
NTIN066 - solutions 1

David Mareček

February 15, 2023

1. What is the difference between O(g(n)), Ω(g(n)), and Θ(g(n))?

Big-O notation represents the upper bound of the running time of an algo-
rithm. Thus, it gives the worst-case complexity of an algorithm. A function
f(n) belongs to the set O(g(n)) if there exists a positive constant c such that it
lies between 0 and cg(n), for sufficiently large n.

∃c > 0 ∃n0 ∀n ≥ n0 : f(n) ≤ cg(n)

Omega notation represents the lower bound of the running time of an algo-
rithm. Thus, it provides the best-case complexity of an algorithm. A function
f(n) belongs to the set Ω(g(n)) if there exists a positive constant c such that it
lies above cg(n), for sufficiently large n.

∃c > 0 ∃n0 ∀n ≥ n0 : f(n) ≥ cg(n)

Theta notation encloses the function from above and below. Since it repre-
sents the upper and the lower bound of the running time of an algorithm, it is
used for analyzing the average-case complexity of an algorithm. A function f(n)
belongs to the set Θ(g(n)) if there exist positive constants c1 and c2 such that it
can be sandwiched between c1g(n) and c2g(n), for sufficiently large n.

∃c1 > 0 ∃c2 > 0 ∃n0 ∀n ≥ n0 : c1g(n) ≤ f(n) ≤ c2g(n)

2. Make a queue from two stacks
You have two stacks, supporting only the POP and PUSH operations. Propose
an algorithm, that would simulate a Queue with operations ENQUEUE and DE-
QUEUE. Besides the two stacks, you have only a constant amount of memory.
Show that the queue operations have a constant amortized time complexity.

One stack (let’s denote it as A) is for ENQUEUE operations, the other one
(B) is for DEQUEUE operations. If a DEQUEUE is needed and B is empty,
copy all the items in reverse order from A to B. This will take n POP and n
PUSH operations. Each item is copied at most once, so for each item, we can
spend at most 4 operations: 1 for PUSH into A, two for copying (POP from
A and PUSH to B), and one for POP from B. Therefore, the amortized time
complexity for EN(DE)QUEUEing an item is constant.

1



3. Flexible arrays with C ′ = 3C
Compute the amortized time complexity of a single append, if the newly allo-
cated memory is always three-times bigger.

After adding n elements, all reallocations together take s(n) = 1 + 3 + 9 +
27 + 81 + . . . + 3k−1, where 3k−1 ≤ n < 3k. Then, n < 3k ≤ 3n. The sum of
this geometric progression is s(n) = 1 · (3k − 1)/(3 − 1) = (3k − 1)/2. Because
3k ≤ 3n, the sum s(n) < 3n, so we found the needed constant c = 3 and therefore
s(n) ∈ O(n). And because 3k > n, the sum s(n) > n/2, so we have the needed
constant c = 1/2 and therefore s(n) ∈ Ω(n). So the amortized complexity of the
whole sequence is Θ(n) which is Θ(1) per one operation.

4. Flexible arrays with C ′ = C +D
Compute the amortized time complexity of a single append, if the newly allo-
cated memory is always bigger by a constant D.

After adding n elements, all reallocations together take: s(n) = D + 2D +
3D + 4D + . . . + kD = k(k + 1)D/2, where (k − 1)D ≤ n < kD. Then,
n < kD ≤ nD. Then, s(n) = k(k + 1)D/2 > k2D/2 = k2D2/2D > n2/2D, so
we have a constant 1/2D proving s(n) ∈ Ω(n2). Similarly, we find the upper
bound: s(n) = k(k+1)D/2 ≤ nD(k+1)/2 = nDk/2+nD/2 ≤ n2D/2+nD/2.
So the amortized complexity of the whole sequence is Θ(n2) which is Θ(n) per
one operation.

5. Add to front
So far, new elements could be added only to the end of array. Is it possible
to modify the array so that we can also add elements to the front? And what
about deleting elements?

We can have rolling array and keep two pointers to the first (f) and to the
last (l) item in our data. When we want to add an item and f = (l+1) mod C,
we need to reallocate and expand the array.

2


