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<—EE—P‘ i zg ~ Cat(0)

: wnd|zd ~ Ca’t(ﬁzd>

5 3

With the Expectation-Maximization algorithm we have essentially estimated 6 and 3 by
maximum likelihood.
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‘_‘i_".‘i_® 0 ~ Dir(a)
k= 1...K wnd|zd7 B ~ Cat(ﬁzd>
L d-1.D : Bk ~ DZT(FY)

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
® 0 ~ Dir(«a) is a symmetric Dirichlet over category probabilities,
® (3, ~ Dir(~y) are symmetric Dirichlets over vocabulary probabilities.

What is different?
® We no longer want to compute a point estimate of # and 5.

® We are now interested in computing posterior distributions.
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We want to employ Gibbs Sampling to sample the model variables z,, 3, and 6.

Collapsed Gibbs Sampler: We will sample only the latent variables z;. The model
parameters ( and 6 are marginalized (integrated out).

In each step, we sample one latent variable z; conditioned by all the other latent variables
z_g, all the documents w, and our hyperparameters v and o.

p('Zd = k|{w}> {Zfd}7 s Oé)
We rewrite it using Bayes theorem.

p(Zd - kHZ—d}a s Oé) p({w}|zd - k? {Z—d}’ s Ot)

p{wi{z_a}, 7, @)
The denominator is constant (does not depend on category k), the parts in the nominator
also do not depend on both the hyperparameters.

o p(zg = k{z_4}, @) p({w}lzg = Kk, {2_4},7)
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Collapsed sampling for Bayessian Mixture of Categoricals [2]

We have:
p(zg = k{w}, {z_q}, v, ) < p(zq = kl{z_q}, @) pQuwllzg =k, {2_4},7)

Probability of the document collection p({w}) may be rewritten as p(w,|w_,;)p(w_ ).
However p(w_,) does not depend on z;, so:

o plzg = kl{z_4}, @) p{wgtlw_g, 24 = k,{2_4},7)

x p(zq = kl{z_q}, @) H P(wopg{w_gt, 24 = k. {z_qa} )

For computing p(z,4|z_,) and p(w,|w_,), we integrate over all possible parameters 6 and
respectively.

Ny
X /10<Zd = k‘|9)p(9|z,d,a)d9H /p<wnd|5k)p<5k|{wd}v{zd}77>dﬁk
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Collapsed sampling for Bayessian Mixture of Categoricals [3]
We have:

Ng
x /p(zd = k:|c9)p(0|z_d,a)d9H /p(wnde)p(ﬁkHw—d}a{Z—d}a’wdﬁk

Both the integrals are expected values of Dirichlet distributions, therefore:

ot ekl —1 T4 v+ clwllk]
p(zs = kl{w}, {z_g},7.0) o — 11
Ka+D-—1 nei M~ + ]zw_:lcw[m][k]

® c,|k] ... How many documents are assigned to topic k.

® c,Im|[k]... How many times the word m is in a document assigned to topic k.
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Algorithm for Bayessian Mixture of Categoricals

initialize z4 randomly ¥d € 1..D;
compute initial counts cylk], c,,[m][k], c[k] Vk € 1..K, Ym € 1..M,

for ¢ «+

end

1to [ do
ford < 1to D do
calzal——;
for n < 1to N, do
‘ ColWnallzal== clzql—=
end

for k< 1to K do

W [w,g][¥]
a+tc +c, Wy, .
Ik = Rarb-1 1L R

end
sample k from probability distribution p[k];
zq < ki cglk]++;
for n <1 to N, do
| cwlwndllzal++i clzgl++
end
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: wnd|zdaﬁ ~ Cat

0 I (
4i—@ 0 ~ Dir(«a)
|i | ! (
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A generative view of the mixture of categoricals model:
Draw a distribution 6 over K topics from a Dirichlet(«).
For each topic k, draw a distribution /3, over words from a Dirichlet(7).
For each document d, draw a topic z; from a Categorical(9)
For each document d, draw N, words w,,; from a Categorical(S,,)
Limitations:
® All words in each document are drawn from one specific topic distribution.
® This works if each document is exclusively about one topic, but if some documents span

more than one topic, then “blurred” topics must be learnt.
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Jump to http://mlg.eng.cam.ac.uk/teaching/4f13/1617/Ida.pdf
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0T 1 Zpa ~ Cat(0,)

@—-.%.—».Hﬁ.._@ 0, ~ Dir(a)

S
I’:

i wnd|znd75 ~ Cat(ﬁznd)
s1.0] By ~ Dir(3)

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
® 0 ~ Dir(«) is a symmetric Dirichlet over category probabilities,
® 3, ~ Dir(~y) are symmetric Dirichlets over vocabulary probabilities.

What is different?
® We no longer want to compute a point estimate of # and (3.

® We are now interested in computing posterior distributions.

9/ 17



P(Zpa = K{w} {z_na}s v, @) =

(rewrite using Bayes theorem)

_ p(an = k’{z—nd}afya Oé) p({w}|znd - k? {Z—nd}f% a)
p({w}‘{z—nd}777 O[)

(the denominator is constant with respect to z,,;; generation of topics does not depend on ;
generation of words for given topic does not depend on 7)

X p(2pa = k{z_na} @) PQw}zpa = k. {2z 04}, )

(probability of data p(w) can be also rewritten as p(w,,4|w_,,4)p(w_,4) and p(w_,4) is
constant with respect to z,,,)

X P(2pg = k{2 pats @) plwpgl{w_p4}, 200 =k {204}, 7)
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P(zna = kl{w}, {z_na}, 7, @) o
X P(2pa = k{2 pats @) plwpal{w_pa} 200 = ki {2_0a}:7)

(for each predictive distribution, we integrate over all possible parameters (3, and 6,)

x / Pz = K0)P(Ou) g 00, / P(nal Be)P Byl {0 na}, {Z-na b 1)dBy

(these integrals can be easily computed; see predictive distribution for Dirichlet posteriors)
_atcgld][k] v+ cy[wngl[K]

et Ne=t S

m=1

Where:
® ¢,[d][k] = how many words in document d are assigned to topic k.
® ¢,[m][k] = how many times the word m is assigned to topic k (across all documents).

The current position z,,; is always excluded from the counts. -



initialize z,,; randomly ¥Vd € 1..D, Vn € 1..Ny;

compute initial counts c,[d|[k], ¢,,[m][k], c[k] Vd € 1..D, Vk € 1.K, Vm € 1..M;
for i < 1to [ do

ford < 1to D do

forn < 1to N, do

Cd[d] [an]__; Cw[wnd][’znd]_—; C[an]__;

for £+ 1to K do

a+cyld][k +e,[w,gllE] .
| Pl = ] e

U}[

end
sample k from probability distribution plk];
Znd < ki
cald][k]++: cplwpgl[k]++: c[k]++;
end
end

end
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initialize z,,; randomly ¥Vd € 1..D, Vn € 1..Ny;

fix the counts c,,[m][k] and c[k] obtained during training;

compute initial counts c,[d|[k] Vd € 1..D, Vk € 1..K;
for i< 1to I do

ford+ 1to D do
for n < 1to N, do

cald][zpa]—;
for k< 1to K do

a+c,[d][k +c,[waqllk] .
‘ plk] = Ka+dJ£IjU1 . M7[+c[i]][ :

end
sample k from probability distribution plk];
Zpg < ki
cyld][k]++;
end
end
end
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® |og probability log p(T') = >_ logp(w,) = >_ ¢, logp(m)

=1 m=1

R M oe —log p(T)
o entropy H(T) = 4 3 logplu) = — 3 % logp(m) — %
=1 m=1

® perplexity PP(T) = 2H(T)

A perplexity of g corresponds to the uncertainity associated with a die with g sides, which
generates each new word.

All the logarithms used here are binary (with base 2)
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Probability of word w given a topic k is

7 + ¢ [w][K]
My + Y0 e, [m][k]

p(w|k) =

)

where the counts c,, are taken from the training data, M is the size of the vocabulary.
The entropy of a topic is computed as follows:

M
H(k) = = p(w|k) log, p(w|k)

w=1

Perplexity is PP(k) = 21(%),
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Probability of word w in document d is

=

o~y Feu[wllF] ot cqld)[H]

p(w|d) = ;p(w\k)p(k\d) = k; M~y + > ¢, [m][k] Ka+ Ny’

where the counts c,, are taken from the training data, and counts c; and N, are taken from
the test data.

The entropy is computed as the average of the log probabilities over all words in the test
data.

1 Dtest Nd
H = 7N Z Zloggp(wnd>v
test =1 n=1

where NV, =9oH,

tes

, is the total number of words in the test data. Perplexity is PP
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Probability of word w in the test data given the training data is

v+ (]
My + 32 ¢, [m]
where the counts c,, are taken from the training data.

The entropy is computed as the average of the log probabilities over all words in the test
data.

p(w) =

test Nd

N Ntest Z Zlog2p nd

where N,_,, is the total number of words in the test data. Perplexity is PP = 2%,
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