

Automatic Quality Estimation for Natural Language Generation: Ranting (Jointly Rating and Ranking)

Ondřej Dušek, Karin Sevegnani, Ioannis Konstas & Verena Rieser

Charles University, Prague Heriot-Watt University, Edinburgh

INLG, Tokyo, 31 Oct 2019

Our Task(s)

- Quality estimation: checking NLG output quality
 - just given input MR & NLG system output
 - no human reference texts for the NLG output
 - **supervised training** from a few human-annotated instances
 - well-established for MT, not so much in data-to-text NLG
- Rating: Given NLG output, check if it's good or not (scale 1-6)
- Ranking: Given more NLG outputs, which one is the best?

MR:inform_only_match(name='hotel drisco', area='pacific heights')Rating:NLG output:the only match i have for you is the hotel drisco in the pacific heights area.4 (on a 1-6 scale)

Why Quality Estimation?

- BLEU et al. don't work very well can we be better?
 - evaluating via correlation with humans
- We can do without human references wider usage:
 - Evaluation, tuning (same as BLEU)
 - Tuning (same as BLEU)
 - Inference improving running NLG systems
- Inference time use:
 - for rating: don't show outputs rated below a threshold
 - use a backoff or humans
 - ranking: select best system output from an n-best list

Old Model

(Dušek, Novikova & Rieser, 2017)

- Ratings only
- Dual-encoder
 - MR encoder
 - NLG output encoder
 - fully connected + linear
 - trained by squared error
- Final score is rounded

Our Model

- Ranking extension:
 - 2nd copy NLG output encoder
 + fully connected + linear
 - shared weights
 - trained by hinge rank loss
 - on difference from 2 ratings
- Can learn ranking & rating jointly
 - training instances mixed & losses masked

Synthetic Data (Dušek, Novikova & Rieser, 2017)

- Adding more training instances
 - introducing artificial errors
 - randomly:*
 - removing words
 - replacing words by random ones
 - duplicating words
 - inserting random words
- For rating data:
 - lower the rating by 1 for each error (with $6 \rightarrow 4$)
- This can be applied to NLG systems' training data, too
 - assume 6 (maximum) as original instances' rating

* articles and punctuation are dispreferred

Synthetic Ranking Pairs

- Different #'s of errors introduced to the same NLG output
- Fewer errors should rank better
- Ranking pairs are useful when the system is trained to rate, too!

Results: Rating

- Small 1-6 Likert-scale data (2,460 instances)
 - 3 systems, 3 datasets (hotels & restaurants)
 - 5-fold cross-validation
- Much better correlations than BLEU et al.
 - despite not needing references
 - synthetic data help a lot
 - statistically significant
 - correlation of 0.37 still not ideal
 - noise in human data?
- absolute differences (MAE/RMSE) not so great

System	Pearson	Spearman	MAE	RMSE
Constant	-	-	1.013	1.233
BLEU (needs human references)	0.074	0.061	2.264	2.731
Our previous (Dušek et al., 2017)	0.330	0.287	0.909	1.208
Our base	0.253	0.252	0.917	1.221
+ synthetic rating instances	0.332	0.308	0.924	1.241
+ synthetic ranking instances	0.347	0.320	0.936	1.261
+ synthetic from systems' training data	0.369	0.295	0.925	1.250

(Novikova et al., EMNLP 2017) https://aclweb.org/anthology/D17-1238

Results: Ranking

(Dušek et al., CS&L 59) https://arxiv.org/abs/1901.07931

- Using E2E human ranking data (quality) 15,001 instances
 - 21 systems, 1 domain
 - 5-way ranking converted to pairwise, leaving out ties
 - 8:1:1 train-dev-test split, no MR overlap
- Our system is much better than random in pairwise ranking accuracy
- Synthetic ranking instances help
 - +4% absolute, statistically significant
- Training on both datasets doesn't help
 - different text style, different systems

System	P@1/Acc	
Random	0.500	
Our base	0.708	
+ synthetic ranking instances	0.732	
+ synthetic from systems' training data	0.740	

Conclusions

- Trained quality estimation can do much better than BLEU & co.
 - Pearson correlation with humans 0.37 vs. ~0.06-0.10
 - synthetic ranking instances help
- The results so far aren't ideal (we want more than 0.37/74%)
- Domain/system generalization is still a problem
- Future work:
 - improving model
 - using pretrained LMs
 - obtaining "cleaner" user scores
 - more realistic synthetic errors
 - influence of error type on user ratings

Thanks

- Code & link to data + paper: http://bit.ly/ratpred
- Contact me:

odusek@ufal.mff.cuni.cz http://bit.ly/odusek @tuetschek

 Paper links:
 this paper:
 arXiv: 1910.04731

 previous model:
 arXiv: 1708.01759

 datasets used:
 ACL D17-1238, arXiv:1901.07931

Dušek, Sevegnani, Konstas & Rieser - Automatic Quality Estimation for NLG