
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 297–307, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Exploiting Reducibility in Unsupervised Dependency Parsing

David Mareček and Zdeněk Žabokrtský
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25, 11800 Prague, Czech Republic
{marecek,zabokrtsky}@ufal.mff.cuni.cz

Abstract

The possibility of deleting a word from a sen-
tence without violating its syntactic correct-
ness belongs to traditionally known manifes-
tations of syntactic dependency. We introduce
a novel unsupervised parsing approach that is
based on a new n-gram reducibility measure.
We perform experiments across 18 languages
available in CoNLL data and we show that
our approach achieves better accuracy for the
majority of the languages then previously re-
ported results.

1 Introduction

The true nature of the notion of dependency (af-
ter removing sedimentary deposits of rules imposed
only by more or less arbitrary conventions) remains
still somewhat vague and elusive. This holds in spite
of a seemingly strong background intuition and even
after a decade of formalized large-scale dependency-
based resources being available to the research com-
munity. It is undeniable that a huge progress has
been reached in the field of supervised dependency
parsing, especially due to the CoNLL shared task se-
ries. However, when it comes to unsupervised pars-
ing, there are surprisingly few clues we could rely
on.

As mentioned e.g. by Kübler et al. (2009), one of
the traditional linguistic criteria for recognizing de-
pendency relations (including their head-dependent
orientation) is that a head H of a construction C de-
termines the syntactic category of C and can often
replace C. Or, in words of Dependency Analysis by

Reduction (Lopatková et al., 2005), stepwise dele-
tion of dependent elements within a sentence pre-
serves its syntactic correctness. A similar idea of
dependency analysis by splitting a sentence into all
possible acceptable fragments is used by Gerdes and
Kahane (2011).

Of course, all the above works had to respond to
the notorious fact that there are many language phe-
nomena precluding the ideal (word by word) sen-
tence reducibility (e.g. in the case of prepositional
groups, or in the case of subjects in English finite
clauses). However, we disregard their solutions ten-
tatively and borrow only the very core of the re-
ducibility idea: if a word can be removed from a
sentence without damaging it, then it is likely to be
dependent on some other (still present) word.

As it is usual with dichotomies in natural lan-
guages, it seems more adequate to use a continuous
scale instead of the reducible-irreducible opposition.
That is why we introduce a simple reducibility mea-
sure based on n-gram corpus statistics. We employ
this reducibility measure as the main feature in our
unsupervised parsing procedure.

The procedure is based on a commonly used
Bayesian inference technique called Gibbs sampling
(Gilks et al., 1996). In our sampler, the more re-
ducible a given token is, the more likely it is to
be sampled as a dependant and not as a head. Af-
ter certain number of sampling iterations, for each
sentence a final dependency tree is created (one to-
ken per node, including punctuation) that maximizes
the product of edge probabilities gathered along the
sampling history.

Our approach allows to utilize information from

297

very large corpora. While the computationally de-
manding sampling procedure can be applied only
on limited data, the unrepeated precomputation of
statistics for reducibility estimates can easily exploit
much larger data.

We are not aware of any other published work
on unsupervised parsing employing reducibility or
a similar idea. Dominating approaches in unsuper-
vised parsing are typically based on repeated pat-
terns, and not on the possibility of a deletion inside
a pattern. It seems that the two views of depen-
dency (frequent co-occurrence of head-dependant
pair, versus reducibility of the dependant) are rather
complementary, so fruitful combinations can be
hopefully expected in future.

The remainder of this paper is structured as fol-
lows. Section 2 briefly outlines the state of the art in
unsupervised dependency parsing. Our measure of
reducibility based on a large monolingual corpus is
presented in Section 3. Section 4 shows our models
which serve for generating probability estimates for
edge sampling described in Section 5. Experimen-
tal parsing results for languages included in CoNLL
shared task treebanks are summarized in Section 6.
Section 7 concludes this article.

2 Related Work

The most popular approach in unsupervised de-
pendency parsing of the recent years is to employ
Dependency Model with Valence (DMV), which
was introduced by Klein and Manning (2004).
The inference algorithm was further improved by
Smith (2007) and Cohen et al. (2008). Headden,
Johnson and McClosky (2009) introduced the Ex-
tended Valence Grammar (EVG) and added lexical-
ization and smoothing. Blunsom and Cohn (2010)
use tree substitution grammars, which allow learn-
ing larger dependency fragments.

Unfortunately, many of these works show results
only for English.1 However, the main feature of
unsupervised methods should be their applicabil-
ity across a wide range of languages. Such exper-
iments were done by Spitkovsky (2011b; 2011c),
where the parsing algorithm was evaluated on all 19
languages included in CoNLL 2006 (Buchholz and

1The state-of-the-art unsupervised parsers achieve more
than 50% of attachment score measured on the Penn Treebank.

Marsi, 2006) and 2007 (Nivre et al., 2007) shared
tasks.

The fully unsupervised linguistic analysis
(Spitkovsky et al., 2011a) shows that the unsuper-
vised part-of-speech tags may be more useful for
this task than the supervised ones.

Another possibility for obtaining dependency
structures for languages without any linguistically
annotated resources can be the projection using a
parallel treebank with a resource-rich language (typ-
ically English). McDonald et al. (2011) showed that
such projection produce better structures than the
current unsupervised parsers do. However, our task
is different. We would like to produce structures that
are not burdened by any linguistic conventions.

In this paper, we describe a novel approach to un-
supervised dependency parsing. Our model differs
from DMV, since we employ the reducibility feature
and use fertility of nodes instead of generating STOP
signs.

We use Gibbs sampling procedure for inference
instead of Variational Bayes, which has been more
common for induction of linguistic strucures. Gibbs
sampling algorithm for grammar induction was used
also by Mareček and Žabokrtský (2011). However,
their sampling algorithm produces generally non-
projective trees. Our sampler, which is described in
Section 5, introduces a completely different small-
change operator that guarantees projective edges.

3 Computing Reducibility scores

We call a word (or a sequence of words) in a sen-
tence reducible, if the sentence after removing the
word remains grammatically correct. Although we
cannot automatically recognize grammaticality of
such newly created sentence, we can search for it
in a large corpus. If we find it, we assume the word
was reducible in the original sentence.

Since the number of such reducible word se-
quences found in any corpus will be low, we de-
termine the reducibility scores from their individual
types (part-of-speech tags). This then implicitly al-
lows some sharing of the scores between different
word sequences.

The necessity to search for the whole sentences
in the corpus and not only for some smaller context
(considering, for example, just left and right neigh-

298

bor), which would lead to lower sparsity, is rational-
ized by the following example:

Their children went to school.
I took their children to school.

The verb ‘went’ would be reducible in the context
‘their children went to school’, because the sequence
‘their children to school’ occurs in the second sen-
tence. One could find such examples frequently even
for large contexts. For instance, verbs in free word-
order languages can be placed almost at any posi-
tion in a sentence; therefore, without the full sen-
tence context, they would have to be considered as
reducible. To prevent this, we decided to work ex-
clusively with the full sentence context instead of
shorter contexts.

Other way that would lead to lower sparsity would
be searching for sequences of part-of-speech tags in-
stead of sequences of word forms. However, this
also does not bring desired results. For instance, the
two following sentence patterns

DT NNS VBD IN DT NN .
DT NNS VBD DT NN .

are quite frequent in English and we can deduce
from them that the preposition IN is reducible. But
this is of course a wrong deduction, since the prepo-
sition cannot be removed from the prepositional
phrase. Using part-of-speech tags instead of word
forms is thus not suitable for computing reducibility
scores.

Although we search for reducible sequences of
word forms in the corpus, we compute reducibil-
ity scores for sequences of part-of-speech tags. This
requires to have the corpus morphologically disam-
biguated. A sequences of part-of-speech tags will be
denoted as “PoS n-gram” in the following text.

Assume a PoS n-gram g = [t1, . . . , tn]. We go
through the corpus and search for all its occurrences.
For each such occurrence, we remove the respec-
tive words from the current sentence and check in
the corpus whether the rest of the sentence occurs at
least once elsewhere in the corpus.2 If so, then such
occurrence of PoS n-gram is reducible, otherwise it
is not. We denote the number of such reducible oc-

2We do not take into account sentences with less then 10
words, because they could be nominal (without any verb) and
might influence the reducibility scores of verbs.

unigrams R bigrams R trigrams R
VB 0.04 VBN IN 0.00 IN DT JJ 0.00
TO 0.07 IN DT 0.02 JJ NN IN 0.00
IN 0.11 NN IN 0.04 NN IN NNP 0.00
VBD 0.12 NNS IN 0.05 VBN IN DT 0.00
CC 0.13 JJ NNS 0.07 JJ NN . 0.00
VBZ 0.16 NN . 0.08 DT JJ NN 0.04
NN 0.22 DT NNP 0.09 DT NNP NNP 0.05
VBN 0.24 DT NN 0.09 NNS IN DT 0.14
. 0.32 NN , 0.11 NNP NNP . 0.15
NNS 0.38 DT JJ 0.13 NN IN DT 0.23
DT 0.43 JJ NN 0.14 NNP NNP , 0.46
NNP 0.78 NNP . 0.15 IN DT NNP 0.55
JJ 0.84 NN NN 0.22 DT NN IN 0.59
RB 2.07 IN NN 0.67 NNP NNP NNP 0.64
, 3.77 NNP NNP 0.76 IN DT NN 0.80
CD 55.6 IN NNP 1.81 IN NNP NNP 4.27

Table 1: Reducibility scores of the most frequent
English n-grams. (V* are verbs, N* are nouns, DET
are determiners, IN are prepositions, JJ are adjec-
tives, RB are adverbs, CD are numerals, and CC are
coordinating conjunctions)

currences of PoS n-gram g by r(g). The number of
all its occurrences is c(g).

The relative reducibility R(g) of a PoS n-gram g
is then computed as

R(g) =
1

N

r(g) + σ1

c(g) + σ2
, (1)

where the normalization constant N , which ex-
presses relative reducibility over all the PoS n-grams
(denoted by G), causes the scores are concentrated
around the value 1.

N =

∑
g∈G(r(g) + σ1)∑
g∈G(c(g) + σ2)

(2)

Smoothing constants σ1 and σ2, which prevent re-
ducibility scores from being equal to zero, are set
to

σ1 =

∑
g∈G r(g)∑
g∈G c(g)

, σ2 = 1 (3)

This setting causes that even if a given PoS n-gram is
not reducible anywhere in the corpus, its reducibility
score is 1/(c(g) + 1).

Tables 1, 2, and 3 show reducibility scores of the
most frequent PoS n-grams of three selected lan-
guages: English, German, and Czech. If we consider
only unigrams, we can see that the scores for verbs
are often among the lowest. Verbs are followed by
prepositions and nouns, and the scores for adjectives

299

unigrams R bigrams R trigrams R
VVPP 0.00 NN APPR 0.00 NN APPR NN 0.01
APPR 0.27 APPR ART 0.00 ADJA NN APPR 0.01
VVFIN 0.28 ART ADJA 0.00 APPR ART ADJA 0.01
APPRART 0.32 NN VVPP 0.00 NN KON NN 0.01
VAFIN 0.37 NN $(0.01 ADJA NN $. 0.01
KON 0.37 NN NN 0.01 NN ART NN 0.32
NN 0.43 NN ART 0.21 ART NN ART 0.49
ART 0.49 ADJA NN 0.28 NN ART ADJA 0.90
$(0.57 NN $, 0.67 ADJA NN ART 0.95
$. 1.01 NN VAFIN 0.85 NN APPR ART 0.95
NE 1.14 NN VVFIN 0.89 NN VVPP $. 1.01
CARD 1.38 NN $. 0.95 ART NN APPR 1.35
ADJA 2.38 ART NN 1.07 ART ADJA NN 1.58
$, 2.94 NN KON 2.41 APPR ART NN 2.60
ADJD 3.54 APPR NN 2.65 APPR ADJA NN 2.65
ADV 7.69 APPRART NN 3.06 ART NN VVFIN 9.51

Table 2: Reducibility scores of the most frequent
German n-grams. (V* are verbs, N* are nouns, ART
are articles, APPR* are prepositions, ADJ* are ad-
jectives, ADV are adverbs, CARD are numerals, and
KON are conjunctions)

and adverbs are very high for all three examined lan-
guages. That is desired, because the reducible uni-
grams will more likely become leaves in dependency
trees. Considering bigrams, the couples [determiner
– noun], [adjective – noun], and [preposition – noun]
obtained reasonably high scores. However, there
are also n-grams such as the German trigram [de-
terminer – noun – preposition] (ART-NN-APPR)
whose reducibility score is undesirably high.3

4 Models

We introduce a new generative model that is dif-
ferent from the widely used Dependency Model
with Valence (DMV). In DMV (Klein and Manning,
2004) and in the extended model EVG (Headden III
et al., 2009), there is a STOP sign indicating that no
more dependents in a given direction will be gener-
ated. Given a certain head, all its dependents in left
direction are generated first, then the STOP sign in
that direction, then all its right dependents and then
STOP in the other direction. This process continues
recursively for all generated dependents.

Our model introduces fertility of a node, which
substitutes the STOP sign. For a given head, we first
generate the number of its left and right children

3The high reducibility score of ART-NN-APPR was proba-
bly caused by German particles, which have the same PoS tag
as prepositions.

unigrams R bigrams R trigrams R
P4 0.00 RR AA 0.00 RR NN Z: 0.00
RV 0.00 Z: J, 0.00 NN RR AA 0.00
Vp 0.06 Vp NN 0.00 NN AA NN 0.16
Vf 0.06 VB NN 0.12 AA NN RR 0.23
P7 0.16 NN Vp 0.13 NN RR NN 0.46
J, 0.24 NN VB 0.18 NN Jˆ NN 0.46
RR 0.28 NN RR 0.22 AA NN NN 0.47
VB 0.33 NN AA 0.23 NN Z: Z: 0.48
NN 0.72 NN Jˆ 0.62 NN Z: NN 0.52
Jˆ 1.72 AA NN 0.62 NN NN NN 0.70
C= 1.85 NN NN 0.70 AA AA NN 0.72
PD 2.06 NN Z: 0.97 AA NN Z: 0.86
AA 2.22 Z: NN 1.72 NN NN Z: 1.38
Dg 3.21 Z: Z: 1.97 RR NN NN 2.26
Z: 4.01 Jˆ NN 2.05 RR AA NN 2.65
Db 4.62 RR NN 2.20 Z: NN Z: 8.32

Table 3: Reducibility scores of the most frequent
Czech n-grams. (V* are verbs, N* are nouns, P* are
pronouns, R* are prepositions, A* are adjectives, D*
are adverbs, C* are numerals, J* are conjunctions,
and Z* is punctuation)

(fertility model) and then we fill these positions by
generating its individual dependents (edge model).
If a zero fertility is generated in both the directions,
the head becomes a leaf.

Besides the fertility model and the edge model,
we use two more models (subtree model and dis-
tance model), which force the generated trees to
have more desired shape.4

4.1 Fertility Model

We express a fertility of a node by a pair of num-
bers: the number of its left dependents and the num-
ber of its right dependents. For example, fertility
“1-3” means that the node has one left and three
right dependents, fertility “0-0” indicates that it is
a leaf. Fertility is conditioned by part-of-speech tag
of the node and it is computed following the Chi-
nese restaurant process. This means that if a specific
fertility has been frequent for a given PoS tag in the
past, it is more likely to be generated again. The
formula for computing probability of fertility fi of a
word on the position i in the corpus is as follows:

Pf (fi|ti) =
c−i(“ti, fi”) + αP0(fi)

c−i(“ti”) + α
, (4)

4In fact, the subtree model and the distance model disrupt a
bit the generative story, because the probabilites do not sum up
to one when they are used. However, they proved to help with
inducing better linguistic structures.

300

where ti is part-of-speech tag of the word on the po-
sition i, c−i(“ti, fi”) stands for the count of words
with PoS tag ti and fertility fi in the history, and
P0 is a prior probability for the given fertility which
depends on the total number of node dependents de-
noted by |fi| (the sum of numbers of left and right
dependents):

P0(fi) =
1

2|fi|+1
(5)

This prior probability has a nice property: for a
given number of nodes, the product of fertility prob-
abilities over all the nodes is equal for all possible
dependency trees. This ensures the stability of this
model during the inference.

Besides the basic fertility model, we introduce
also an extended fertility model, which uses fre-
quency of a given word form for generating number
of children. We assume that the most frequent words
are mostly function words (e.g. determiners, prepo-
sitions, auxiliary verbs, conjunctions). Such words
tend to have a stable number of children, for exam-
ple (i) some function words are exclusively leaves,
(ii) prepositions have just one child, and (iii) attach-
ment of auxiliary verbs depends on the annotation
style, but number of their children is also not very
variable. The higher the frequency of a word form,
the higher probability mass is concentrated on one
specific number of children and the lower Dirichlet
hyperparameter α in Equation 4 is needed. The ex-
tended fertility is described by equation

P ′f (fi|ti, wi) =
c−i(“ti, fi”) + αe

F (wi)
P0(fi)

c−i(“ti”) + αe
F (wi)

, (6)

where F (wi) is a frequency of the word wi, which
is computed as a number of words wi in our corpus
divided by number of all words.

4.2 Edge Model
After the fertility (number of left and right depen-
dents) is generated, the individual slots are filled us-
ing the edge model. A part-of-speech tag of each de-
pendent is conditioned by part-of-speech tag of the
head and the edge direction (position of the depen-
dent related to the head).5

5For the edge model purposes, the PoS tag of the technical
root is set to ‘<root>’ and it is in the zero-th position in the

Similarly as for the fertility model, we employ
Chinese restaurant process to assign probabilities of
individual dependent.

Pe(tj |ti, dj) =
c−i(“ti, tj , dj”) + β

c−i(“ti, dj”) + β|T |
, (7)

where ti and tj are the part-of-speech tags of the
head and the generated dependent respectively; dj is
a direction of edge between the words i and j, which
can have two values: left and right. c−i(“ti, tj , dj”)
stands for the count of edges ti ← tj with the direc-
tion dj in the history, |T | is a number of unique tags
in the corpus and β is a Dirichlet hyperparameter.

4.3 Distance Model
Distance model is an auxiliary model that prevents
the resulting trees from being too flat. Ideally, it
would not be needed, but experiments showed that
it helps to infer better trees. This simple model says
that shorter edges are more probable than longer
ones. We define probability of a distance between
a word and its parent as its inverse value,6 which is
then normalized by the normalization constant εd.

Pd(i, j) =
1

εd

(
1

|i− j|

)γ
(8)

The hyperparameter γ determines the weight of this
model.

4.4 Subtree Model
The subtree model uses the reducibility measure. It
plays an important role since it forces the reducible
words to be leaves and reducible n-grams to be sub-
trees. Words with low reducibility are forced to-
wards the root of the tree. We define desc(i) as a
sequence of tags [tl, . . . , tr] that corresponds to all
the descendants of the word wi including wi, i.e. the
whole subtree of wi. The probability of such sub-
tree is proportional to its reducibility R(desc(i)).
The hyperparameter δ determines the weight of the
model; εs is a normalization constant.

Ps(i) =
1

εs
R(desc(i))δ (9)

sentence, so the head word of the sentence is always its right
dependent.

6Distance between any word and the technical root of the
dependency tree was set to 10. Since each technical root has
only one dependent, this value does not affect the model.

301

4.5 Probability of the Whole Treebank
We want to maximize the probability of the whole
generated treebank, which is computed as follows:

Ptreebank =
n∏
i=1

(P ′f (fi|ti, wi) (10)

Pe(ti|tπ(i), di) (11)

Pd(i, π(i)) (12)

Ps(i)), (13)

where π(i) denotes the parent of the word on the
position i. We multiply the probabilities of fertil-
ity, edge, distance from parent, and subtree over all
words (nodes) in the corpus. The extended fertility
model P ′f can be substituted by its basic variant Pf .

5 Sampling Algorithm

For stochastic searching for the most probable de-
pendency trees, we employ Gibbs sampling, a stan-
dard Markov Chain Monte Carlo technique (Gilks et
al., 1996). In each iteration, we loop over all words
in the corpus in a random order and change the de-
pendencies in their neighborhood (a small change
described in Section 5.2). In the end, “average” trees
based on the whole sampling are built.

5.1 Initialization
Before the sampling starts, we initialize the projec-
tive trees randomly. For doing so, we tried the fol-
lowing two initializers:

• For each sentence, we choose randomly one
word as the head and attach all other words to
it.

• We are picking one word after another in a ran-
dom order and we attach it to the nearest left (or
right) neighbor that has not been attached yet.
The left-right choice is made by a coin flip. If it
is not possible to attach a word to one side, we
attach it to the other side. The last unattached
word becomes the head of the sentence.

While the first method generates only flat trees,
the second one can generate all possible projective
trees. However, the sampler converges to similar re-
sults for both the initializations. Therefore we con-
clude that the choice of the initialization mechanism

The dog was in the park .

(((The) dog) was (in ((the) park)) (.))

Figure 1: Arrow and bracketing notation of a projec-
tive dependency tree.

(((The) dog) was in ((the) park) (.))

(((The) dog) was in ((the) park) (.))
(((The) dog) was in ((the) park) (.))
(((The) dog) was in ((the) park) (.))

(
(
(

)
)

)

(((The) dog) was in ((the) park) (.))
(((The) dog) was in ((the) park) (.))(

(
)

)

Figure 2: An example of small change in a projec-
tive tree. The bracket (in the park) is removed and
there are five possibilities how to replace it.

is not so important here and we choose the first one
due to its simplicity.

5.2 Small Change Operator
We use the bracketing notation for illustrating the
small change operator. Each projective dependency
tree consisting of n words can be expressed by n
pairs of brackets. Each bracket pair belongs to one
node and delimits its descendants from the rest of
the sentence. Furthermore, each bracketed segment
contains just one word that is not embedded deeper;
this node is the segment head. An example of this
notation is in Figure 1.

The small change is then very simple. We remove
one pair of brackets and add another, so that the con-
ditions defined above are not violated. An example
of such change is in Figure 2.

From the perspective of dependency structures,
the small change can be described as follows:

1. Pick a random non-root word w (the word in
in our example) and find its parent p (the word
was).

2. Find all other children of w and p (the words
dog, park, and .) and denote this set by C.

3. Choose the new head out of w and p. Mark the
new head as g and the second candidate as d.
Attach d to g.

302

4. Select a neighborhoodD adjacent to the word d
as a continuous subset ofC and attach all words
from D to d. D may be also empty.

5. Attach the remaining words from C that were
not in D to the new head g.

5.3 Building “Average” Trees
The “burn-in” period is set to 10 iterations. After
this period, we begin to count how many times an
edge occurs at a particular location in the corpus.
These counts are collected over the whole corpus
with the collection-rate 0.01.7

When the samling is finished, we build final de-
pendency trees based on the edge counts obtained
during the sampling. We employ the maximum
spanning tree (MST) algorithm (Chu and Liu, 1965)
to find them; the weights of edges for computing
MST correspond to the number of times they were
present during the sampling. This averaging method
was used also by Mareček and Žabokrtský (2011).

Other possibilities for obtaining final depen-
dency trees would be using Eisner’s projective al-
gorithm (Eisner, 1996) or using annealing method
(favoring more likely changes) at the end of the sam-
pling. However, the general non-projective MST al-
gorithm enable non-projective edges, which are by
no means negligible in treebanks (Havelka, 2007).

6 Experiments and Evaluation

We evaluate our parser on 20 treebanks (18
languages) included in CoNLL shared tasks
2006 (Buchholz and Marsi, 2006) and 2007 (Nivre
et al., 2007).

Similarly to some previous papers on unsuper-
vised parsing (Gillenwater et al., 2011; Spitkovsky
et al., 2011b), the tuning experiments were per-
formed on English only. We used English for check-
ing functionality of the individual models and for
optimizing hyperparameter values. The best config-
uration of the parser achieved on English develop-
ment data was then used for parsing all other lan-
guages. This simulates the situation in which we
have only one treebank (English) on which we can
tune our parser and we want to parse other languages
for which we have no manually annotated treebanks.

7After each small change is made, the edges from the whole
corpus are collected with a probability 0.01.

language tokens (mil.) language tokens (mil.)
Arabic 19.7 Greek 20.9
Basque 14.1 Hungarian 26.3
Bulgarian 18.8 Italian 39.7
Catalan 27.0 Japanese 2.6
Czech 20.3 Portuguese 31.7
Danish 15.9 Slovenian 13.7
Dutch 27.1 Spanish 53.4
English 85.0 Swedish 19.2
German 56.9 Turkish 16.5

Table 4: Wikipedia texts statistics

6.1 Data

We need two kinds of data for our experiments: a
smaller treebank, which is used for sampling and for
evaluation, and a large corpus, from which we com-
pute n-gram reducibility scores.

The treebanks are taken from the CoNLL shared
task 2006 and 2007. The experiments are per-
formed for all languages except for Chinese.8 We
use only the testing parts of the treebanks (the files
test.conll) for the dependency tree induction.
As a source of the part-of-speech tags, we use the
fine-grained gold PoS tags, which are in the fifth col-
umn in the CoNLL format.

For obtaining reducibility scores, we used the
W2C corpus9 of Wikipedia articles, which was
downloaded by Majliš and Žabokrtský (2012). Their
statistics across languages are shown in Table 4. To
make them useful, the necessary preprocessing steps
must have been done. The texts were first automati-
cally segmented and tokenized10 and then they were
part-of-speech tagged by TnT tagger (Brants, 2000),
which was trained on the respective CoNLL train-
ing data (the files train.conll). The quality of
such tagging is not very high, since we do not use
any lexicons11 or pretrained models. However, it is
sufficient for obtaining good reducibility scores.

8We do not have appropriate Chinese segmenter that would
segment Chinese texts in the same way as in CoNLL.

9http://ufal.mff.cuni.cz/˜majlis/w2c/
10The segmentation to sentences and tokenization was per-

formed using the TectoMT framework (Popel and Žabokrtský,
2010).

11Using lexicons or another pretrained models for tagging
means using other sources of human annotated data, which is
not allowed if we want to compare our results with others.

303

6.2 Setting the Hyperparameters

The applicability of individual models and their pa-
rameters were tested on development data set of
English (the file en/dtest.conll in CoNLL
shared task 2007).

After several experiments, we have observed that
the extended fertility model provides better results
than the basic fertility model; the parser using the
basic fertility model achieved 44.1% attachment
score for English, whereas the extended fertility
model increased the score to 46.8%. The four hy-
perparameters αe (extended fertility model), β (edge
model), γ (distance model), and δ (subtree model),
were set by a grid search algorithm,12 which found
the following optimal values:

αe = 0.01, β = 1, γ = 1.5, δ = 1

In informal experiments, parameters were tuned
also for other treebanks and we found out that they
vary across languages. Therefore, adjusting the hy-
perparameters on another language would probably
change the scores significantly.

6.3 Evaluation

The best setting from the experiments on English is
now used for evaluating our parser on all CoNLL
languages. To be able to compare our parser attach-
ment score to previously published results, the fol-
lowing steps must be done:

• We take the testing part of each treebank (the
file test.conll) and remove all the punctu-
ation marks. If the punctuation node is not a
leaf, its children are attached to the parent of
the removed node.

• Some previous papers report results on up-to-
10-words sentences only. Therefore we extract
such sentences from the test data and evaluate
on this subsets as well.

12Here we make use of manually annotated trees. However,
we use only English treebank an we are setting only four num-
bers out of several previously given values (e.g αe out of 0.01,
0.1, 1, 10). These numbers could be tuned also by inspecting
the outputs. So we believe this method can be treated as unsu-
pervised.

CoNLL ≤ 10 tokens all sentences
language year gil11 our spi11 our
Arabic 06 – 40.5 16.6 26.5
Arabic 07 – 48.0 49.5 27.9
Basque 07 – 30.8 24.0 26.8
Bulgarian 06 58.3 53.2 43.9 46.0
Catalan 07 – 63.5 59.8 47.0
Czech 06 53.2 58.9 27.7 49.5
Czech 07 – 63.7 28.4 48.0
Danish 06 45.9 49.5 38.3 38.6
Dutch 06 33.5 48.8 27.8 44.2
English 07 – 64.1 45.2 49.2
German 06 46.7 60.8 30.4 44.8
Greek 07 – 30.2 13.2 20.2
Hungarian 07 – 61.8 34.7 51.8
Italian 07 – 50.5 52.3 43.3
Japanese 06 57.7 65.4 50.2 50.8
Portuguese 06 54.0 62.3 36.7 50.6
Slovenian 06 50.9 21.0 32.2 18.1
Spanish 06 57.9 67.3 50.6 51.9
Swedish 06 45.0 60.5 50.0 48.2
Turkish 07 – 13.0 35.9 15.7

Average: 50.3∗ 54.7∗ 37.4 40.0

Table 5: Comparison of directed attachment scores
with previously reported results on CoNLL tree-
banks. The column “gil11” contains results reported
by Gillenwater et al (2011) (see the best configura-
tion in Table 7 in their paper). They provided only
results on sentences of up to 10 tokens from CoNLL
2006 treebanks. Results in the column “spi11” are
taken from Spitkovsky et al (2011b), best configu-
ration in Table 6 in their paper. The average score
in the last line is computed across all comparable
results, i.e. for comparison with “gil11” only the
CoNLL’06 results are averaged (∗). Our parser was
not evaluated on Turkish CoNLL’06 data and Chi-
nese data, because we have not them available.

The resulting scores are given in Table 5. We
compare our results with results previously reported
by Gillenwater (2011) and Spitkovsky (2011b), who
used the CoNLL data for evaluation too. Since they
provide results for several configurations of their
parsers, we choose only the best one from each the
paper. We define the best configuration as the one

304

with the highest average attachment score across all
the tested languages.

We can see that our parser outperforms the pre-
viously published ones. In one case, it is better for
8 out of 10 data sets, in the other case, it is better
for 14 out of 20 data sets. The average attachment
scores, which are computed only from the results
present for both compared parsers, also confirm the
improvement.

However, it is important to note that we used an
additional source of information, namely large unan-
notated corpora for computing reducibility scores,
while the others used only the CoNLL data.

6.4 Error Analysis

Our main motivation for developing an unsupervised
dependency parser was that we wanted to be able
to parse any language. However, the experiments
show that our parser fails for some languages. In
this section, we try to analyze and explain some of
the most substantial types of errors.

Auxiliary verbs in Slovenian – In the Slovenian
treebank, many verbs are composed of two words:
main verb (marked as Verb-main) and auxiliary
verb (Verb-copula). Our parser choose the aux-
iliary verb as the head and the main verb and all its
dependants become its children. That is why the at-
tachment score is so poor (only 18.1%). In fact, the
induced structure is not so bad. The main verb is
switched with the auxiliary one which causes also
the wrong attachment of all its dependants.

Articles in German – Attachment of about one
half of German articles is wrong. Instead of the ar-
ticle being attached below the appropriate noun, the
noun is attached below the article. It is a similar
problem as the aforementioned Slovenian auxiliary
verbs. The dependency between content and func-
tion word is switched and the dependants of the con-
tent word are attached to the function word. Klein
and Manning (2004) observed a similar behavior in
their experiments with DMV.

Noun phrases in English – The structure of
phrases that consist of more nouns are often induced
badly. This is caused probably by ignoring word
forms. For example, the structure of the sequence
‘NN NN NN’ can be hardly recognized by our parser.

fert. edge dist. subtr. en de cs
(random baseline) 19.8 18.4 26.7

X 8.71 13.7 14.9
X 18.9 20.2 26.5

X 23.6 19.5 25.3
X 28.2 23.7 33.5

X X 21.2 22.9 23.5
X X 19.9 19.7 25.5
X X 7.8 17.5 22.7

X X 24.1 19.5 27.1
X X 25.5 27.5 40.7

X X 31.2 25.2 33.1
X X X 30.7 26.2 22.0
X X X 14.1 18.1 34.6
X X X 36.1 32.2 38.9

X X X 34.8 26.7 42.4
X X X X 46.8 36.5 47.2

Table 6: Ablation analysis. Unlabeled attachment
scores for different combinations of model compo-
nents (fertility model, edge model, distance model
and subtree model). The scores are computed on all
sentences of the development data. Punctuation is
included into the evaluation.

6.5 Ablation Analysis

To investigate the impact of individual components
of the model, we run the parser for all possible com-
ponent combinations. We choose three languages
along the scale of word order freedom: English
(very rigid word order), Czech (relatively free word
order), and German (somewhere in the middle). The
attachment scores are shown in Table 6. If no model
is used for the inference and the sampling algorithm
samples completely random trees, we get the ran-
dom baseline score, which is 19.8% for English13.
From the perspective of the subtree model, which
implements the reducibility feature, we can see that
it is the most useful model here. Alone, it improves
the score for English to 28.2%. If we do not use
it, the score decreases from 46.8% (when all mod-
els are used) to 30.7%. Very important is also the
distance model which eliminates the possibility of
attaching all words to one head word. If we omit

13This relatively high baseline scores are caused by the MST
algorithm, which chooses the most frequent edges from random
trees i.e. the shortest ones.

305

it, the score for English falls drastically to 14.1%.
Some combinations of models have their scores far
below the baseline. This is caused by the fact that
some regularities have been found but the structures
are induced differently and thus all attachments are
wrong.

6.6 Induction without Wikipedia Corpus

We have performed also experiments using exclu-
sively the CoNLL data. However, the numbers of
reducible words in CoNLL training set were very
low (50 words at maximum in CoNLL 2006 train-
ing data and 10 words at maximum in CoNLL 2007
training data). This led to completely unreliable re-
ducibility scores and the consequent poor results.

7 Conclusions and Future Work

We have shown that employing the reducibility fea-
ture is useful in unsupervised dependency parsing
task. We extracted the n-gram reducibility scores
from a large corpus, and then made the computation-
ally demanding inference on smaller data using only
these scores. We evaluated our parser on 18 lan-
guages included in CoNLL and for 14 of them, we
achieved higher attachment scores than previously
published results.

The most errors were caused by function words,
which sometimes take over the dependents of adja-
cent content words. This can be caused by the fact
that the reducibility cannot handle function words
correctly, because they must be reduced together
with a content word, not one after another.

In future work, we would like to estimate the
hyperparameters automatically. Furthermore, we
would like to get rid of manually designed PoS tags
and use some kind of unsupervised clusters in order
to have all the annotation process completely unsu-
pervised. We would also like to employ lexicalized
models that should help in situations in which the
PoS tags are too coarse.

Finally, we would like to move towards deeper
syntactic structures, where the tree would be formed
only by content words and the function words would
be treated in a different way.

Software

The source code of our unsupervised dependency
parser including the script for computing reducibil-
ity scores from large corpora is available at
http://ufal.mff.cuni.cz/˜marecek/udp.

Acknowledgement

This research was supported by the grants
GAUK 116310, GA201/09/H057 (Res Infor-
matica), LM2010013, MSM0021620838, and
by the European Commission’s 7th Framework
Program (FP7) under grant agreement n◦ 247762
(FAUST). We thank anonymous reviewers for their
valuable comments and suggestions.

References
Phil Blunsom and Trevor Cohn. 2010. Unsupervised

induction of tree substitution grammars for depen-
dency parsing. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, pages 1204–1213, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Thorsten Brants. 2000. TnT - A Statistical Part-of-
Speech Tagger. Proceedings of the sixth conference
on Applied natural language processing, page 8.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Y. J. Chu and T. H. Liu. 1965. On the Shortest Arbores-
cence of a Directed Graph. Science Sinica, 14:1396–
1400.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith.
2008. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In Neural Information
Processing Systems, pages 321–328.

Jason Eisner. 1996. Three New Probabilistic Models for
Dependency Parsing: An Exploration. In Proceed-
ings of the 16th International Conference on Com-
putational Linguistics (COLING-96), pages 340–345,
Copenhagen, August.

Kim Gerdes and Sylvain Kahane. 2011. Defining depen-
dencies (and constituents). In Proceedings of Depen-
dency Linguistics 2011, Barcelona.

Walter R. Gilks, S. Richardson, and David J. Spiegelhal-
ter. 1996. Markov chain Monte Carlo in practice. In-
terdisciplinary statistics. Chapman & Hall.

306

Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fer-
nando Pereira, and Ben Taskar. 2011. Posterior
Sparsity in Unsupervised Dependency Parsing. The
Journal of Machine Learning Research, 12:455–490,
February.

Jiřı́ Havelka. 2007. Beyond Projectivity: Multilin-
gual Evaluation of Constraints and Measures on Non-
Projective Structures. In Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics, pages 608–615.

William P. Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
NAACL ’09, pages 101–109, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2004. Corpus-
based induction of syntactic structure: models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool
Publishers.

Markéta Lopatková, Martin Plátek, and Vladislav Kuboň.
2005. Modeling syntax of free word-order languages:
Dependency analysis by reduction. In Václav Ma-
toušek, Pavel Mautner, and Tomáš Pavelka, editors,
Lecture Notes in Artificial Intelligence, Proceedings of
the 8th International Conference, TSD 2005, volume
3658 of Lecture Notes in Computer Science, pages
140–147, Berlin / Heidelberg. Springer.

Martin Majliš and Zdeněk Žabokrtský. 2012. Language
richness of the web. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC 2012), Istanbul, Turkey, May. Eu-
ropean Language Resources Association (ELRA).

David Mareček and Zdeněk Žabokrtský. 2011. Gibbs
Sampling with Treeness constraint in Unsupervised
Dependency Parsing. In Proceedings of RANLP Work-
shop on Robust Unsupervised and Semisupervised
Methods in Natural Language Processing, pages 1–8,
Hissar, Bulgaria.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 62–72, Edinburgh, Scotland, UK., July. Associ-
ation for Computational Linguistics.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 Shared Task on Depen-
dency Parsing. In Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007, pages 915–932,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Martin Popel and Zdeněk Žabokrtský. 2010. TectoMT:
modular NLP framework. In Proceedings of the 7th
international conference on Advances in natural lan-
guage processing, IceTAL’10, pages 293–304, Berlin,
Heidelberg. Springer-Verlag.

Noah Ashton Smith. 2007. Novel estimation methods
for unsupervised discovery of latent structure in natu-
ral language text. Ph.D. thesis, Baltimore, MD, USA.
AAI3240799.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang,
and Daniel Jurafsky. 2011a. Unsupervised depen-
dency parsing without gold part-of-speech tags. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011).

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2011b. Lateen EM: Unsupervised training with
multiple objectives, applied to dependency grammar
induction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2011).

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2011c. Punctuation: Making a point in unsu-
pervised dependency parsing. In Proceedings of the
Fifteenth Conference on Computational Natural Lan-
guage Learning (CoNLL-2011).

307

