Prague Dependency Treebank: Introduction – (Non-)Projectivity

Markéta Lopatková, Jiří Mírovský

Institute of Formal and Applied Linguistics, MFF UK

lopatkova@ufal.mff.cuni.cz
Projectivity and non-projectivity (definition)

Mark decided to marry Ann.

Nepodařilo se mi otevřít soubor.
Projectivity and non-projectivity (definition)

Whom did Mark decided to marry?

Soubor se mi nepodařilo otevřít. (Oliva)
Projectivity and non-projectivity (definition)

Whom did Mark decided to marry?

$\text{Whom}\text{.Obj}$

$\text{did}\text{.AuxV}$

$\text{Mark}\text{.Sb}$

$\text{to marry}\text{.Obj}$

$\text{decided}\text{.Pred}$

Soubor se mi nepodařilo otevřít. (Oliva)

$\text{Soubor}\text{.Obj}$

$\text{se}\text{.AuxT}$

$\text{mi}\text{.Obj}$

$\text{otevřít}\text{.Obj}$

$\text{nepodařilo}\text{.Pred}$
Projectivity and non-projectivity (definition)

A subtree S of a rooted dependency tree T is **projective** iff for all nodes a, b and c of the subtree S the condition holds:

1. $(a \leq_D b) \& (a <_{WO} b) \& (b \leq_{D^*} c) \Rightarrow (a <_{WO} c)$

and

2. $(a \leq_D b) \& (b <_{WO} a) \& (b \leq_{D^*} c) \Rightarrow (c <_{WO} a)$
Projectivity and free word order

free word order:

• freedom of word order of dependents within a **continuous** ‘head domain’ (i.e., substring of head + its dependents)
Projectivity and free word order

free word order:

• freedom of word order of dependents within a continuous ‘head domain’ (i.e., substring of head + its dependents)
• relaxation of continuity of a head domain

German:
Maria hat einen Mann kennengelernt der Schmetterlinge sammelt.
Mary - has - a man - met - the butteries - collects
Mary has met a man who collects butteries
Projectivity and free word order

English: long-distance unbounded dependency
John, Peter thought that Sue said that Mary loves.
Projectivity and free word order

English: long-distance unbounded dependency

John, Peter thought that Sue said that Mary loves.
Projectivity and free word order

Czech:
Marii se Petr tu knihu rozhodl nekoupit.
to-Mary PART Peter that book decided not-buy
[Peter decided not to buy that book to Mary.]
Projectivity and non-projectivity

Projective dependency trees can be encoded by *linearization*:

• string of nodes, edges ~ brackets

```
A
 B
 C
 D
 E
```

```
A ( B C ( D ) )  without WO ordering
( B ) A ( ( D ) C ( E ) )  with WO
```

```
A
 B
 C
 D
 E
 F
 G
```

A (B C (D)) without WO ordering
(B) A ((D) C (E)) with WO
Projectivity and non-projectivity

Projective dependency trees can be encoded by linearization:

- string of nodes, edges ~ brackets

\[
\begin{align*}
\text{with WO: } & \quad (B) A ((D) C (E)) \\
\text{without WO: } & \quad A (B C (D E))
\end{align*}
\]

\[
\begin{align*}
\text{with WO: } & \quad (B) A (C ((E) D ((G) F))) \\
\text{without WO: } & \quad A (B C (D (E F (G))))
\end{align*}
\]
Planarity

A dependency graph T is **planar**, if it does not contain nodes a, b, c, d such that:

\[\text{linked}(a, c) \land \text{linked}(b, d) \land a \lessdot_{\text{WO}} b \lessdot_{\text{WO}} c \lessdot_{\text{WO}} d \]

linked(i,j) … ‘there is an edge in T from i to j, or vice versa’

My brother often sleeps in his study.
Planarity

A dependency graph T is **planar**, if it does not contain nodes a, b, c, d such that:

\[\text{linked}(a,c) \& \text{linked}(b,d) \& a <_{WO} b <_{WO} c <_{WO} d \]

linked(i,j) … ‘there is an edge in T from i to j, or vice versa’

My brother often sleeps in his study.

Jan viděl větší město než Praha.

Jan saw a city bigger than Prague.
A dependency graph T is **planar**, if it does **not** contain nodes a, b, c, d such that:

$$\text{linked}(a,c) \& \text{linked}(b,d) \& a <_{WO} b <_{WO} c <_{WO} d$$

linked(i,j) … ‘there is an edge in T from i to j, or vice versa’

Informally, a dependency graph is planar, if its edges can be drawn above the sentence without crossing.
Projectivity and free word order

Czech:

Marii se Petr tu knihu rozhodl nekoupit.

[to-Mary PART Peter that book decided not-buy

Peter decided not to buy that book to Mary.]
‘Well-Nestedness’

Two subtrees T_1, T_2 **interleave**, if there are nodes $l_1, r_1 \in T_1$ and $l_2, r_2 \in T_2$ such that

$$l_1 <_{WO} l_2 <_{WO} r_1 <_{WO} r_2$$

A dependency graph is **well-nested**, if no two of its disjoint subtrees interleave.'
‘Well-Nestedness’

Two subtrees T_1, T_2 *interleave*, if there are nodes $l_1, r_1 \in T_1$ and $l_2, r_2 \in T_2$ such that

$$l_1 <_{WO} l_2 <_{WO} r_1 <_{WO} r_2$$

A dependency graph is **well-nested**, if no two of its disjoint subtrees interleave.'
Gap Degree $dNh(T)$

Coverage of a node $u \in T$

$$Cov(u, T) = \{ i \mid i - \text{word order position of } v \in T \text{ such that, } u \leq_D v \}$$

$Cov(u_1, T) = \{1\}; \quad Cov(u_2, T) = \{2\}; \quad Cov(u_3, T) = \{3\}; \quad Cov(u_4, T) = \{1, 2, 3, 4, 5\}; \quad Cov(u_5, T) = \{1, 5\}$
Gap Degree $dNh(T)$

Coverage of a node $u \in T$

$Cov(u, T) = \{ i \mid i$ - word order position of $v \in T$ such that, $u \leq_D v \}$

Gap in Coverage of a node $u \in T \iff_{def} Cov(u, T)$ is not an interval
Gap Degree $d\text{Nh}(T)$

Coverage of a node $u \in T$

$\text{Cov}(u, T) = \{ i \mid i - \text{word order position of } v \in T \text{ such that, } u \leq_{D} v \}$

$\text{Cov}(u_1, T) = \{1\}; \quad \text{Cov}(u_2, T) = \{2\}; \quad \text{Cov}(u_3, T) = \{3\}; \quad \text{Cov}(u_4, T) = \{1, 2, 3, 4, 5\}; \quad \text{Cov}(u_5, T) = \{1, 5\}$
Gap Degree $dNh(T)$

Coverage of a node $u \in T$

$\text{Cov}(u, T) = \{ i \mid i \text{- word order position of } v \in T \text{ such that, } u \leq_D v \}$

Gap in Coverage of a node $u \in T \iff \text{def} \ \text{Cov}(u, T) \text{ is not an interval}$

$dNh(u, T) \ldots$ **number of Gaps** in $\text{Cov}(u, T)$

Tree Degree $dNh(T) = \max \{ dNh(u, T) \mid u \in T \}$

$\text{Cov}(u_1, T) = \{1\}; \ \text{Cov}(u_2, T) = \{2\}; \ \text{Cov}(u_3, T) = \{3\}; \ \text{Cov}(u_4, T) = \{1, 2, 3, 4, 5\}; \ \text{Cov}(u_5, T) = \{1, 5\}$

[decided,4]
[he,3]
[to mary,5]
[whom,1]
Gap Degree $d_{Nh}(T)$

- **Coverage** of a node $u \in T$

 \[Cov(u, T) = \{ i \mid i \text{- word order position of } v \in T \text{ such that, } u \leq_D v \} \]

- **Gap in Coverage** of a node $u \in T \iff_{\text{def}} Cov(u, T)$ is not an interval

- $d_{Nh}(u, T)$ … **number of Gaps** in $Cov(u, T)$

- **Tree Degree** $d_{Nh}(T) = \max \{ d_{Nh}(u, T) \mid u \in T \}$

Diagram:

- A
 - B
 - C
 - D
 - E
 - F

- A
 - B
 - C
 - D
 - E
 - F
Edge Degree

Let $T = (N, E)$ dependency tree, $e = [i, j]$ an edge in E, T_e the subgraph of T induced by the nodes contained in the span of e.

Degree of an edge $e \in E$, $\text{ed}(e)$, is the number of connected components c in T_e such that the root of c is not dominated by the head of e.

Edge degree of T, $\text{ed}(T)$ \(\ldots \max \{ \text{ed}(e) \mid e \in T \} \)
Edge Degree

Let $T = (N, E)$ dependency tree, $e = [i, j]$ an edge in E, T_e the subgraph of T induced by the nodes contained in the span of e.

Degree of an edge $e \in E$, $ed(e)$, is the number of connected components c in T_e such that the root of c is not dominated by the head of e.

Edge degree of T, ed(T) $\ldots \max \{ed(e) | e \in T\}$
Edge Degree

Let $T = (N, E)$ dependency tree, $e = [i, j]$ an edge in E, T_e the subgraph of T induced by the nodes contained in the span of e.

Degree of an edge $e \in E$, $ed(e)$, is the number of connected components c in T_e such that the root of c is not dominated by the head of e.

Edge degree of T, $ed(T)$ … $\max \{ ed(e) | e \in T \}$
Edge Degree

Let $T = (N, E)$ dependency tree, $e = [i, j]$ an edge in E, T_e the subgraph of T induced by the nodes contained in the span of e.

Degree of an edge $e \in E$, $\text{ed}(e)$, is the number of connected components c in T_e such that the root of c is not dominated by the head of e.

Edge degree of T, $\text{ed}(T)$ $\ldots \max \{\text{ed}(e)\, | \, e \in T\}$
<table>
<thead>
<tr>
<th>property</th>
<th>DDT</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 4393$</td>
<td>$n = 73088$</td>
</tr>
<tr>
<td>gap degree 0</td>
<td>3732 84.95%</td>
<td>56168 76.85%</td>
</tr>
<tr>
<td>gap degree 1</td>
<td>654 14.89%</td>
<td>16608 22.72%</td>
</tr>
<tr>
<td>gap degree 2</td>
<td>7 0.16%</td>
<td>307 0.42%</td>
</tr>
<tr>
<td>gap degree 3</td>
<td>– –</td>
<td>4 0.01%</td>
</tr>
<tr>
<td>gap degree 4</td>
<td>– –</td>
<td>1 <0.01%</td>
</tr>
<tr>
<td>edge degree 0</td>
<td>3732 84.95%</td>
<td>56168 76.85%</td>
</tr>
<tr>
<td>edge degree 1</td>
<td>584 13.29%</td>
<td>16585 22.69%</td>
</tr>
<tr>
<td>edge degree 2</td>
<td>58 1.32%</td>
<td>259 0.35%</td>
</tr>
<tr>
<td>edge degree 3</td>
<td>17 0.39%</td>
<td>63 0.09%</td>
</tr>
<tr>
<td>edge degree 4</td>
<td>2 0.05%</td>
<td>10 0.01%</td>
</tr>
<tr>
<td>edge degree 5</td>
<td>– –</td>
<td>2 <0.01%</td>
</tr>
<tr>
<td>edge degree 6</td>
<td>– –</td>
<td>1 <0.01%</td>
</tr>
<tr>
<td>projective</td>
<td>3732 84.95%</td>
<td>56168 76.85%</td>
</tr>
<tr>
<td>planar</td>
<td>3796 86.41%</td>
<td>60048 82.16%</td>
</tr>
<tr>
<td>well-nested</td>
<td>4388 99.89%</td>
<td>73010 99.89%</td>
</tr>
<tr>
<td>non-projective structures only</td>
<td>$n = 661$</td>
<td>$n = 16920$</td>
</tr>
<tr>
<td>planar</td>
<td>64 9.68%</td>
<td>3880 22.93%</td>
</tr>
<tr>
<td>well-nested</td>
<td>656 99.24%</td>
<td>16842 99.54%</td>
</tr>
</tbody>
</table>
References