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Mixture of Categoricals Model

𝑧𝑑 ∼ 𝐶𝑎𝑡(𝜃)
𝑤𝑛𝑑|𝑧𝑑 ∼ 𝐶𝑎𝑡(𝛽𝑧𝑑

)

With the Expectation-Maximization algorithm we have essentially estimated 𝜃 and 𝛽 by
maximum likelihood.
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Bayesian Mixture of Categoricals Model

𝑧𝑑 ∼ 𝐶𝑎𝑡(𝜃)
𝜃 ∼ 𝐷𝑖𝑟(𝛼)

𝑤𝑛𝑑|𝑧𝑑, 𝛽 ∼ 𝐶𝑎𝑡(𝛽𝑧𝑑
)

𝛽𝑘 ∼ 𝐷𝑖𝑟(𝛾)

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
• 𝜃 ∼ 𝐷𝑖𝑟(𝛼) is a symmetric Dirichlet over category probabilities,
• 𝛽𝑘 ∼ 𝐷𝑖𝑟(𝛾) are symmetric Dirichlets over vocabulary probabilities.

What is different?
• We no longer want to compute a point estimate of 𝜃 and 𝛽.
• We are now interested in computing posterior distributions.
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Collapsed sampling for Bayessian Mixture of Categoricals
We want to employ Gibbs Sampling to sample the model variables 𝑧𝑑, 𝛽, and 𝜃.

Collapsed Gibbs Sampler: We will sample only the latent variables 𝑧𝑑. The model
parameters 𝛽 and 𝜃 are marginalized (integrated out).
In each step, we sample one latent variable 𝑧𝑑 conditioned by all the other latent variables
𝑧−𝑑, all the documents 𝑤, and our hyperparameters 𝛾 and 𝛼.

𝑝(𝑧𝑑 = 𝑘|{𝑤}, {𝑧−𝑑}, 𝛾, 𝛼)
We rewrite it using Bayes theorem.

= 𝑝(𝑧𝑑 = 𝑘|{𝑧−𝑑}, 𝛾, 𝛼) 𝑝({𝑤}|𝑧𝑑 = 𝑘, {𝑧−𝑑}, 𝛾, 𝛼)
𝑝({𝑤}|{𝑧−𝑑}, 𝛾, 𝛼)

The denominator is constant (does not depend on category 𝑘), the parts in the nominator
also do not depend on both the hyperparameters.

∝ 𝑝(𝑧𝑑 = 𝑘|{𝑧−𝑑}, 𝛼) 𝑝({𝑤}|𝑧𝑑 = 𝑘, {𝑧−𝑑}, 𝛾)
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Collapsed sampling for Bayessian Mixture of Categoricals [2]
We have:

𝑝(𝑧𝑑 = 𝑘|{𝑤}, {𝑧−𝑑}, 𝛾, 𝛼) ∝ 𝑝(𝑧𝑑 = 𝑘|{𝑧−𝑑}, 𝛼) 𝑝({𝑤}|𝑧𝑑 = 𝑘, {𝑧−𝑑}, 𝛾)
Probability of the document collection 𝑝({𝑤}) may be rewritten as 𝑝(𝑤𝑑|𝑤−𝑑)𝑝(𝑤−𝑑).
However 𝑝(𝑤−𝑑) does not depend on 𝑧𝑑, so:

∝ 𝑝(𝑧𝑑 = 𝑘|{𝑧−𝑑}, 𝛼) 𝑝({𝑤𝑑}|𝑤−𝑑, 𝑧𝑑 = 𝑘, {𝑧−𝑑}, 𝛾)

∝ 𝑝(𝑧𝑑 = 𝑘|{𝑧−𝑑}, 𝛼)
𝑁𝑑

∏
𝑛=1

𝑝(𝑤𝑛𝑑|{𝑤−𝑑}, 𝑧𝑑 = 𝑘, {𝑧−𝑑}, 𝛾)

For computing 𝑝(𝑧𝑑|𝑧−𝑑) and 𝑝(𝑤𝑑|𝑤−𝑑), we integrate over all possible parameters 𝜃 and 𝛾
respectively.

∝ ∫ 𝑝(𝑧𝑑 = 𝑘|𝜃)𝑝(𝜃|𝑧−𝑑, 𝛼)𝑑𝜃
𝑁𝑑

∏
𝑛=1

∫ 𝑝(𝑤𝑛𝑑|𝛽𝑘)𝑝(𝛽𝑘|{𝑤−𝑑}, {𝑧−𝑑}, 𝛾)𝑑𝛽𝑘
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Collapsed sampling for Bayessian Mixture of Categoricals [3]

We have:

∝ ∫ 𝑝(𝑧𝑑 = 𝑘|𝜃)𝑝(𝜃|𝑧−𝑑, 𝛼)𝑑𝜃
𝑁𝑑

∏
𝑛=1

∫ 𝑝(𝑤𝑛𝑑|𝛽𝑘)𝑝(𝛽𝑘|{𝑤−𝑑}, {𝑧−𝑑}, 𝛾)𝑑𝛽𝑘

Both the integrals are expected values of Dirichlet distributions, therefore:

𝑝(𝑧𝑑 = 𝑘|{𝑤}, {𝑧−𝑑}, 𝛾, 𝛼) ∝ 𝛼 + 𝑐𝑑[𝑘] − 1
𝐾𝛼 + 𝐷 − 1

𝑁𝑑

∏
𝑛=1

𝛾 + 𝑐𝑤[𝑤𝑛𝑑][𝑘]

𝑀𝛾 +
𝑀
∑

𝑚=1
𝑐𝑤[𝑚][𝑘]

• 𝑐𝑑[𝑘] … How many documents are assigned to topic 𝑘.
• 𝑐𝑤[𝑚][𝑘] … How many times the word 𝑚 is in a document assigned to topic 𝑘.
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Algorithm for Bayessian Mixture of Categoricals
initialize 𝑧𝑑 randomly ∀𝑑 ∈ 1..𝐷;
compute initial counts 𝑐𝑑[𝑘], 𝑐𝑤[𝑚][𝑘], 𝑐[𝑘] ∀𝑘 ∈ 1..𝐾, ∀𝑚 ∈ 1..𝑀 ;
for 𝑖 ← 1 to 𝐼 do

for 𝑑 ← 1 to 𝐷 do
𝑐𝑑[𝑧𝑑]– –;
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑤[𝑤𝑛𝑑][𝑧𝑑]– –; 𝑐[𝑧𝑑]– –;
end
for 𝑘 ← 1 to 𝐾 do

𝑝[𝑘] = 𝛼+𝑐𝑑[𝑘]
𝐾𝛼+𝐷−1

𝑁𝑑
∏

𝑛=1
𝛾+𝑐𝑤[𝑤𝑛𝑑][𝑘]

𝑀𝛾+𝑐[𝑘] ;

end
sample 𝑘 from probability distribution 𝑝[𝑘];
𝑧𝑑 ← 𝑘; 𝑐𝑑[𝑘]++;
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑤[𝑤𝑛𝑑][𝑧𝑑]++; 𝑐[𝑧𝑑]++;
end

end
end

6/ 17



Limitations of the mixture of categoricals model

𝑧𝑑 ∼ 𝐶𝑎𝑡(𝜃)
𝜃 ∼ 𝐷𝑖𝑟(𝛼)

𝑤𝑛𝑑|𝑧𝑑, 𝛽 ∼ 𝐶𝑎𝑡(𝛽𝑧𝑑
)

𝛽𝑘 ∼ 𝐷𝑖𝑟(𝛾)

A generative view of the mixture of categoricals model:
1. Draw a distribution 𝜃 over 𝐾 topics from a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼).
2. For each topic 𝑘, draw a distribution 𝛽𝑘 over words from a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾).
3. For each document 𝑑, draw a topic 𝑧𝑑 from a 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜃)
4. For each document 𝑑, draw 𝑁𝑑 words 𝑤𝑛𝑑 from a 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝛽𝑧𝑑)

Limitations:
• All words in each document are drawn from one specific topic distribution.
• This works if each document is exclusively about one topic, but if some documents span

more than one topic, then “blurred” topics must be learnt.
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Jump...

Jump to http://mlg.eng.cam.ac.uk/teaching/4f13/1617/lda.pdf
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Bayesian Latent Dirichlet Allocation

𝑧𝑛𝑑 ∼ 𝐶𝑎𝑡(𝜃𝑑)
𝜃𝑑 ∼ 𝐷𝑖𝑟(𝛼)

𝑤𝑛𝑑|𝑧𝑛𝑑, 𝛽 ∼ 𝐶𝑎𝑡(𝛽𝑧𝑛𝑑
)

𝛽𝑘 ∼ 𝐷𝑖𝑟(𝛾)

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
• 𝜃 ∼ 𝐷𝑖𝑟(𝛼) is a symmetric Dirichlet over category probabilities,
• 𝛽𝑘 ∼ 𝐷𝑖𝑟(𝛾) are symmetric Dirichlets over vocabulary probabilities.

What is different?
• We no longer want to compute a point estimate of 𝜃 and 𝛽.
• We are now interested in computing posterior distributions.
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Collapsed sampling for Latent Dirichlet Allocation

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, 𝛾, 𝛼) =
(rewrite using Bayes theorem)

= 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, 𝛾, 𝛼) 𝑝({𝑤}|𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, 𝛾, 𝛼)
𝑝({𝑤}|{𝑧−𝑛𝑑}, 𝛾, 𝛼)

(the denominator is constant with respect to 𝑧𝑛𝑑; generation of topics does not depend on 𝛾;
generation of words for given topic does not depend on 𝛾)

∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, 𝛼) 𝑝({𝑤}|𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, 𝛾)

(probability of data 𝑝(𝑤) can be also rewritten as 𝑝(𝑤𝑛𝑑|𝑤−𝑛𝑑)𝑝(𝑤−𝑛𝑑) and 𝑝(𝑤−𝑛𝑑) is
constant with respect to 𝑧𝑛𝑑)

∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, 𝛼) 𝑝(𝑤𝑛𝑑|{𝑤−𝑛𝑑}, 𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, 𝛾)
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Collapsed sampling for Latent Dirichlet Allocation [2]

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, 𝛾, 𝛼) ∝
∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, 𝛼) 𝑝(𝑤𝑛𝑑|{𝑤−𝑛𝑑}, 𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, 𝛾)

(for each predictive distribution, we integrate over all possible parameters 𝛽𝑘 and 𝜃𝑑)

∝ ∫ 𝑝(𝑧𝑛𝑑 = 𝑘|𝜃𝑑)𝑝(𝜃𝑑|𝑧−𝑛𝑑, 𝛼)𝑑𝜃𝑑 ∫ 𝑝(𝑤𝑛𝑑|𝛽𝑘)𝑝(𝛽𝑘|{𝑤−𝑛𝑑}, {𝑧−𝑛𝑑}, 𝛾)𝑑𝛽𝑘

(these integrals can be easily computed; see predictive distribution for Dirichlet posteriors)

= 𝛼 + 𝑐𝑑[𝑑][𝑘]
𝐾𝛼 + 𝑁𝑑 − 1

𝛾 + 𝑐𝑤[𝑤𝑛𝑑][𝑘]

𝑀𝛾 +
𝑀
∑

𝑚=1
𝑐𝑤[𝑚][𝑘]

Where:
• 𝑐𝑑[𝑑][𝑘] = how many words in document 𝑑 are assigned to topic 𝑘.
• 𝑐𝑤[𝑚][𝑘] = how many times the word 𝑚 is assigned to topic 𝑘 (across all documents).

The current position 𝑧𝑛𝑑 is always excluded from the counts.
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LDA Algorithm
initialize 𝑧𝑛𝑑 randomly ∀𝑑 ∈ 1..𝐷, ∀𝑛 ∈ 1..𝑁𝑑;
compute initial counts 𝑐𝑑[𝑑][𝑘], 𝑐𝑤[𝑚][𝑘], 𝑐[𝑘] ∀𝑑 ∈ 1..𝐷, ∀𝑘 ∈ 1..𝐾, ∀𝑚 ∈ 1..𝑀 ;
for 𝑖 ← 1 to 𝐼 do

for 𝑑 ← 1 to 𝐷 do
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑑[𝑑][𝑧𝑛𝑑]– –; 𝑐𝑤[𝑤𝑛𝑑][𝑧𝑛𝑑]– –; 𝑐[𝑧𝑛𝑑]– –;
for 𝑘 ← 1 to 𝐾 do

𝑝[𝑘] = 𝛼+𝑐𝑑[𝑑][𝑘]
𝐾𝛼+𝑁𝑑−1

𝛾+𝑐𝑤[𝑤𝑛𝑑][𝑘]
𝑀𝛾+𝑐[𝑘] ;

end
sample 𝑘 from probability distribution 𝑝[𝑘];
𝑧𝑛𝑑 ← 𝑘;
𝑐𝑑[𝑑][𝑘]++; 𝑐𝑤[𝑤𝑛𝑑][𝑘]++; 𝑐[𝑘]++;

end
end

end
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LDA Algorithm - topics assignment on a new data
initialize 𝑧𝑛𝑑 randomly ∀𝑑 ∈ 1..𝐷, ∀𝑛 ∈ 1..𝑁𝑑;
fix the counts 𝑐𝑤[𝑚][𝑘] and 𝑐[𝑘] obtained during training;
compute initial counts 𝑐𝑑[𝑑][𝑘] ∀𝑑 ∈ 1..𝐷, ∀𝑘 ∈ 1..𝐾;
for 𝑖 ← 1 to 𝐼 do

for 𝑑 ← 1 to 𝐷 do
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑑[𝑑][𝑧𝑛𝑑]– –;
for 𝑘 ← 1 to 𝐾 do

𝑝[𝑘] = 𝛼+𝑐𝑑[𝑑][𝑘]
𝐾𝛼+𝑁𝑑−1

𝛾+𝑐𝑤[𝑤𝑛𝑑][𝑘]
𝑀𝛾+𝑐[𝑘] ;

end
sample 𝑘 from probability distribution 𝑝[𝑘];
𝑧𝑛𝑑 ← 𝑘;
𝑐𝑑[𝑑][𝑘]++;

end
end
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Entropy of text

• joint probability 𝑝(𝑇 ) =
𝑁
∏
𝑖=1

𝑝(𝑤𝑖) =
𝑀
∏

𝑚=1
𝑝(𝑚)𝑐𝑚

• log probability log 𝑝(𝑇 ) =
𝑁
∑
𝑖=1

log 𝑝(𝑤𝑖) =
𝑀
∑

𝑚=1
𝑐𝑚 log 𝑝(𝑚)

• entropy 𝐻(𝑇 ) = − 1
𝑁

𝑁
∑
𝑖=1

log 𝑝(𝑤𝑖) = −
𝑀
∑

𝑚=1
𝑐𝑚
𝑁 log 𝑝(𝑚) = − log𝑝(𝑇 )

𝑁

• perplexity 𝑃𝑃(𝑇 ) = 2𝐻(𝑇 )

A perplexity of 𝑔 corresponds to the uncertainity associated with a die with 𝑔 sides, which
generates each new word.

All the logarithms used here are binary (with base 2)

14/ 17



Entropy of the text for a topic in LDA

Probability of word 𝑤 given a topic 𝑘 is

𝑝(𝑤|𝑘) = 𝛾 + 𝑐𝑤[𝑤][𝑘]
𝑀𝛾 + ∑𝑀

𝑚=1 𝑐𝑤[𝑚][𝑘]
,

where the counts 𝑐𝑤 are taken from the training data, 𝑀 is the size of the vocabulary.
The entropy of a topic is computed as follows:

𝐻(𝑘) = −
𝑀

∑
𝑤=1

𝑝(𝑤|𝑘) log2 𝑝(𝑤|𝑘)

Perplexity is 𝑃𝑃(𝑘) = 2𝐻(𝑘).
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Perplexity of the LDA model on test data

Probability of word 𝑤 in document 𝑑 is

𝑝(𝑤|𝑑) =
𝐾

∑
𝑘=1

𝑝(𝑤|𝑘)𝑝(𝑘|𝑑) =
𝐾

∑
𝑘=1

𝛾 + 𝑐𝑤[𝑤][𝑘]
𝑀𝛾 + ∑ 𝑐𝑤[𝑚][𝑘]

𝛼 + 𝑐𝑑[𝑑][𝑘]
𝐾𝛼 + 𝑁𝑑

,

where the counts 𝑐𝑤 are taken from the training data, and counts 𝑐𝑑 and 𝑁𝑑 are taken from
the test data.
The entropy is computed as the average of the log probabilities over all words in the test
data.

𝐻 = − 1
𝑁𝑡𝑒𝑠𝑡

𝐷𝑡𝑒𝑠𝑡

∑
𝑑=1

𝑁𝑑

∑
𝑛=1

log2 𝑝(𝑤𝑛𝑑),

where 𝑁𝑡𝑒𝑠𝑡 is the total number of words in the test data. Perplexity is 𝑃𝑃 = 2𝐻.
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Perplexity of a simple model without topics

Probability of word 𝑤 in the test data given the training data is

𝑝(𝑤) = 𝛾 + 𝑐𝑤[𝑤]
𝑀𝛾 + ∑ 𝑐𝑤[𝑚]

where the counts 𝑐𝑤 are taken from the training data.
The entropy is computed as the average of the log probabilities over all words in the test
data.

𝐻 = − 1
𝑁𝑡𝑒𝑠𝑡

𝐷𝑡𝑒𝑠𝑡

∑
𝑑=1

𝑁𝑑

∑
𝑛=1

log2 𝑝(𝑤𝑛𝑑),

where 𝑁𝑡𝑒𝑠𝑡 is the total number of words in the test data. Perplexity is 𝑃𝑃 = 2𝐻.
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