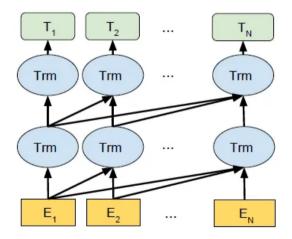
In-context Learning

David Mareček

🖬 January 4, 2024

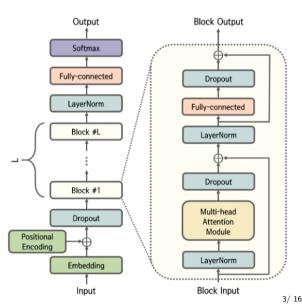
Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Overview


- Current NLP methods uses Large Language Models (LLMs) based on Generative Pretrained Transformers (GPT).
- These models are trained in a *supervised* way, but then, they are often used in a *semi-supervised* or even *unsupervised* way, which is called **few-shot** or **zero-shot** setting.

This lecture is about:

- Generative Pretrained Transformers (GPT) what it does, how is it trained, GPT evolution through time.
- In-context learning (ICL) learning from examples given in the prompt.
- Chain of Thought (CoT) forcing the model to think step-by-step.

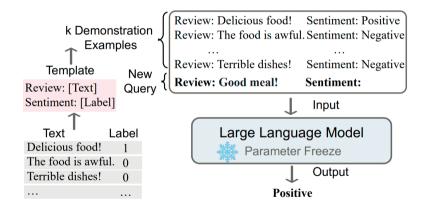

Generative Pre-trained Transformer (GPT)

- Based on the given context $(E_1, ... E_N)$, it predicts the next token T_N .
- 12 to 96 layers. At each layer, a token state attends to (looks at) the previous layer states of all preceding tokens.
- Trained on huge textual data across different languages (commoncrawl, books, Wikipedia).

Generative Pre-trained Transformer (GPT)

- After each **Attention layer**, there is one **Feed-Forward** layer.
- **Residual Connections** bridges across the attention and feed-forward layers.
- **Positional Encoding** adds the information about the position of the input token.

Evolution of GPT models


Evolution of GPT models

	GPT-1	GPT-2	GPT-3	GPT-4
Parameters	117M	1.5B	175B	??? (1T)
Decoder Layers	12	48	96	???
Context Token Size	512	1024	2048	32,768
Hidden Layer	768	1600	12288	???

- **GPT-2** The model is able to generate locally coherent text. It can be finetuned to solve another tasks.
- **GPT-3** Harder to recognize whether a text was generated by human or by GPT-3. It can be used to solve many tasks by prompting couple of examples (in-context learning)
- **GPT-4** Reinforcement learning by human feedback (RLHF). Many tasks can be solved simply by asking a question.

In-Context Learning

• Learning from examples in the context.

Reference: https://arxiv.org/pdf/2301.00234.pdf

- Examples written in natural language provide an interpretable interface to communicate with LLMs.
- Much easier to incorporate human knowledge into LLMs by changing the examples and templates.
- Simulates the decision process of human beings by learning from analogy.
- Compared with supervised training, ICL is a training-free learning framework.
- It greatly reduces the computation costs for adapting the model to new tasks

Why does In-Context Learning work?

- After pre-training, LLMs can exhibit intriguing ICL capabilities (emergent capabilities) without being updated.
- While intuitively reasonable, the working mechanism of the ICL remains unclear.
- Studies showed that the ICL ability grows as the parameters of LLMs increase from 0.1 billion to 175 billion.
- It has been shown that the performance of ICL heavily depends on the source of pre-training corpora rather than the scale.
- Some researches showed that ICL behaves similarly to fine-tuning from multiple perspectives.
- Another research showed that LM does in-context learning by using the prompt to "locate" the relevant concept it has learned during pre-training to do the task.

Few-shot, one-shot, zero-shot

• Few-shot - The task is defined and a few examples are given to the prompt followed by the question.

```
Translate English to German:
bread => das Brot
apple => der Apfel
potatoe => die Kartoffel
```

cheese =>

- **One-shot** Only one example is given. Translate English to German: bread => das Brot cheese =>
- Zero-shot Only the task definition and the question. Translate English to German cheese =>

- The standard prompting techniques do not perform well on complex reasoning tasks
 - arithmetic reasoning
 - commonsense reasoning
 - symbolic reasoning
- Chain-of-Thought (CoT) incorporates intermediate reasoning steps that can lead to the final output into the prompts.

Chain-of-Thought prompting

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. 🗙

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Reference: https://arxiv.org/pdf/2201.11903.pdf

Chain-of-Thought Examples

Math Word Problems (free response) Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A: Roger started with 5 balls 2 cans for 3 tennis balls ach is d tennial balls. 5 + 6 = 11 The answer is 11.	Nath Word Problems (multiple choice) Q: How many keystokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1592 (e) 1788 A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 b 99. There are 401 three-digit numbers from 100 to 50.0 ± 9 02(2) ± 401(3) = 1392. The answer is (b).	CSOA (commonsense) Q: Sammy wanted to go to where the people were. Where might has go? Observent (d) apartment (e) roadblock (c) desert (d) apartment (e) roadblock A: The answer must be a place with a fot of people. Race tracks, desert, apartments, and roadblock don't have a lot of people, but populated areas do. So the answer is (b).
StrategyQA Q: Yes or no: Would a pear sink in water? A: The density of a pear is about 0.6 g/cm ³ , which is less than water. Thus, a pear would float. So the answer is no.	Date Understanding Q: The concert was scheduled to be on 60%01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY? A: Dne day after 06/01/1943 is D6/02/1943, so today is 05/23/1943, 10 days before today is 05/23/1943, So the answer is 05/23/1943.	Sports Understanding Q: Is the following sentence plausible? "Joac Moutinho caught the screen pass in the NFC championship." A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.
SayCan (Instructing a robot) Human: How would you bring me something that lish I a fruil? Explanation: the user wants something to eat that ish I a fruit. An energy bar is not a fruit, sol Will bring the user an energy bar ? Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done().	Last Letter Concatenation Q: Take the last letters of the words in "Lady Gaga" and concatenate them. A: The last letter of "Lady" is 'Y'. The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya.	Coin Flip (state tracking) Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Shalonda does not flip the coin. Is the coin still heads up? A: The coin was flipped 1 time, which is an odd number. The coin started heads up. so after an odd number of flips, it will be tails up, So the answer is no.

Reference: https://arxiv.org/pdf/2201.11903.pdf

Few-shot vs. Zero-shot

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

 $Q{:}$ A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

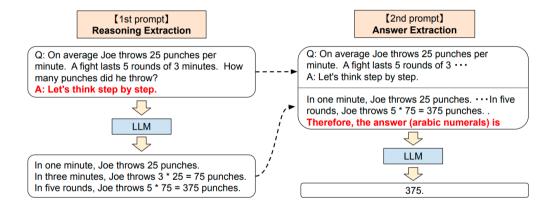
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

 $Q{:}$ A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

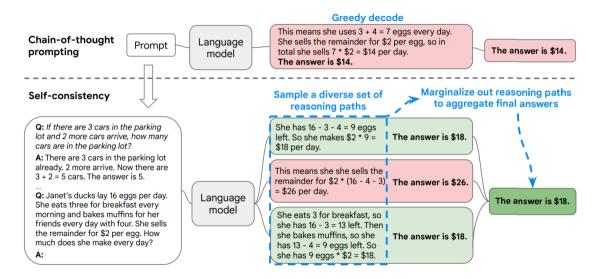
(d) Zero-shot-CoT (Ours)


Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Reference: https://arxiv.org/pdf/2205.11916.pdf


Two-step prompting in CoT

Reference: https://arxiv.org/pdf/2205.11916.pdf

- still active area of research
- It is widely *hypothesized* that it can be attributed to training on code since models trained on it show a strong reasoning ability.
- A recent study showed that both the presence of arithmetic equations for mathematical reasoning and textual description of individual steps are essential for the model performance.

Sample and Vote

Reference: https://arxiv.org/pdf/2203.11171.pdf