
NTIN066 - solutions 2

David Mareček

February 22, 2023

1. What is the worst-case complexity of the SUCC function from
your first assignment?

O(n) for a generally unbalanced tree, O(log(n)) for a balanced version

2. What is the average complexity of SUCC across all the keys in a
tree?
Consider enumeration of all keys in a binary search tree using MIN and n times
SUCC. Prove that although a SUCC requires Θ(log(n)) time in the worst case,
the whole enumeration takes only Θ(n) time. Can we formulate any amortiza-
tion argument?

Hint: Each edge is used exactly two-times.

3. Show how to make a BST perfectly balanced in Ω(n) time.
How to manage it with as little additional memory as possible? It is easy to
prove it for O(n), harder for O(log(n)), but it is also possible to use only O(1)
additional memory.

• Solution (in Czech): https://ksp.mff.cuni.cz/h/ulohy/26/reseni2.html#task-26-2-5

• Linear memory: Recursively traverse the tree and copy the keys into an
array. Then, pick the middle key of the sorted array and create the root
of the tree. Then, recursively continue to the lower half and upper half of
the array creating the left and right subtrees.

• Logarithmic memory: While the root has a left child, perform the right
rotation on it. This procedure creates the linked list in a linear time.
Then, use a recursive function, which gets the pointer to the list and a
number k and returns balanced tree of the first k items and the pointer
to the rest of the list. The O(log(n)) space is needed for the stack of the
recursive function.

Tree(S, k):
if k == 0: return (null, S)
l = ⌊(k − 1)/2⌋
(L, S′) = Tree(S, l)
x = pop the first item from the list S′

1



(R,S′′) = Tree(S′, k − l − 1)
build tree T with the root x, left subtree L and right subtree R
return (T, S′′)

4. Show that either Insert or Delete in a perfectly balanced BST
tree must have worst-case time complexity Ω(n).
This is easy for perfectly balanced trees on n = 2k − 1 vertices, whose
shape is uniquely determined.

The shape of the tree with n = 2k − 1 vertices is uniquely determined: the
middle item must be in the root, and the same holds recursively for the
subtrees. If we number the nodes by 1 to n, we see that all odd nodes are
leaves. Let’s perform two operations Delete(1) and Insert(n + 1). The
tree still has n = 2k − 1 vertices, but with the even nodes as leaves now.
Therefore, the Insert operation changes all the nodes in the tree and its
complexity is O(n). If we swap these two operations, then the complexity
of Delete is O(n).

5. Add a Delete operation into lazily balanced trees
Use the same Delete as iplemented in ordinary BSTs. Use the same po-
tential to analyze it.

Consider the three possibilities: a) deleted node is a leaf, b) deleted node
has just one child, c) deleted node has two children. In all three cases,
you need O(log(n)) to perform the operation. The size of all nodes on
the path to the root decreases by 1. The contributions of these vertices
will therefore increase by at most 2 (they will usually change by exactly
one, but because of the clamping, it can jump between 0 and 2). So we
increase the potential at most by another O(log(n)), so the total amortized
cost is O(log(n)). When rebuilding a subtree rooted by v, its potential is
Φ(v) > 1/3 · s(v), which is enough for building the ballanced subtree (in
linear time).

6. What would go wrong if we forgot to add the exception
for difference 1 in the definition of the potential Φ(v) in lazily
balanced trees?

When rebuilding the subtree, the decrease of the potential could be less then
1/3 ·s(v), because even a balanced tree could have some non-zero potential.

7. Decrement in Binary counter
What goes wrong with the amortized complexity if we also want to decre-
ment? Could we improve the counter so that the amortized complexity is
O(1) for each possible sequence of increments and decrements?

Please, read the solution here:
https://courses.engr.illinois.edu/cs473/sp2009/notes/11-amortize.pdf

2


