed-forward networks
 - ⇒ needs more layers
 - ⇒ needs to encode positions
- positional encoding
 - adding position-dependent patterns to the input
- attention dot-product (Luong style)
 - scaled by $\frac{1}{\sqrt{\#\text{dims}}}$ (so values don't get too big)
 - more heads (attentions in parallel)
 - focus on multiple inputs
- faster to train, better results (sometimes)





Contextual Word Embeddings

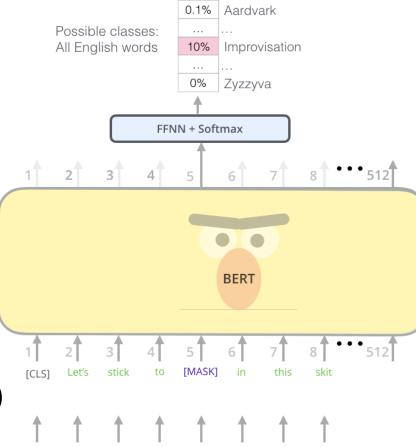
- Beyond pretrained word embeddings
 - words have different meanings based on context
 - static word embeddings (word2vec/GloVe) don't reflect that

ELMo

- 2-layer bidirectional LSTMs trained for language modelling
- ELMo embeddings = weighted sum of input static embeddings & both layers & directions
 - the weights are trained for a specific downstream task

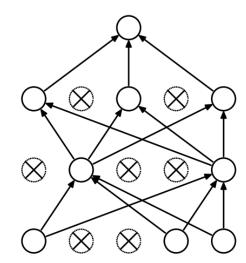
BERT

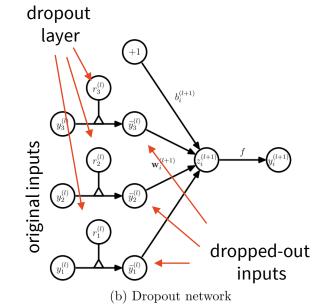
- huge Transformer encoder trained for:
 - masked word prediction
 - adjacent sentences detection (does B come right after A?)
- BERT = any combination of the Transformer layers



ÚFAL ELEGISTORIOS SOU

- overfitting to training data is a problem for NNs
 - too many parameters
- **Dropout** simple regularization technique
 - more effective than e.g. weight decay (L2)
 - zero out some neurons/connections in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there's fewer nodes
 - done by libraries automatically
 - may still need larger networks to compensate





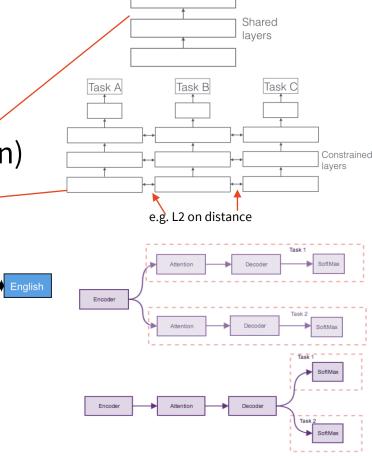
Multi-task Learning

(Ruder, 2017) http://arxiv.org/abs/1706.05098 (Fan et al., 2017) http://arxiv.org/abs/1706.04326 (Luong et al., 2016) http://arxiv.org/abs/1511.06114

specific

achieve better generalization by learning more things at once

- a form of regularization
- implicit data augmentation
- biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training alternating between tasks
 - so the network doesn't "forget"

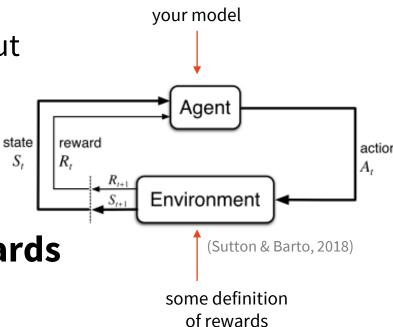


Task B

Reinforcement Learning

ÚFÁL MAGOS SOLIS

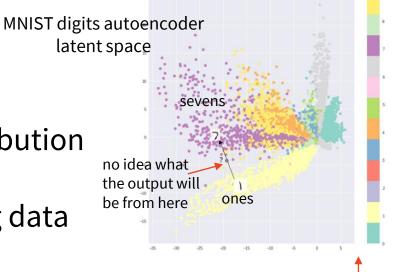
- Learning from weaker supervision
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don't know if step X is good
 - sequence = e.g. sentence, dialogue
- Framing the problem as states & actions & rewards
 - "robot moving in space", but works for dialogue too
 - state = generation so far (sentence, dialogue state)
 - action = one generation output (word, system dialogue act)
 - defining rewards might be an issue
- Training: maximizing long-term reward
 - via state/action values (Q function)
 - directly optimizing policy



Autoencoders

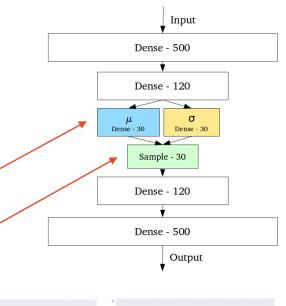
- Using NNs as **generative models**
 - more than classification modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data
 - unsupervised learning
- Autoencoder: input → encoding → input
 - encoding ~ "embedding" in latent space (i.e. some vector)
- Encoder Encoding Decoder

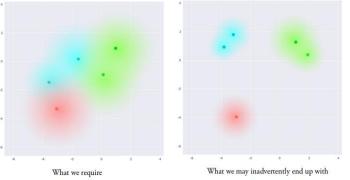
- trained by reconstruction loss
- problem: can't easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused will generate weird stuff
 - no easy interpretation of embeddings no idea what the model will generate
- still has uses:
 - denoising autoencoder: add noise to inputs, train to generate clean outputs
 - multi-task learning, representations for use in downstream tasks



Variational Autoencoders

- Making the encoding latent space more useful
 - using **Gaussians** continuous space by design
 - 1) encoding input into vectors of means μ & std. deviations σ
 - 2) sampling encodings from $N(\mu, \sigma)$ for generation
 - samples vary a bit even for the same input
 - decoder learns to be more robust
 - model can degenerate into normal AE $(\sigma \to 0)$
 - we need to encourage some $\sigma,$ smoothness, overlap ($\mu \sim 0)$
 - add 2^{nd} loss: KL divergence from N(0,1)
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs
- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate





VAE details

- VAE objective:
 - reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
 - latent loss (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

$$\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]$$

- This is equivalent to maximizing true $\log p(x)$ with some error
 - i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

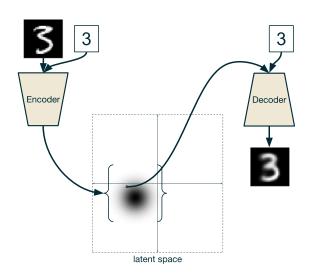
$$\mathbb{E}_{q}[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)] \xrightarrow{\text{error incurred} \\ \text{by using } q \\ \text{instead of true} \\ \text{distribution } p}$$

$$\text{"evidence"} \quad \text{ELBO}$$

- Sidestepping sampling reparameterization trick
 - $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ

Conditional Variational Autoencoders

- Direct control over types of things to generate
- Additional conditioning on a given label/type/class c
 - c can be anything (discrete, continuous...)
 - image class: MNIST digit
 - sentiment
 - "is this a good reply?"
 - coherence level
 - just concatenate to input
 - given to both encoder & decoder at training time
- Generation need to provide c
 - ullet CVAE will generate a sample of type c
 - Latent space is partitioned by c
 - same latent input with different c will give different results



Generative Adversarial Nets

(Goodfellow et al, 2014)

generator updated

http://papers.nips.cc/paper/

stable

point

- Training generative models to generate **believable** outputs
 - to do so, they necessarily get a better grasp on the distribution
- Getting loss from a 2nd model:
 - **discriminator D** "adversary" classifying real vs. generated samples
 - **generator** *G* trained to fool the discriminator

input latent space

- the best chance to fool the discriminator is to generate likely outputs
- Training iteratively (EM style)

• generate some outputs

• classify + update discriminator

 update generator based on classification

• this will reach a stable point

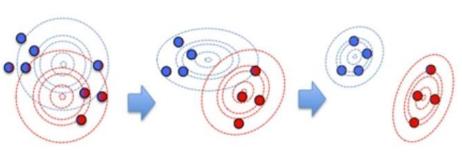
5423-generative-adversarialnets.pdf discriminator classification discriminator updated true distro training progress generator output distro

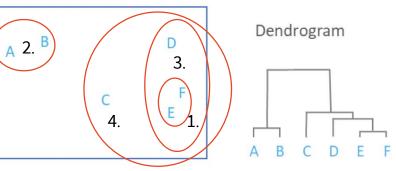
Clustering

- Unsupervised, finding similarities in data
- basic algorithms

https://www.youtube.com/watch?v=9YA2t78Ha68

- **k-means**: assign into *k* clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
- Gaussian mixture: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
- hierarchical (bottom up): start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have k clusters / distance is too big
- hierarchical top-down (reversed →)
- distance metrics & features decide what ends up together





Summary

- ML as a function mapping in → out
- Neural networks (function shapes)
 - CNNs, RNNs, encoder-decoder (seq2seq), attention, Transformer
 - input representation: embeddings (+ pretrained, + contextual)
- Supervised training
 - cost function
 - gradient descent + learning rate tricks
 - dropout
- Unsupervised learning
 - autoencoders
 - variational autoencoders
 - generative adversarial nets
 - clustering

Thanks

Contact us:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz room 424 (but email me first)

No labs today! See you next week

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language
(http://arxiv.org/abs/1812.06834)

Milan Straka's Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

NPFL099 L2 2019 27