Prague Dependency Treebank: Introduction – trees, dependency

Markéta Lopatková, Jiří Mírovský
Institute of Formal and Applied Linguistics, MFF UK
lopatkova@ufal.mff.cuni.cz
NPFL075 Prague Dependency Treebank

Lectures:
Markéta Lopatková Wed, S11, 14:00-15:30

Practical sessions:
Jiří Mírovský Thu, SU1, 12:20-13:50

http://ufal.mff.cuni.cz/course/npfl075

Requirements:
• Homework (40%)
• Activity (10%)
• Final test (50%)

Assessment:
• excellent (= 1) ≥ 90%
• very good (= 2) ≥ 70%
• good (= 3) ≥ 50%
Prague Dependency Treebank

Collection of:
- linguistically annotated data (Czech)
- tools and data format(s)
- documentation

Another point of view:
- annotation scheme
- framework for annotation of different languages
- underlying linguistic theory (Functional Generative Description)
Prague Dependency Treebank

Collection of:
• linguistically annotated data (Czech)
• tools and data format(s)
• documentation

Another point of view:
• annotation scheme
• framework for annotation of different languages
• underlying linguistic theory (Functional Generative Description)

What about other/similar approaches:
• HamleDT
• Universal Dependencies
Outline of the lecture

• trees (graph theory and data format)
• phrase structure trees and dependency trees
• dependency and non-dependency relations
• non-projectivity
How to capture sentence structure?

wsj_1411.treex.gz (64/108)
Gate *receipts are* only the Cowboys’ second largest source of cash.

![Diagram of sentence structure](image-url)
Graph theory: tree

tree (graph theory):
definition:

- finite graph \langle N, E \rangle, \ N \sim \text{nodes/vertices, } E \sim \text{edges } \{n_1, n_2\}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

⇔ (undirected) graph
any two nodes are connected by exactly one simple path
Graph theory: tree

tree (graph theory):

definition:
 - finite graph \(\langle N, E \rangle \), \(N \sim \) nodes/vertices, \(E \sim \) edges \{n_1,n_2\}
 - connected
 - no cycles, no loops
 - no more than 1 edge between any two different nodes

\(\iff\) (undirected) graph
 any two nodes are connected by exactly one simple path

rooted tree

- rooted \(\Rightarrow\) orientation (i.e., edges ordered pairs \([n_1,n_2]\))
Graph theory: tree

tree (graph theory):

definition:
- finite graph \(\langle N, E \rangle \), \(N \sim \) nodes/vertices, \(E \sim \) edges \(\{n_1,n_2\} \)
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\(\iff \) (undirected) graph
any two nodes are connected by exactly one simple path

rooted tree
- rooted \(\Rightarrow \) orientation (i.e., edges ordered pairs \([n_1,n_2]\))

directed tree ... directed graph
- which would be tree
 - if the directions on the edges were ignored, or
 - **all edges are directed towards a particular node** \(\sim \) the root
Data structure: tree

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root
Data structure: tree

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root

+ (linear) ordering of nodes:
 the children of each node have a specific order
Data structure: tree (properties)

tree as a data structure:

- "tree-ordering" D … partial ordering on nodes
 \[u \leq v \iff \text{the unique path from the root to } v \text{ passes through } u \]
 (weak ordering ~ reflexive, antisymmetric, transitive)

- "linear ordering" … (partial) ordering on nodes
 (strong ordering ~ antireflexive, asymmetric, transitive)
Tree-based structures in CL

two types of tree-based structures in CL:

- phrase structure tree / constituent structure tree
- dependency tree
My brother often sleeps in his study.

Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree, directed}

Q ... lexical and grammatical categories

L ... labeling function \(N \rightarrow Q \)

D ... oriented edges (branches)

\sim \text{ relation on lex. and gram. categories}

\textit{dominance relation}

+\text{relation on \(N \sim \) (partial strong linear ordering)}

\textit{relation of precedence}
Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree, directed}

Q \ldots \text{lexical and grammatical categories}

L \ldots \text{labeling function } N \rightarrow Q

D \ldots \text{oriented edges (branches)}

\sim \text{ relation on lex. and gram. categories}

\textit{dominance relation}

\textit{exclusivity condition for D and P relations}

\textit{‘nontangling’ condition
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations

\[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \not\in D \land [y,x] \not\in D) \]

Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \land [y,x] \notin D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \land [w,y] \in D \land [x,z] \in D) \Rightarrow ([y,z] \in P) \]

Phrase structure tree (relation P)
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \not\in D \land [y,x] \not\in D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \land [w,y] \in D \land [x,z] \in D) \implies ([y,z] \in P) \]

\[T = \langle N,D,Q,P,L \rangle \text{ phrase structure tree} \]
- \[\forall x,y \in N \text{ siblings } \implies [x,y] \in P \]
- the set of its leaves is totally ordered by P
Phrase structure tree

Pros

• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar
Phrase structure tree

derivation history / ‘closeness’:

… *often sleeps in his study* ...
Phrase structure tree

Pros
• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar

Contras
• complexity
 (number of non-terminal symbols)
• complement
 (‘two dependencies’)
 příběhl bos
 [(he) arrived barefooted]
• free word order
 discontinuous ‘phrases’
 non-projectivity
Phrase structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread. What will Mary eat?

Mary will eat bread.

What will Mary eat?
Phræs structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?

S
 NP
 N VP
 V NP
 N bread

S
 NP
 VP
 AuxV V
 N what
 eat
 will

Mary

PDT – Intro Lopatková
discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?

Phrase structure tree

S
NP
Mary

VP
will

VP
eat

bread

S'
NP
what

T'
AuxV
will

S
NP
Mary

AuxV
trace_i

VP
eat

trace_i

N

V

PDT – Intro

Lopatková
Po babiččině příjezdu půjdou rodiče do divadla. [After grandma's arrival the parents will go to the theatre.]

discontinuous ‘phrases’:

Phrase structure tree
Corpora with phrase structure trees

- Penn Treebank (1995)
 http://www.cis.upenn.edu/~treebank/

 Penn Arabic Treebank, Penn Chinese Treebank

- International English Treebank (ICE)
 http://ice-corpora.net/ice/index.htm

- Paris 7

- Szeged Treebank 2.0

- many many others
Dependency tree
My brother often sleeps in his study.

Dependency tree (definition)

\[T = \langle N, D, Q, WO, L \rangle \]

\(\langle N, D \rangle \) … **rooted tree, directed**

Q … lexical and grammatical categories

L … labeling function \(N \rightarrow Q \)

D … oriented edges \(\sim \) relation on lex. and gram. categories

‘dependency’ relation

WO … relation on \(N \sim \) (strong total ordering on \(N \)) …

word order

\[\text{sleeps}.\text{Pred} \]

\[\text{brother}.\text{Sb} \quad \text{often}.\text{Adv} \]

\[\text{in}.\text{AuxP} \]

\[\text{my}.\text{Atr} \]

\[\text{study}.\text{Adv} \]

\[\text{his}.\text{Atr} \]
Dependency tree

Pros
• economical, clear
 (complex labels, ‘word’~ node)
• free word order
• head of a phrase

Contrasts
• no derivation history /
 'closeness'
• coordination, apposition
• complement

```
  sleeps.Pred
    brother.Sb  often.Adv  in.AuxP
      my.Atr          
                    
                    
                    
                    
                    
                    
                    
                    study.Adv
          his.Atr
```
Dependancy tree

discontinuous ‘phrases’: no problem

Mary will eat bread.

What will Mary eat?
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival the parents will go to the theatre.]
Corpora with dependency trees

- PropBank (1995)
 http://propbank.github.io/
- family of Prague dependency treebanks: Czech, Arabic, English
- HamleDT project (from 2012)
- [Universal Dependencies](http://universaldependencies.org/) (from 2013)
- Danish Dep. Treebank
- Finnish: Turku Dependency Treebank
 http://bionlp.utu.fi/fintreebank.html
- Negra corpus
- TIGERCorpus
 http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
- SynTagRus Dependency Treebank for Russian
Dependency and non-dependency relations
Dependency and non-dependency relations

edges ~ **dependency relations** (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- long discussion, number of linguistic criteria
 e.g., each complete subtree must be a “constituent“, i.e., it must allow for several constructions like topicalization, proform substitution,;

Mary *will eat bread*.

- **Topicalization:**
 ... and *eat* Mary certainly will.

- **Proform substitution:**
 Mary will do so. (do=eat)

- **Answer fragment:**
 What will Mary do? Eat.

- **VP-ellipsis:**
 Peter will eat and Mary will, too.

⇒ lexical verb should be a dependent
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- PDT criterion: possible reduction
 - ... dependent member of the pair may be deleted
 - while the distributional properties are preserved (→ correctness is preserved)
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: possible reduction

 … dependent member of the pair may be deleted

 while the distributional properties are preserved (→ correctness is preserved)

• endocentric constructions … OK

malý stůl → stůl

přišel včas → přišel

(přišel) velmi brzo → (přišel) brzo

small table → table

he came in time → he came

(he came) very soon → (he came) soon
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 ... dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
• endocentric constructions ... OK
• exocentric constructions ... principle of analogy on word classes

Prši. [(It) rains.] ... ∃ subjectless verbs
⇒ Král zemřel. [The king died.] ... a verb rather than a noun is the head

The girl painted a bag. → The girl painted. ... ∃ objectless verbs
⇒ The girl carried a bag ... an object is considered as depending on a verb
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: possible reduction
 … dependent member of the pair may be deleted while the distributional properties are preserved (\(\rightarrow\) correctness is preserved)

 • endocentric constructions … OK

 • exocentric constructions … principle of analogy on word classes

PLUS technical considerations

 e.g.: prepositions are below nouns;
 auxiliary verbs are (typically) below content verbs
Dependency and non-dependency relations

BUT also other relations:

- **coordination** … "multiplication" of a single syntactic position
- different referents
- coordination of sentence members / sentences

 My sister Mary and John came late.
 Mary came in time but John was late.
 I can't leave since it hasn't stopped raining yet.
 Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded

 nice and romantic towers and castles
 krásné a romantické hrady a zámky
Dependency and **non-dependency** relations

BUT also other relations:

coordination … "multiplication" of a single syntactic position

- different referents
- coordination of sentence members / sentences

> My sister Mary and John came late.
> Mary came in time but John was late.
> I can't leave since it hasn't stopped raining yet.
> Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded

> nice and romantic towers and castles
> krásné a romantické hrady a zámky

apposition … "multiplication" of a single syntactic position

- identical referent

> Charles IV, Holy Roman Emperor
> The Hobbit, or There and Back Again
Dependency and non-dependency relations

BUT also other relations:
- coordination ... "multiplication" of a single syntactic position
 - different referents
 - coordination of sentence members / sentences
 - coordination may be embedded

apposition ... "multiplication" of a single syntactic position
- identical referent

necessary to enrich the data structure
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- connecting node (= node for coordinating / appositing conjunction)
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')

![Dependency tree diagram]
Coordination/apposition in dependency trees

PDT 2.0:

connecting constructions ~ coordination, apposition (, OPER)

Specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member

```
[Image of dependency tree with labels and nodes]
```
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - **is_member**
- **effective child(ren)** … modification(s) of the individual member of the connecting construction + common/shared modifier(s)

- ‘pass-through’ nodes
The center will gather and distribute the information on tenders and state commissions in this country as well as in abroad.
Coordination/apposition in dependency trees

PDT 2.0:
- embedded connecting constructions → recursivity

- *TrEd* (Tree Editor, Pajas):
 - functions `GetEChildren`, `GetEParents`
Coordination/apposition in dependency

Universal Dependencies:

version 1 (2014):

the first conjunct
~ the head of all following conjuncts
~ the head of any intervening coordinating conjunctions and punctuation

Slides stolen from Daniel Zeman
Coordination/apposition in dependency

Universal Dependencies:

version 1 (2014):

- the first conjunct
 - ~ the head of all following conjuncts
 - ~ the head of any intervening coordinating conjunctions and punctuation

version 2 (2016):

- the first conjunct ~ the head of all following conjuncts
- attach coordinating conjunctions and punctuation to the immediately succeeding conjunct (instead of the first)

(Slides stolen from Daniel Zeman)
Coordination/apposition in dependency trees

Mel'čuk (1988):

• ‘grouping’ (G) … treating the first conjunct as the head

• problem: shared modification
 vs. modification of a single member

Hubení ((mladí muži), vojáci a starci)
[Thin young men, soldiers and old-men]
Coordination/apposition in dependency trees

Petkevič (1995) ... formal representation of FGD
two types of brackets for tree linearization:
• ⟨ ⟩ for dependencies
• [] for coordination
References

Dependency and non-dependency relations

other non-dependency relations in PDT:

- technical root – effective root of a sentence
- syntactically unclear expressions
 - rhematizers; sentence, linking and modal adverbial expressions, conjunction modifiers
- list structures
 - names, foreign expressions
- phrasemes