Sequence-to-Sequence Natural Language Generation

Ondřej Dušek

Interaction Lab, Heriot-Watt University, Edinburgh

work done with **Filip Jurčíček** at the Institute of Formal and Applied Linguistics, Charles University, Prague

June 1, 2017 University of Sheffield

Outline

- 1. Introduction to the problem
 - a) our task + problems we are solving
- 2. Sequence-to-sequence Generation
 - a) basic model architecture
 - b) generating directly / via deep syntax trees
 - c) experiments on the BAGEL Set
- 3. Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset
- 4. Generating Czech
 - a) creating a Czech NLG dataset
 - b) generator extensions for Czech
 - c) experiments on our dataset
- 5. Conclusions and future work ideas

 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)
↓
X is an Italian restaurant near the river.
```

 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)

↓

X is an Italian restaurant near the river.
```

DA = act type (inform, request...) + slots (attributes) + values

 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)

↓

X is an Italian restaurant near the river.
```

- DA = act type (*inform*, *request*...) + slots (attributes) + values
- no content selection here

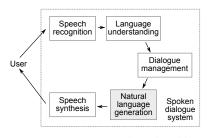
 converting a meaning representation (dialogue acts, DAs) to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside)

↓

X is an Italian restaurant near the river.

- DA = act type (inform, request...) + slots (attributes) + values
- no content selection here
- input: from dialogue manager
- output: to TTS



- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step

- · earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step



- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly
 - no error acummulation / manual annotation
 - alignment is latent (needs not be hard/1:1)

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

Delexicalization

Way to address data sparsity

```
inform(direction="Fulton Street", from_stop="Rockefeller Center", line=M11, vehicle=bus, departure_time=11:02am)
```

Take line M11 bus at 11:02am from Rockefeller Center direction Fulton Street.

inform(name="La Mediterranée", good_for_meal=lunch, kids_allowed=no) La Mediterranée is good for lunch and no children are allowed.

Delexicalization

- Way to address data sparsity
 - many slot values seen once or never in training

```
inform(direction="Fulton Street", from_stop="Rockefeller Center", line=M11, vehicle=bus, departure_time=11:02am)
```

Take line M11 bus at 11:02am from Rockefeller Center direction Fulton Street.

inform(name="La Mediterranée", good_for_meal=lunch, kids_allowed=no) La Mediterranée is good for lunch and no children are allowed.

Delexicalization

- Way to address data sparsity
 - · many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times

Take line M11 bus at 11:02am from Rockefeller Center direction Fulton Street.

inform(name="La Mediterranée", good_for_meal=lunch, kids_allowed=no) **La Mediterranée** is good for **lunch** and no children are allowed.

Delexicalization

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation

Take line X-line X-vehicle at X-departure from X-from direction X-dir.

inform(name="X-name", good_for_meal=X-meal, kids_allowed=no) **X-name** is good for **X-meal** and no children are allowed.

Delexicalization

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing

Take line X-line X-vehicle at X-departure from X-from direction X-dir.

inform(name="X-name", good_for_meal=X-meal, kids_allowed=no) **X-name** is good for **X-meal** and no children are allowed.

Delexicalization

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - · restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing
- Still different from full semantic alignments
 - can be obtained by simple string replacement

Take line X-line X-vehicle at X-departure from X-from direction X-dir.

```
inform(name="X-name", good_for_meal=X-meal, kids_allowed=no) X-name is good for X-meal and no children are allowed.
```

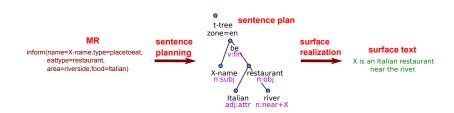

Delexicalization

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing
- Still different from full semantic alignments
 - can be obtained by simple string replacement
- Can be applied to some or all slots

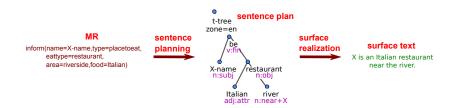
enumerable: food type, price range

non-enumerable: restaurant name, phone number, postcode

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize



- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- · some NLG systems join this into a single step



- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits two-step: simpler structure generation (more abstract)

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits

```
two-step: simpler structure generation (more abstract) joint: avoids error accumulation over a pipeline
```

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits
 two-step: simpler structure generation (more abstract)
 joint: avoids error accumulation over a pipeline
- we try both in one system + compare

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - reusing lexicon and syntax

how bout the next ride Sorry, I did not find a later option. I'm sorry, <u>the next ride</u> was not found.

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account

- speakers are influenced by previous utterances
 - · adapting (entraining) to each other
 - · reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
- entrainment in NLG limited to rule-based systems so far

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
- entrainment in NLG limited to rule-based systems so far
- our system is trainable and entrains/adapts

• English: little morphology

- English: little morphology
 - vocabulary size relatively small

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology

```
Toto se líbí <del>uživateli</del> Jan<mark>ě</mark> Nováková.

This is liked by user [masc] (name) [fem] [dat]
```

```
Děkujeme, Jan<sup>e</sup> Novák<sup>u</sup>, vaše hlasování
Thank you, (name)[nom] bylo vytvořeno.
your poll has been created
```


Problem 4: Multilingual NLG

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try

```
Toto se líbí <del>uživateli</del> Jan<mark>ě</mark> Nováková.

This is liked by user [masc] (name) [fem] [dat]
```

```
Děkujeme, Jan<sup>e</sup> Novák<sup>u</sup>, vaše hlasování
Thank you, (name)[nom] bylo vytvořeno.
your poll has been created
```


Problem 4: Multilingual NLG

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try
- Extensions to our generator to address this:
 - 3rd generator mode: generating lemmas & morphological tags

Problem 4: Multilingual NLG

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try
- Extensions to our generator to address this:
 - 3rd generator mode: generating lemmas & morphological tags
 - inflection for lexicalization (surface form selection)

based on sequence-to-sequence neural network models

- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data

- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)

- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)

- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
- ✓ context-aware: adapts to previous user utterance

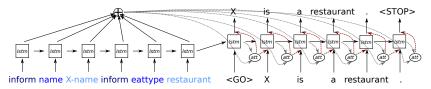
- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
- ✓ context-aware: adapts to previous user utterance
- √ works for English and Czech

- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
- ✓ context-aware: adapts to previous user utterance
- √ works for English and Czech
 - proper name inflection for Czech

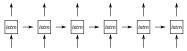
- based on sequence-to-sequence neural network models
- √ trainable from unaligned pairs of input DAs + sentences
 - · learns to produce meaningful outputs from little training data
- √ compares different NLG architectures:
 - a) generating sentences token-by-token (joint 1-step NLG)
 - b) generating deep syntax trees in bracketed notation (sentence planner stage of traditional NLG pipeline)
- √ context-aware: adapts to previous user utterance
- √ works for English and Czech
 - proper name inflection for Czech
 - c) 3rd generator mode: lemma-tag pairs

Basic Sequence-to-Sequence NLG

- 1. Introduction to the problem
 - a) our task + problems we are solving
- 2. Sequence-to-sequence Generation
 - a) basic model architecture
 - b) generating directly / via deep syntax trees
 - c) experiments on the BAGEL Set
- 3. Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset
- 4. Generating Czech
 - a) creating a Czech NLG dataset
 - b) generator extensions for Czech
 - c) experiments on our dataset
- 5. Conclusions and future work ideas

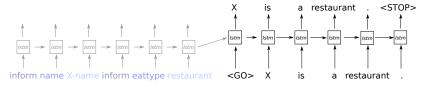


Sequence-to-sequence models with attention

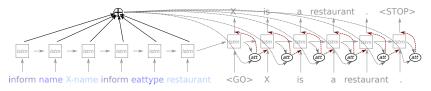


inform name X-name inform eattype restaurant

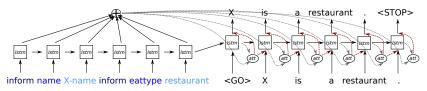
- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states



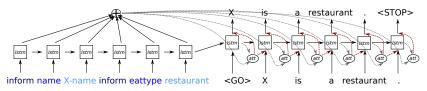
- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens



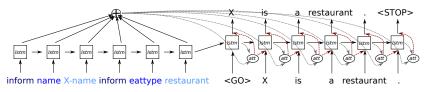
- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states



- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation



- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation
- + beam search, *n*-best list outputs

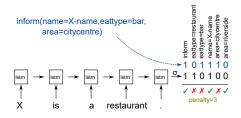


- Sequence-to-sequence models with attention
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states
- basic greedy generation
- + beam search, *n*-best list outputs
- + reranker (→)

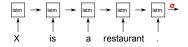
- generator may not cover the input DA perfectly
 - missing / superfluous information

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases

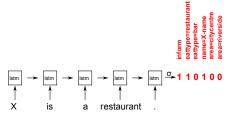
- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank



- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

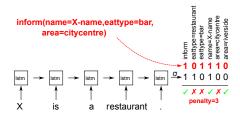


- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer



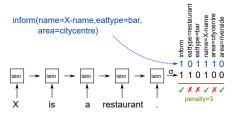
1-hot DA representation

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - · we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

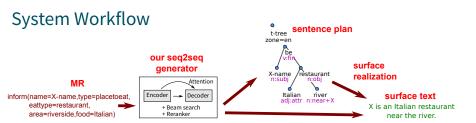


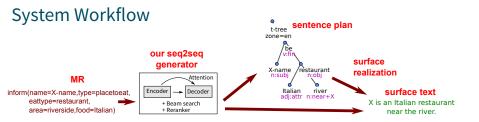
- · 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - · we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer



- · 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)





main generator based on sequence-to-sequence NNs

System Workflow sentence plan zone=en our seq2seq surface generator X-name rèstaurant realization n:subi n:obi Attention MR Encoder river surface text inform(name=X-name.tvpe=placetoeat → Decoder adj:attr n:near+X eattype=restaurant, X is an Italian restaurant + Beam search area=riverside,food=Italian) + Reranker near the river

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs

main generator based on sequence-to-sequence NNs

+ Reranker

- input: tokenized DAs
- · output:

area=riverside,food=Italian)

near the river

System Workflow

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- output: joint mode - sentences

sentence plan

System Workflow

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- output:

joint mode - sentences

2-step mode – deep syntax trees, in bracketed format

(<root><root> ((X-name n:subj) be v:fin ((Italian adj:attr) restaurant n:obj (river n:near+X))))

System Workflow

- main generator based on sequence-to-sequence NNs
- input: tokenized DAs
- · output:

joint mode - sentences

2-step mode – deep syntax trees, in bracketed format (postprocessed by a surface realizer)

(<root> <root> ((X-name n:subj) be v:fin ((Italian adj:attr) restaurant n:obj (river n:near+X))))

Experiments

BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information

Experiments

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods

Experiments

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST
 - manual evaluation: semantic errors on 20% data (missing/irrelevant/repeated)

Results

prev

Setup	BLEU	NIST	ERR
Mairesse et al. (2010) - alignments	\sim 67	-	0
Dušek & Jurčíček (2015)	59.89	5.231	30

Results

rev		Setup	BLEU	NIST	ERR
_		Mairesse et al. (2010) - alignments	\sim 67	-	0
		Dušek & Jurčíček (2015)	59.89	5.231	30
	-step	Greedy with trees	55.29	5.144	20
	ts-c	+ Beam search (beam size 100)	58.59	5.293	28
'n	tΜ	+ Reranker (beam size 100)	60.44	5.514	19
0	4.	Greedy into strings	52.54	5.052	37
	joint	+ Beam search (beam size 100)	55.84	5.228	32
	.خ	+ Reranker (beam size 100)	62.76	5.669	19

Sample Outputs

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference	X is a French restaurant on the riverside.
Greedy with trees	X is a restaurant providing french and continental and by the river.
+ Beam search	X is a restaurant that serves french takeaway. [riverside]
+ Reranker	X is a french restaurant in the riverside area.
Greedy into strings	X is a restaurant in the riverside that serves italian food. [French]
+ Beam search	X is a restaurant in the riverside that serves italian food. [French]
+ Reranker	X is a restaurant in the riverside area that serves french food.

Entrainment-enabled NLG

- 1. Introduction to the problem
 - a) our task + problems we are solving
- 2. Sequence-to-sequence Generation
 - a) basic model architecture
 - b) generating directly / via deep syntax trees
 - c) experiments on the BAGEL Set
- 3. Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset
- 4. Generating Czech
 - a) creating a Czech NLG dataset
 - b) generator extensions for Czech
 - c) experiments on our dataset
- 5. Conclusions and future work ideas

Aim: condition generation on preceding context

- Aim: condition generation on preceding context
 - data sparsity \rightarrow just preceding utterance

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances
 - 2. automatically generated response DAs

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances
 - 2. automatically generated response DAs
 - 3. collected context-aware responses

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances
 - 2. automatically generated response DAs
 - 3. collected context-aware responses
- Instance = DA + sentence

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances
 - 2. automatically generated response DAs
 - 3. collected context-aware responses
- Instance = DA + sentence + preceding utterance

NEW \rightarrow *I'm headed to Rector Street*

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

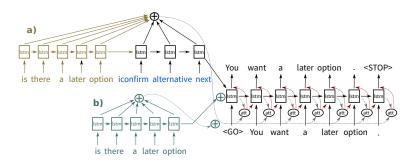
Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance
 - → likely to have strongest entrainment impact
- Context-aware data: new set collected via CrowdFlower
 - 1. recorded calls to live SDS for real user utterances
 - 2. automatically generated response DAs
 - 3. collected context-aware responses
- Instance = DA + context-aware sentence + preceding utterance

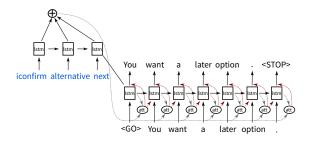
```
I'm headed to Rector Street
```

CONTEXT-→Heading to Rector Street from Fulton Street, take a bus line M21 at 9:13pm.

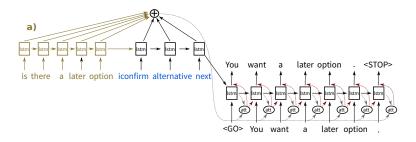
Two direct context-aware extensions:



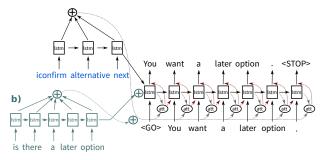
Two direct context-aware extensions:



- Two direct context-aware extensions:
 - a) preceding user utterance prepended to the DA and fed into the decoder



- Two direct context-aware extensions:
 - a) preceding user utterance prepended to the DA and fed into the decoder
 - b) separate context encoder, hidden states concatenated



• (One more) reranker: *n*-gram match

- (One more) reranker: *n*-gram match
- promoting outputs that have a word or phrase overlap with the context utterance

- (One more) reranker: *n*-gram match
- promoting outputs that have a word or phrase overlap with the context utterance

```
is there a later time
inform_no_match(alternative=next)

-2.914 No route found later sorry
-3.544 The next connection is not found .
-3.690 I'm sorry , I can not find a later ride .
-3.836 I can not find the next one sorry .
-4.003 I'm sorry , a later connection was not found .
```

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
<i>n</i> -gram match reranker	68.68	7.577

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ <i>n</i> -gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker
 - context-aware preferred in 52.5% cases (significant)

Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
<i>n</i> -gram match reranker	You want <u>a later</u> connection.
Prepending context + n-gram match reranker	You want <u>a later</u> connection.
Context encoder + n-gram match reranker	You want a later option.

Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
<i>n</i> -gram match reranker	You want <u>a later</u> connection.
Prepending context + <i>n</i> -gram match reranker	You want <u>a later</u> connection.
Context encoder + n-gram match reranker	You want <u>a later option</u> .

Context	i need to find a bus connection
Input DA	inform_no_match(vehicle=bus)
Baseline	No bus found, sorry.
<i>n</i> -gram match reranker	I did not find a bus route.
Prepending context + n-gram match reranker	I'm sorry, I cannot find a bus connection.
Context encoder + n-gram match reranker	I'm sorry, I cannot find a bus connection.

Generating Czech

- 1. Introduction to the problem
 - a) our task + problems we are solving
- 2. Sequence-to-sequence Generation
 - a) basic model architecture
 - b) generating directly / via deep syntax trees
 - c) experiments on the BAGEL Set
- Context-aware extensions (user adaptation/entrainment)
 - a) collecting a context-aware dataset
 - b) making the basic seq2seq setup context-aware
 - c) experiments on our dataset
- 4. Generating Czech
 - a) creating a Czech NLG dataset
 - b) generator extensions for Czech
 - c) experiments on our dataset
- 5. Conclusions and future work ideas

Creating a Czech NLG Dataset

Virtually no non-English NLG datasets available

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization

inform(name="Fog Harbor Fish House", price_range=cheap, area="Civic Center") Fog Harbor Fish House is cheap and it is located in Civic Center.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization

inform(name="X-name", price_range=X-pricerange, area="X-area") X-name is X-pricerange and it is located in X-area.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda is expensive and it is located in Hradčany.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)
 - 3. translation by hired translators

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda je **levná** (cheap) a nachází se na Hradčanech.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)
 - 3. translation by hired translators
 - 4. automatic & manual checks

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda je drahá a nachází se na Hradčanech.

- 3rd generator mode
 - compromise between full 2-step/joint setups

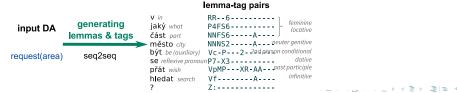
- 3rd generator mode
 - · compromise between full 2-step/joint setups

idea: let the seq2seq model decide everything...

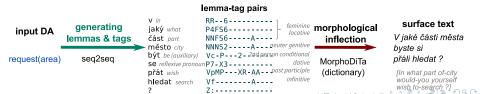
- 3rd generator mode
 - compromise between full 2-step/joint setups

idea: let the seq2seq model decide everything... but for complex morphological inflection

- 3rd generator mode
 - · compromise between full 2-step/joint setups
- idea: let the seq2seq model decide everything... but for complex morphological inflection
 - generating into list of interleaved morph. tags and lemmas



- 3rd generator mode
 - compromise between full 2-step/joint setups
- idea: let the seq2seq model decide everything... but for complex morphological inflection
 - · generating into list of interleaved morph. tags and lemmas
 - · postprocessing:
 - MorphoDiTa dictionary
 - · list of surface forms for names



Czech proper names & other DA slot values need to be inflected

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)

?confirm(good_for_meal=brunch)

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)

?confirm(good_for_meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	_VpMPXR-AA

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:

?confirm(good_for_meal=brunch)

forms	lemmas	tags		
brunch	brunch	NNIS1A		
brunche	brunch	NNIP1A		
brunchů	brunch	NNIP2A		
brunchi	brunch	NNIS3A		
brunchům	brunch	NNIP3A		
brunch	brunch	NNIS4A		
brunche	brunch	NNIP4A		
pozdní snídaně	pozdní snídaně	NNFS1A		
pozdních snídaní	pozdní snídaně	NNFP2A		
pozdní snídani	pozdní snídaně	NNFS4A		
pozdní snídaně	pozdní snídaně	NNFP4A		
pozdních snídaních	pozdní snídaně	NNFP6A		
pozdními snídaněmi	pozdní snídaně	NNFP7A		
brunchový	brunchový	AAMS11A		
brunchová	brunchový	AAFS11A		
brunchové	brunchový	AANS11A		
brunchového	brunchový	AAMS41A		
brunchovou	brunchový	AAFS41A		
dáte brunch	dát brunch	VB-P2P-AA		
dát brunch	dát brunch	VfA		
dali brunch	dát brunch	VpMPXR-AA		

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form

?confirm(good_for_meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	_VpMPXR-AA

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form

?confirm(good_for_meal=brunch)

forms	lemmas	tags	
brunch	brunch	NNIS1A	
brunche	brunch	NNIP1A	
brunchů	brunch	NNIP2A	
brunchi	brunch	NNIS3A	
brunchům	brunch	NNIP3A	
brunch	brunch	NNIS4A	
brunche	brunch	NNIP4A	
pozdní snídaně	pozdní snídaně	NNFS1A	
pozdních snídaní	pozdní snídaně	NNFP2A	
pozdní snídani	pozdní snídaně	NNFS4A	
pozdní snídaně	pozdní snídaně	NNFP4A	
pozdních snídaních	pozdní snídaně	NNFP6A	
pozdními snídaněmi	pozdní snídaně	NNFP7A	
brunchový	brunchový	AAMS11A	
brunchová	brunchový	AAFS11A	
brunchové	brunchový	AANS11A	
brunchového	brunchový	AAMS41A	
brunchovou	brunchový	AAFS41A	
dáte brunch	dát brunch	VB-P2P-AA	
dát brunch	dát brunch	VfA	
dali brunch	dát brunch.	_VpMPXR-AA	

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:

?confirm(good_for_meal=brunch)

forms	lemmas	tags	
brunch	brunch	NNIS1A	
brunche	brunch	NNIP1A	
brunchů	brunch	NNIP2A	
brunchi	brunch	NNIS3A	
brunchům	brunch	NNIP3A	
brunch	brunch	NNIS4A	
brunche	brunch	NNIP4A	
pozdní snídaně	pozdní snídaně	NNFS1A	
pozdních snídaní	pozdní snídaně	NNFP2A	
pozdní snídani	pozdní snídaně	NNFS4A	
pozdní snídaně	pozdní snídaně	NNFP4A	
pozdních snídaních	pozdní snídaně	NNFP6A	
pozdními snídaněmi	pozdní snídaně	NNFP7A	
brunchový	brunchový	AAMS11A	
brunchová	brunchový	AAFS11A	
brunchové	brunchový	AANS11A	
brunchového	brunchový	AAMS41A	
brunchovou	brunchový	AAFS41A	
dáte brunch	dát brunch	VB-P2P-AA	
dát brunch	dát brunch	VfA	
dali brunch	dát brunch	VpMPXR-AA-	

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM

?confirm(good_for_meal=brunch)

forms	lemmas	tags	
brunch	brunch	NNIS1A	
brunche	brunch	NNIP1A	
brunchů	brunch	NNIP2A	
brunchi	brunch	NNIS3A	
brunchům	brunch	NNIP3A	
brunch	brunch	NNIS4A	
brunche	brunch	NNIP4A	
pozdní snídaně	pozdní snídaně	NNFS1A	
pozdních snídaní	pozdní snídaně	NNFP2A	
pozdní snídani	pozdní snídaně	NNFS4A	
pozdní snídaně	pozdní snídaně	NNFP4A	
pozdních snídaních	pozdní snídaně	NNFP6A	
pozdními snídaněmi	pozdní snídaně	NNFP7A	
brunchový	brunchový	AAMS11A	
brunchová	brunchový	AAFS11A	
brunchové	brunchový	AANS11A	
brunchového	brunchový	AAMS41A	
brunchovou	brunchový	AAFS41A	
dáte brunch	dát brunch	VB-P2P-AA	
dát brunch	dát brunch	VfA	
dali brunch	dát brunch	=VpMP-=-XR-AA	

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM
 - d) RNN LM

?confirm(good_for_meal=brunch)

forms	lemmas	tags	
brunch	brunch	NNIS1A	
brunche	brunch	NNIP1A	
brunchů	brunch	NNIP2A	
brunchi	brunch	NNIS3A	
brunchům	brunch	NNIP3A	
brunch	brunch	NNIS4A	
brunche	brunch	NNIP4A	
pozdní snídaně	pozdní snídaně	NNFS1A	
pozdních snídaní	pozdní snídaně	NNFP2A	
pozdní snídani	pozdní snídaně	NNFS4A	
pozdní snídaně	pozdní snídaně	NNFP4A	
pozdních snídaních	pozdní snídaně	NNFP6A	
pozdními snídaněmi	pozdní snídaně	NNFP7A	
brunchový	brunchový	AAMS11A	
brunchová	brunchový	AAFS11A	
brunchové	brunchový	AANS11A	
brunchového	brunchový	AAMS41A	
brunchovou	brunchový	AAFS41A	
dáte brunch	dát brunch	VB-P2P-AA	
dát brunch	dát brunch	VfA	
dali brunch	dát brunch.	=VpMP-=-XR-AA	

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM
 - d) RNN LM
 - score options
 & select most probable

?confirm(good_for_meal=brunch)

forms	lemmas	tags	
brunch	brunch	NNIS1A	
brunche	brunch	NNIP1A	
brunchů	brunch	NNIP2A	
brunchi	brunch	NNIS3A	
brunchům	brunch	NNIP3A	
brunch	brunch	NNIS4A	
brunche	brunch	NNIP4A	
pozdní snídaně	pozdní snídaně	NNFS1A	
pozdních snídaní	pozdní snídaně	NNFP2A	
pozdní snídani	pozdní snídaně	NNFS4A	
pozdní snídaně	pozdní snídaně	NNFP4A	
pozdních snídaních	pozdní snídaně	NNFP6A	
pozdními snídaněmi	pozdní snídaně	NNFP7A	
brunchový	brunchový	AAMS11A	
brunchová	brunchový	AAFS11A	
brunchové	brunchový	AANS11A	
brunchového	brunchový	AAMS41A	
brunchovou	brunchový	AAFS41A	
dáte brunch	dát brunch	VB-P2P-AA	
dát brunch	dát brunch	VfA	
dali brunch	dát brunch	=VpMP-=-XR-AA	

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')

```
inform(name="X-name", price_range=X-pricerange, area="X-area") X-name je X-pricerange a nachází se v X-area. X-name is X-pricerange and it is located in X-area.
```


- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs

```
inform(name="X-name", price_range=X-pricerange, area="X-area") X-name je X-pricerange a nachází se v X-area. X-name is X-pricerange and it is located in X-area.
```


- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs

```
inform(name="Café Savoy", price_range=cheap, area="Smíchov")
X-name je X-pricerange a nachází se na X-area.
```

X-name is X-pricerange and it is located in X-area.

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs
 - ! This is proof-of-concept
 - exploiting small number of lexical values
 - real world: morphological properties / character embeddings

```
inform(name="Café Savoy", price_range=cheap, area="Smíchov") X-name je X-pricerange a nachází se na X-area. X-name is X-pricerange and it is located in X-area.
```


BLEU/NIST

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)
- Human Evaluation

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)
- Human Evaluation
 - WMT-style multi-way relative comparisons

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)
- Human Evaluation
 - WMT-style multi-way relative comparisons
 - overall preference (no criteria)

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)
- Human Evaluation
 - WMT-style multi-way relative comparisons
 - overall preference (no criteria)
 - TrueSkill $^{\text{TM}}$, bootstrap clustering

- BLEU/NIST
 - to select setups for human evaluation (7 out of 24)
- Human Evaluation
 - WMT-style multi-way relative comparisons
 - overall preference (no criteria)
 - TrueSkillTM, bootstrap clustering

input DAs	Setup generator mode	lexicalization	True Skill	Rank	BLEU
delexicalized	joint (direct to strings)	RNN LM	0.511	1	19.54
delexicalized lexically informed lexically informed	lemma-tag lemma-tag lemma-tag	RNN LM RNN LM most frequent	0.479 0.464 0.462	2-4 2-4 2-4	18.51 21.18 20.86
lexically informed	joint (direct to strings)	RNN LM	0.413	5	17.93
lexically informed lexically informed	two-step with t-trees lemma-tag	RNN LM <i>n</i> -gram LM	0.343 0.329	6-7 6-7	17.62 20.54

Results

Success, mostly good Czech

- Success, mostly good Czech
 - occasional fluency errors

- Success, mostly good Czech
 - occasional fluency errors
 - semantic errors very rare

- Success, mostly good Czech
 - occasional fluency errors
 - · semantic errors very rare
- Different results for automatic vs. human scores

- Success, mostly good Czech
 - occasional fluency errors
 - semantic errors very rare
- Different results for automatic vs. human scores
 - Detailed inspection on a sample for best BLEU v. most preferred

- Success, mostly good Czech
 - occasional fluency errors
 - semantic errors very rare
- Different results for automatic vs. human scores
 - Detailed inspection on a sample for best BLEU v. most preferred
 - Most preferred slightly better

- Success, mostly good Czech
 - occasional fluency errors
 - semantic errors very rare
- Different results for automatic vs. human scores
 - Detailed inspection on a sample for best BLEU v. most preferred
 - Most preferred slightly better
- Simpler setups are better

- Success, mostly good Czech
 - occasional fluency errors
 - · semantic errors very rare
- Different results for automatic vs. human scores
 - · Detailed inspection on a sample for best BLEU v. most preferred
 - Most preferred slightly better
- Simpler setups are better
 - two-step with trees worst
 - lemma-tag generation not better than direct

- Success, mostly good Czech
 - occasional fluency errors
 - · semantic errors very rare
- Different results for automatic vs. human scores
 - Detailed inspection on a sample for best BLEU v. most preferred
 - Most preferred slightly better
- Simpler setups are better
 - two-step with trees worst
 - lemma-tag generation not better than direct
 - lexically-informed not better than delexicalized

- · Success, mostly good Czech
 - occasional fluency errors
 - · semantic errors very rare
- Different results for automatic vs. human scores
 - Detailed inspection on a sample for best BLEU v. most preferred
 - Most preferred slightly better
- Simpler setups are better
 - two-step with trees worst
 - lemma-tag generation not better than direct
 - lexically-informed not better than delexicalized
- RNN lexicalization is better than other methods

Czech Output Examples (1)

Input DA	inform(name="Švejk Restaurant", near=Stromovka, price_range=cheap)
Reference	Restaurace Švejk je poblíž Stromovky a nabízí nízké ceny. Švejk Restaurant is near Stromovka and it offers low prices.
Best BLEU/NIST	Restaurace Švejk je levná restaurace, poblíž Stromovky. Švejk Restaurant is a cheap _{fem} restaurant _{fem} , near Stromovka.
Most preferred	<i>Restaurace Švejk je <mark>levná</mark> podnik blízko Stromovky</i> Švejk Restaurant is a cheap _{fem} place _{inan} close to Stromovka
Input DA	inform(name="U Konšelů", phone=X-phone)
Reference	Do U Konšelů můžete zavolat na telefonu 242817033. to U Konšelů you can call on the phone 242817033.
Best BLEU/NIST	Cenu do restaurace U Konšelů můžete volat na číslo 242817033. price to the restaurant U Konšelů you can call the number 242817033.
Most preferred	Telefonní číslo U Konšelů je 242817033. the phone number of U Konšelů is 242817033.
Input DA	inform_no_match(area=Vinohrady)
Reference	Lituji, ale v lokalitě Vinohrad se nenachází žádné I am sorry but in the area of Vinohrady are not located any restaurace. restaurants
Best BLEU/NIST	Na Vinohradech nejsou žádné restaurace vhodné pro děti. in Vinohrady there are no restaurants appropriate for children.
Most preferred	V Vinohrad nejsou žádné takové restaurace. in Vinohradygen there are no such restaurants.

- √ works with unaligned data
 - better than our previous work on the BAGEL set

- √ works with unaligned data
 - better than our previous work on the BAGEL set
- √ produces valid outputs even with limited training data

- √ works with unaligned data
 - · better than our previous work on the BAGEL set
- ✓ produces valid outputs even with limited training data
- √ allows comparing 2-step & joint NLG
 - generates sentences / trees

- √ works with unaligned data
 - better than our previous work on the BAGEL set
- ✓ produces valid outputs even with limited training data
- √ allows comparing 2-step & joint NLG
 - generates sentences / trees
- √ is 1st trainable & capable of entrainment
 - · entrainment better than baseline

- √ works with unaligned data
 - better than our previous work on the BAGEL set
- ✓ produces valid outputs even with limited training data
- √ allows comparing 2-step & joint NLG
 - generates sentences / trees
- √ is 1st trainable & capable of entrainment
 - · entrainment better than baseline
- √ works on Czech successfully
 - including proper name inflection

Our System...

- √ works with unaligned data
 - better than our previous work on the BAGEL set
- √ produces valid outputs even with limited training data
- √ allows comparing 2-step & joint NLG
 - generates sentences / trees
- √ is 1st trainable & capable of entrainment
 - · entrainment better than baseline
- √ works on Czech successfully
 - including proper name inflection

Future Work Ideas

Remove delexicalization

Our System...

- √ works with unaligned data
 - better than our previous work on the BAGEL set
- √ produces valid outputs even with limited training data
- √ allows comparing 2-step & joint NLG
 - generates sentences / trees
- √ is 1st trainable & capable of entrainment
 - · entrainment better than baseline
- √ works on Czech successfully
 - including proper name inflection

Future Work Ideas

- Remove delexicalization
- Integrate into an end-to-end SDS

Thank you for your attention

Download it!

- Code: bit.ly/tgen_nlg
- Entrainment dataset: bit.ly/nlgdata
- Czech restaurant dataset: bit.ly/cs_rest

Contact me

Ondřej Dušek

o.dusek@hw.ac.uk

References

Friedberg, H. et al. 2012. Lexical entrainment and success in student engineering groups. \emph{SLT}

Mairesse, F. et al. 2010. Phrase-based statistical language generation using graphical models and active learning. ACL

Wen, T. H. et al. 2015. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. *EMNLP*

Latent Alignment – Example

inform(name=X-name, type=placetoeat, **area=centre**, eattype=restaurant, near=X-near)

The X restaurant is **conveniently** located near X, **right in the city center**.

inform(name=X-name, type=placetoeat, **foodtype=Chinese_takeaway**)

X serves **Chinese food** and has a **takeaway** possibility.

inform(name=X-name, type=placetoeat, **pricerange=cheap**) **Prices** at X are **quite cheap**.

Sample Outputs on the BAGEL set

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near, food="Chinese takeaway", food=Japanese)
Reference	X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Greedy with trees	X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]
+ Beam search	X is a restaurant and japanese food and chinese takeaway.
+ Reranker	X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.
Greedy into strings	X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]
+ Beam search	X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]
+ Reranker	X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]

Sample Outputs on the BAGEL set

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference	X is a French and Continental restaurant near X.
Greedy with trees	X is a french restaurant that serves french food and near X. [Continental]
+ Beam search	X is a french restaurant that serves french food and near X. [Continental]
+ Reranker	X is a restaurant serving french and continental food near X.
Greedy into strings	X is a french and continental style restaurant near X.
+ Beam search	X is a french and continental style restaurant near X.
+ Reranker	X is a restaurant providing french and continental food, near X.

1. Get natural user utterances in calls to a live dialogue system

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms

You want a connection – your departure stop is *Marble Hill*, and you want to go to *Roosevelt Island*. Ask how long the journey will take. Ask about a schedule afterwards. Then modify your query: Ask for a ride at six o'clock in the evening. Ask for a connection by bus. Do as if you changed your mind: Say that your destination stop is *City Hall*.

You are searching for transit options leaving from *Houston Street* with the destination of *Marble Hill*. When you are offered a schedule, ask about the time of arrival at your destination. Then ask for a connection after that. Modify your query: Request information about an alternative at six p.m. and state that you prefer to go by bus.

Tell the system that you want to travel from *Park Place* to *Inwood*. When you are offered a trip, ask about the time needed. Then ask for another alternative. Change your search: Ask about a ride at 6 o'clock p.m. and tell the system that you would rather use the bus.

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs

- 3. Collect natural language paraphrases for the response DAs
 - interface designed to support entrainment
 - · context at hand
 - minimal slot description
 - · short instructions

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs
 - interface designed to support entrainment
 - · context at hand
 - minimal slot description
 - · short instructions
 - checks: contents + spelling, automatic + manual
 - ca. 20% overhead (repeated job submission)

Handcrafted simple rule-based bigram policy

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance

what about a connection by bus

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information

what about a connection by bus

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information
- In a real dialogue, the correct reply would depend on longer history, but here we try them all

Entrainment Dataset Summary

Size

total response paraphrases	
unique (delex.) context + response DA	
unique (delex.) context	552
unique (delex.) context with min. 2 occurrences	
unique response DA	83
unique response DA types	
unique slots	13

Entrainment

Syntactic	\sim 59%		
Lexical	\sim 31%		
Both	\sim 19%		

 subjective, based on word & phrase reuse, word order, pronouns

Entrainment Output Examples (2)

Context	i rather take the bus
Input DA	inform(vehicle=bus, departure_time=8:01am, direction=Cathedral Parkway, from_stop=Bowling Green, line=M15)
Baseline	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
<i>n</i> -gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
Prepending context + <i>n</i> -gram match reranker	You can take the M15 bus from Bowling Green to Cathedral Parkway at 8:01am.
Context encoder + <i>n</i> -gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.

Full Czech Restaurants BLEU/NIST Results

	Setup		BLEU	NIST
input DAs	generator mode	lexicalization	DLLO	MIST
		random	13.47	3.442
	joint (direct to strings)	most frequent	19.31	4.346
	joint (direct to strings)	n-gram LM	19.40	4.274
		RNN LM	19.54	4.273
	lemma-tag	random	17.18	3.985
delexicalized		most frequent	18.22	4.162
		n-gram LM	17.95	4.132
		RNN LM	18.51	4.162
	two-step with t-trees	random	14.93	3.784
		most frequent	16.16	3.969
		n-gram LM	16.13	3.970
		RNN LM	16.39	3.974
	joint (direct to strings)	random	12.56	3.300
		most frequent	17.82	4.164
		n-gram LM	17.85	4.082
		RNN LM	17.93	4.094
	lemma-tag	random	19.96	4.306
lexically informed		most frequent	20.86	4.427
temeatty innormed		n-gram LM	20.54	4.399
		RNN LM	21.18	4.448
	two-step with t-trees	random	16.13	3.919
		most frequent	17.15	4.073
		n-gram LM	17.24	4.078
		RNN LM	17.62	4.112

- understandable Czech
- · some fluency errors
- · semantic errors very rare

- lexically informed better
- two-step with trees worse
 - RNN lexicalization best

Czech Output Examples (2)

Input DA	inform(type=restaurant, good_for_meal=dont_care, count=3)
Reference	Jsou zde 3 restaurace, které jsou vhodné pro jakékoli jídlo there are 3 restaurants _{nom} that are suitable for any meal
Best BLEU/NIST	<i>Naśla jsem 3 restauraci, které jsou vhodné pro jakékoli jídlo.</i> I found 3 restaurants _{gen} , which are suitable for any meal.
Most preferred	<i>V nabidce je 3 r<mark>estaurací, k</mark>teré nabízí všechny druhy jídel.</i> on the list are 3 restaurants _{gen} , that offer all kinds of meals.
Input DA	inform(area=Hradčany, type=restaurant, kids_allowed=no, count=2)
Reference	V lokalitě Hradčan jsem našla 2 restaurace, které nedovolují in the area of Hradčany I found 2 restaurants, which do not allow vstup dětem. entry to children.
Best BLEU/NIST	V oblasti Hradčan se nabízí 2 restaurace, které nejsou in the area of Hradčany offer themselves 2 restaurants, which are not vhodné pro dětí. appropriate for children.
Most preferred	Na Hradčany se nehodí 2 restaurace, které nejsou vhodné for Hradčany are not suitable 2 restaurants, which are not appropriate pro déti. for children.

