1. Introduction

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

3. 10. 2019
Organizational
NPFL099 – 2/1 Z+ZK – 5 Credits

• Lecture (Thu 10:40am S1) + labs (Thu 2pm SW1)
 • labs ~bi-weekly, starting today, mostly on Slack
• Lecture: theory
• Labs: practical examples, hands-on exercises
• To pass the course:
 • written exam – freeform questions (covered by the lectures)
 • labs projects – building some experimental systems (by agreement)
• Slides, news etc. at http://ufal.cz/npfl099
• vs. NPFL123: no ASR/TTS, more advanced
 • but also covering the basics, i.e. there’s some overlap
About Us

Ondřej Dušek: lectures, course guarantor
 • PhD at ÚFAL, 2 years at Heriot-Watt Uni Edinburgh, now back
 • worked mostly on language generation
 • also chatbots (HWU Alexa Prize team)

Vojtěch Hudeček: some labs, a bit of lectures
 • PhD student at ÚFAL (3rd year)
 • working on dialogue management & language understanding
 • internships at Uber AI & UC Davis on dialogue systems
Course Syllabus (1)

1. Introduction (today) ***
2. Machine learning techniques *
3. Evaluation **
4. Natural language understanding *
5. Dialogue state tracking *
6. Dialogue management *
7. Natural language generation *
8. End-to-end dialogue models

*/**/*** = little/some/lot of overlap with NPFL123
Course Syllabus (2)

9. Domain adaptation
10. Chatbots **
12. Ethics & Linguistics & Problems **
Recommended Reading

Primary:

• Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2018, Chap. 24-25 (https://web.stanford.edu/~jurafsky/slp3/) – basic, brief intro
• Gao et al.: Neural Approaches to Conversational AI, 2019 (http://arxiv.org/abs/1809.08267) – more advanced

Other (see also website):

• Janarthanam: Hands-On Chatbots and Conversational UI Development. Packt 2017
What’s a dialogue system?

Definition:

• A *(spoken)* dialogue system is a **computer system designed to interact** with users in *(spoken)* **natural language**

• Wide definition – covers lots of different cases
 • “smart speakers” / phone OS assistants
 • phone hotline systems (even tone-dial ones)
 • in-car systems
 • assistive technologies: therapy, elderly care, companions
 • entertainment: video game NPCs, chatbots
Where are we now?

- Lots of hype, sci-fi-movie expectations
 - Star Trek – know-it-all (youtu.be/1ZXugicgn6U?t=3)
 - 2001 Space Odyssey – mutiny (youtu.be/9W5Am-a_xWw)
 - Her – personality (youtu.be/6QRvTv_tpw0?t=27)

- We’re not there yet – probably for long
 - main bottleneck: understanding (not speech comprehension, meaning!)
 - problems in breadth as well as depth
 - … more like Red Dwarf talkie toaster (youtu.be/LRq_SAuQDec?t=71)
Example – Amazon Alexa/Google Home

• Really good microphones
• Huge knowledge bases
 • Google: combined with web search
• Lots of domains programmed in, but all by hand
 • integration with a lot of services
 (calendar, music, shopping, weather, news…)
 • you can add your own (with limitations)
• Can keep some context
• Conversational capabilities limited

https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/
Why take interest in Dialogue Systems?

• It’s the ultimate natural interface for computers
• Exciting & active research topic
 • some stuff works, but there’s a long way to go
 • potential in many domains
 • integrates many different technologies
 • lots of difficult AI problems – dialogue is hard!
 • Turing test by dialogue – “proof” of general AI
• Commercially viable
 • interest & investment from major IT companies
Basic Dialogue System Types

Task-oriented
- focused on completing a certain task/tasks
 - booking restaurants/flights, finding bus schedules, smart home…
- most actual DS in the wild
- “backend access” vs. “agent/assistant”

Non-task-oriented
- chitchat – social conversation, entertainment
 - getting to know the user, specific persona
- gaming the Turing test
Communication Domains

• “domain” = conversation topic / area of interest

• traditional: **single/closed-domain**
 - one well-defined area, small set of specific tasks
 - e.g. banking system on a specific phone number

• **multi-domain**
 - basically joining several single-domain systems (Google/Alexa/Siri)

• **open-domain**
 - “responds to anything” – the goal, but now mostly chitchat-only
Modes of Communication

• **text**
 • most basic/oldest
 • easiest to implement, most robust
 • not completely natural

• **voice**
 • more difficult, but can be more natural
 • emotions, tone, personality
 • easy to deploy over the phone
 • hands-free

• **multimodal**
 • voice/text + graphics
 • additional modalities: video – gestures, mimics; touch
 • most complex
Dialogue Initiative

• **system-initiative**
 • “form-filling” ("Hello. Please tell me your date of birth.")
 • system asks questions, user must reply in order to progress
 • traditional, most robust, but least natural

• **user-initiative**
 • user asks, machine responds ("Alexa, set the timer for two minutes")

• **mixed-initiative**
 • system and user both can ask & react to queries
 • most natural, but most complex

S: Hello. How may I help you?
U: I’m looking for a restaurant.
S: What price do you have in mind?
U: Something in the city center please.
S: OK, city center. What price are you looking for?
Dialogue Systems Architecture

• traditional main DS pipeline:
 • voice → text
 • text → meaning
 • meaning → reaction
 • reaction → text
 • text → voice
• access to backend
 • for anything better than basic chit-chat
• multimodal systems need additional components

What’s the time?

Speech recognition

Language understanding

Request (time)

Dialogue management

Inform (time=15:30)

Language generation

Speech synthesis

It is currently 3:30 p.m.

Backend
Automatic Speech Recognition (ASR)

- Converting **speech signal** (acoustic waves) **into text**
- Typically produces several possible hypotheses with confidence scores
 - **n-best list**
 - lattice
 - confusion network
- Very good in ideal conditions
- **Problems:**
 - noise, accents, longer distance, echo cancellation, channel (phone)…

0.8 I’m looking for a restaurant
0.4 uhm looking for a restaurant
0.2 looking for a rest tour rant

Kazemian et al., ICMR 2008
DOI 10.1145/1460096.1460112
Speech Recognition

• Also: voice activity detection
 • detect when the user started & finished speaking
 • wake words ("OK, Google")

• ASR implementation: mostly neural networks
 • take acoustic features (frequency spectrum)
 • compare with previous
 • emit phonemes/letters

• Limited domain: use of language models
 • some words/phrases more likely than others
 • previous context can be used
 • this can improve the experience a lot!
 • problem: out-of-vocabulary

Natural/Spoken
Language understanding (NLU/SLU)

• Extracting the meaning from the (now textual) user utterance
• Converting into a structured semantic representation
 • dialogue acts:
 • act type/intent (inform, request, confirm)
 • slot/attribute (price, time…)
 • value (11:34, cheap, city center…)
 • typically intent detection + slot-value tagging
 • other, more complex – e.g. syntax trees, predicate logic

• Specific steps:
 • named entity resolution (NER)
 • identifying task-relevant names (London, Saturday)
 • coreference resolution
 • ("it" -> “the restaurant”)

inform(food=Chinese, price=cheap)
request(address)
Language Understanding

- Implementation varies
 - (partial) **handcrafting** viable for limited domains
 - keyword spotting
 - regular expressions
 - handcrafted grammars
 - **machine learning** – various methods
 - intent classifiers + slot/value extraction
- Can also provide n-best outputs
- Problems:
 - recovering from bad ASR
 - ambiguities
 - variation

[S: Leaving Baltimore. What is the arrival city?]
[U: fine Portland [ASR error]]
[S: Arriving in Portland. On what date?]
[U: No not Portland Frankfurt Germany]

[On a Tuesday]
[U: I’d like to book a flight from London to New York for next Friday]

[U: Chinese city center]
[U: uhm I’ve been wondering if you could find me a restaurant that has Chinese food close to the city center please]
Dialogue Manager (DM)

• Given NLU input & dialogue so far, responsible for **deciding on next action**
 • keeps track of what has been said in the dialogue
 • keeps track of user profile
 • interacts with backend (database, internet services)

• Dialogue so far = **dialogue history**, modelled by **dialogue state**
 • managed by **dialogue state tracker**

• System actions decided by **dialogue policy**
Dialogue state / State tracking

• Stores (a summary of) dialogue history
 • User requests + information they provided so far
 • Information requested & provided by the system
 • User preferences

• Implementation
 • handcrafted – e.g. replace value per slot with last-mentioned
 • good enough in some circumstances
 • probabilistic – keep an estimate of per-slot preferences based on SLU output
 • more robust, more complex

price: cheap
food: Chinese
area: riverside

price: 0.8 cheap
 0.1 moderate
 0.1 <null>
food: 0.7 Chinese
 0.3 Vietnamese
area: 0.5 riverside
 0.3 <null>
 0.2 city center
Dialogue Policy

• Decision on next system action, given dialogue state
• Involves backend queries
• Result represented as system dialogue act
• Handcrafted:
 • if-then-else clauses
 • flowcharts (e.g. VoiceXML)
• Machine learning
 • often trained with reinforcement learning
 • POMDP (Partially Observable Markov Decision Process)
 • recurrent neural networks

confirm(food=Chinese)
inform(name=Golden Dragon, food=Chinese, price=cheap)

https://www.w3.org/2004/Talks/05-www2004-voice/dialog.png
Natural Language Generation (NLG) (Response Generation)

• Representing system dialogue act in natural language (text)
 • reverse NLU

• How to express things might depend on context
 • Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: templates
 • Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 • Works well for limited domains

\[
\text{inform(name=Golden Dragon, food=Chinese, price=cheap)} \\
+ \\
\langle\text{name}\rangle \text{ is a } \langle\text{price}\rangle\text{-ly priced restaurant serving } \langle\text{food}\rangle \text{ food} \\
= \\
\text{Golden Dragon is a cheaply priced restaurant serving Chinese food.}
\]
Natural Language Generation

- Grammar-based approaches
 - grammar/semantic structures instead of templates
 - NLG realizes them (=converts to linear text) by applying syntactic transformation rules

- Statistical approaches
 - most prominent: recurrent neural networks
 - generating word-by-word
 - input: encoded semantics + previous words

Inform(name=EAT, food=British)

(dialog act 1-hot
representation ...)

SLOT_NAME
serves
SLOT_FOOD

\[
\begin{bmatrix}
0, 0, 1, 0, 0, ..., 1, 0, 0, ..., 1, 0, 0, 0, 0, ...
\end{bmatrix}
\]

RNN cells

delexicalized (generates templates)

after lexicalization (filling in templates)

Wen, INLG 2016

Kozłowski, ACL-SRW 2002

White, ENLG 2011
Text-to-speech (TTS) / Speech Synthesis

• Generate a speech signal corresponding to NLG output
 • text → sequence of **phonemes**
 • minimal distinguishing units of sound (e.g. [p], [t], [ŋ] “ng”, [ə] “eh/uh”, [i:] “ee”)
 • + pitch/intonation, speed, pauses, volume/accents

• Standard pipeline:
 • text normalization
 • abbreviations
 • punctuation
 • numbers, dates, times
 • pronunciation analysis (**grapheme → phoneme conversion**)
 • intonation/stress generation
 • waveform synthesis

take bus number 3 at 5:04am
take bus number three at five o four a m
teɪk bʌs nʌmbə ðrɪ: æt fɔːr əʊ fɔːr ɛm
Speech Synthesis

• TTS Methods:
 • **Formant**-based: phoneme-specific frequencies
 • oldest, not very natural, but works on limited hardware
 • **Concatenative**
 • record a single person, cut into phoneme transitions (diphones), glue them together
 • **Hidden Markov Models**
 • phonemes in context modelled as hidden Markov models
 • Model parameters estimated from data (machine learning)
 • **Neural networks**
 • HMMs swapped for a recurrent neural network
 • can go directly from text, no need for phoneme conversion

https://en.wikipedia.org/wiki/MBROLA
http://homepages.inf.ed.ac.uk/jyamagis/
https://google.github.io/tacotron/
Organizing the Components

• Basic: pipeline
 • ASR → NLU → DM → NLG → TTS
 • components oblivious of each other

• Interconnected
 • read/write changes to dialogue state
 • more reactive (e.g. incremental processing), but more complex

• Joining the modules (experimental)
 • ASR + NLU
 • NLU + state tracking
 • NLU & DM & NLG
End-to-End Systems

- now typical for non-task-oriented
 - single network, trained e.g. on movie subtitles
- task oriented – very experimental
- the whole system (NLU/DM/NLG) is a single neural network
 - joint training (“end-to-end”)
 - more elegant
 - potentially easily retrainable
- typically still needs annotation
 - same as individual modules
 - can be less predictable
- connecting the database is a problem

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042/
Multimodal/Visual Dialogue

• adding other modalities
• specific components
 • parallel to NLU
 • vision – image classification networks
 • face identification/tracking
 • parallel to NLG
 • mimics/gesture generation
 • gaze
 • image retrieval
 • vision – typically CNN
 • often off-the-shelf stuff
 • specific classifiers/rules

(Agarwal et al., 2018)
http://aclweb.org/anthology/W18-6514
Further Research Areas

• Multi/open domains
 • reusability, domain transfer
 • training from little data
 • pretraining with “generic” data

• Context dependency
 • understand/reply in context (grounding, speaker alignment)

• Incrementality
 • don’t wait for the whole sentence to start processing
 • not much stuff going on at the moment, but would help

• Evaluation
 • checking if the system does well is actually non-trivial
Summary

• We’re far from AI sci-fi dreams, but it still works a bit
 • dialogue is hard

• DSs have many forms & usage areas
 • task-oriented vs. non-task-oriented
 • closed vs. open domain
 • system vs. user initiative

• Main components: **ASR → NLU → DM → NLG → TTS**
 • implementation varies
 • sometimes things are joined together

• It’s an active and interesting research topic!

• Next week: machine learning bits and pieces
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
room 424 (but email me first)

Get the slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on slides and syllabi by:

- Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
- Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
- Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/

Labs
Today 14:00 SW1