Prague Dependency Treebank: Introduction – trees, dependency

Markéta Lopatková, Jiří Mírovský
Institute of Formal and Applied Linguistics, MFF UK
lopatkova@ufal.mff.cuni.cz
NPFL075 Prague Dependency Treebank

Lectures:
Markéta Lopatková Fri, S6, 14:00-15:30

Practical sessions:
Jiří Mírovský Fri, SU1, 12:20-13:50

http://ufal.mff.cuni.cz/course/npfl075

Requirements:
- Homework (40%)
- Activity (10%)
- Final test (50%)

Assessment:
- excellent (= 1) ≥ 90%
- very good (= 2) ≥ 70%
- good (= 3) ≥ 50%
Prague Dependency Treebank

Collection of:
- linguistically annotated data (Czech)
- tools and data format(s)
- documentation

Another point of view:
- annotation scheme
- framework for annotation of different languages
- underlying linguistic theory (Functional Generative Description)
Prague Dependency Treebank

Collection of:
- linguistically annotated data (Czech)
- tools and data format(s)
- documentation

Another point of view:
- annotation scheme
- framework for annotation of different languages
- underlying linguistic theory (Functional Generative Description)

What about other/similar approaches:
- HamleDT
- Universal Dependencies
Outline of the lecture

- trees (graph theory and data format)
- phrase structure trees and dependency trees
- dependency and non-dependency relations
- non-projectivity
How to capture sentence structure?

Gate receipts are only the Cowboys' second largest source of cash.
Graph theory: tree

tree (graph theory):
definition:
- finite graph \(\langle N, E \rangle \), \(N \sim \) nodes/vertices, \(E \sim \) edges \(\{n_1,n_2\} \)
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\(\iff \) (undirected) graph
any two nodes are connected by exactly one simple path
Graph theory: tree

tree (graph theory):

definition:
- finite graph \(\langle N, E \rangle \), \(N \sim \) nodes/vertices, \(E \sim \) edges \{n_1,n_2\}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\(\iff \) (undirected) graph

any two nodes are connected by exactly one simple path

rooted tree

- rooted \(\Rightarrow \) orientation (i.e., edges ordered pairs \([n_1,n_2]\))
Graph theory: tree

tree (graph theory):

definition:

- finite graph \(\langle N, E \rangle \), \(N \sim \) nodes/vertices, \(E \sim \) edges \(\{n_1,n_2\} \)
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\(\iff \) (undirected) graph

any two nodes are connected by exactly one simple path

rooted tree

- rooted \(\Rightarrow \) orientation (i.e., edges ordered pairs \([n_1,n_2]\))

directed tree ... directed graph

- which would be tree
 - if the directions on the edges were ignored, or
 - all edges are directed towards a particular node \(\sim \) the root
Data structure: tree

tree as a data structure:
- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root
Data structure: tree

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root
- (linear) ordering of nodes: the children of each node have a specific order
Data structure: tree (properties)

tree as a data structure:

- "tree-ordering" D ... partial ordering on nodes
 \[u \leq v \iff \text{the unique path from the root to } v \text{ passes through } u \]
 (weak ordering \sim reflexive, antisymmetric, transitive)

- "linear ordering" ... (partial) ordering on nodes
 (strong ordering \sim antireflexive, asymmetric, transitive)
Tree-based structures in CL

two types of tree-based structures in CL:

- phrase structure tree / constituent structure tree
- dependency tree
My brother often sleeps in his study.

Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots rooted tree

Q \ldots lexical and grammatical categories

L \ldots labeling function \(N \rightarrow Q \)

D \ldots oriented edges (branches)

\sim \text{ relation on lex. and gram. categories}

dominance relation

+ \text{ relation on } \sim \text{ (partial strong linear ordering)}

P \ldots relation of precedence

relation of precedence
Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree, directed}

Q \ldots \text{lexical and grammatical categories}

L \ldots \text{labeling function } N \rightarrow Q

D \ldots \text{oriented edges (branches)}

\sim \text{ relation on lex. and gram. categories}

\textit{dominance relation}

+ P \ldots \text{relation on } N \sim \text{ (partial strong linear ordering)}

\text{relation of } \textit{precedence}

Relating dominance and precedence relations:

- \textit{exclusivity} condition for \(D \) and \(P \) relations
- \textit{‘nontangling’} condition
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations

\[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \land [y,x] \notin D) \]
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \land [y,x] \notin D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \land [w,y] \in D \land [x,z] \in D) \implies ([y,z] \in P) \]
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \& [y,x] \notin D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \& [w,y] \in D \& [x,z] \in D) \implies ([y,z] \in P) \]

\[T = \langle N,D,Q,P,L \rangle \text{ phrase structure tree} \]
 - \[\forall x,y \in N \text{ siblings } \implies [x,y] \in P \]
 - the set of its leaves is totally ordered by P
Phrase structure tree

Pros

• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar
Phrase structure tree

derivation history / ‘closeness’:

... often sleeps in his study
Phrase structure tree

Pros
- derivation history / ‘closeness’ of a complementation
- coordination, apposition
- CFG-like
- derivation of a grammar

Contras
- complexity (number of non-terminal symbols)
- complement (‘two dependencies’)
 \[přiběhl\] \[bos\]
 [(he) arrived barefooted]
- free word order
 discontinuous ‘phrases’
 non-projectivity
Phrase structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?

S

VP

NP

N

Mary

AuxV

V

bread

N

will

eat

S

VP

NP

N

what

AuxV

V

Mary

will

eat
discontinuous ‘phrases’: solution for English

Mary will eat bread. What will Mary eat?

Phrase structure tree
discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival
the parents will go to the theatre.]
Corpora with phrase structure trees

• Penn Treebank (1995)
 http://www.cis.upenn.edu/~treebank/
 Penn Arabic Treebank, Penn Chinese Treebank
• International English Treebank (ICE)
 http://ice-corpora.net/ice/index.htm
• Paris 7
 http://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-fr.php
• Szeged Treebank 2.0
• many many others
Dependency tree
My brother often sleeps in his study.

Dependency tree (definition)

\[T = \langle N, D, Q, WO, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree, directed}

Q \ldots \text{lexical and grammatical categories}

L \ldots \text{labeling function } N \rightarrow Q

D \ldots \text{oriented edges } \sim \text{ relation on lex. and gram. categories}

\textit{‘dependency’ relation}

WO \ldots \text{relation on } N \sim \text{ (strong total ordering on } N) \ldots

\textit{word order}

Example Dependency Tree

- **Senses:**
 - \(N\): 1
 - \(D\): 1
 - \(Q\): 1
 - \(WO\): 1
 - \(L\): 1

Tree Structure:

- **Underlying Structure:**
 - \(slees.Pred\)
 - \(brother.Sb\)
 - \(often.Adv\)
 - \(in.AuxP\)
 - \(study.Adv\)
 - \(his.Atr\)
 - \(my.Atr\)

- **Surface Form:**
 - \(sleeps\)
 - \(brother\)
 - \(often\)
 - \(in\)
 - \(study\)
 - \(my\)
 - \(his\)
Dependency tree

Pros
• economical, clear (complex labels, ‘word’~ node)
• free word order
• head of a phrase

Contras
• no derivation history / 'closeness'
• coordination, apposition
• complement
Dependency tree

discontinuous ‘phrases’: no problem

Mary will eat bread.
What will Mary eat?

Mary.Sb will.AuxV bread.Obj

eat.Pred

What.Obj will.AuxV Mary.Sb

eat.Pred
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival the parents will go to the theatre.]
Corpora with dependency trees

- PropBank (1995)
 http://propbank.github.io/
- family of Prague dependency treebanks: Czech, Arabic, English
- HamleDT project (from 2012)
- Universal Dependencies
 http://universaldependencies.org/
- Danish Dep. Treebank
- Finnish: Turku Dependency Treebank
 http://bionlp.utu.fi/fintreebank.html
- Negra corpus
- TIGERCorpus
 http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html/
- SynTagRus Dependency Treebank for Russian
Dependency and non-dependency relations
Dependency and non-dependency relations

edges \sim **dependency relations** (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- long discussion, number of linguistic criteria

 e.g., each complete subtree must be a “constituent“, i.e., it must allow for several constructions like topicalization, proform substitution,;

Mary *will eat* bread.

Topicalization:
… and *eat* Mary certainly will.

Proform substitution:
Mary will do so. (do=eat)

Answer fragment:
What will Mary do? *Eat.*

VP-ellipsis:
Peter will eat and Mary will, too.

⇒ lexical verb should be a dependent
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)
• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: possible reduction

 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)

 • endocentric constructions … OK

 *malý stůl → stůl
 *přišel včas → přišel
 *(přišel) velmi brzo → (přišel) brzo

 *small table → table
 *he came in time → he came
 *(he came) very soon → (he came) soon
Dependency and non-dependency relations

edges ~ *dependency relations* (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- PDT criterion: *possible reduction*
 - dependent member of the pair may be deleted while the distributional properties are preserved (→ correctness is preserved)
 - endocentric constructions … OK
 - exocentric constructions … *principle of analogy* on word classes

Prši. [(It) rains.] … ∃ subjectless verbs
⇒ *Král zemřel.* [The king died.] … a verb rather than a noun is the head

The girl painted a bag. → *The girl painted.* … ∃ objectless verbs
⇒ *The girl carried a bag* … an object is considered as depending on a verb
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)
• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
 • endocentric constructions … OK
 • exocentric constructions … principle of analogy on word classes

PLUS technical considerations
 e.g.: prepositions are below nouns;
 auxiliary verbs are (typically) below content verbs
Dependency and non-dependency relations

BUT also other relations:

coordination … "multiplication" of a single syntactic position
- different referents
- coordination of sentence members / sentences

 My sister Mary and John came late.
 Mary came in time but John was late.
 I can't leave since it hasn't stopped raining yet.
 Nemohu odejít, neboť ještě nepřestalo pršet.

coordination may be embedded

 nice and romantic towers and castles
 krásné a romantické hrady a zámky
Dependency and non-dependency relations

BUT also other relations:

- coordination … "multiplication" of a single syntactic position
 - different referents
 - coordination of sentence members / sentences
 - My sister Mary and John came late.
 - Mary came in time but John was late.
 - I can't leave since it hasn't stopped raining yet.
 - Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded
 - nice and romantic towers and castles
 - krásné a romantické hrady a zámky

- apposition … "multiplication" of a single syntactic position
 - identical referent
 - Charles IV, Holy Roman Emperor
 - The Hobbit, or There and Back Again
Dependency and non-dependency relations

BUT also other relations:

- **coordination** … "multiplication" of a single syntactic position
 - different referents
 - coordination of sentence members / sentences
 - coordination may be embedded

- **apposition** … "multiplication" of a single syntactic position
 - identical referent

necessary to enrich the data structure
Coordination/apposition in dependency trees

PDT 2.0:

connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member
Coordination/apposition in dependency trees

PDT 2.0:

'connecting constructions' ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member
- **effective child(ren)** ... modification(s) of the individual member of the connecting construction + common/shared modifier(s)

- ‘pass-through’ nodes
The center will gather and distribute the information on tenders and state commissions in this country as well as in abroad.
Coordination/apposition in dependency trees

PDT 2.0:
- embedded connecting constructions \(\rightarrow\) recursivity

- \textit{TrEd} (Tree Editor, Pajas):
 - functions \texttt{GetEChildren, GetEParents}
Coordination/apposition in dependency

Universal Dependencies:

version 1 (2014):

the first conjunct
~ the head of all following conjuncts
~ the head of any intervening coordinating conjunctions and punctuation

(Slides stolen from Daniel Zeman)
Coordination/apposition in dependency

Universal Dependencies:

version 1 (2014):
the first conjunct
~ the head of all following conjuncts
~ the head of any intervening coordinating conjunctions and punctuation

version 2 (2016):
- the first conjunct ~ the head of all following conjuncts
- attach coordinating conjunctions and punctuation to the immediately succeeding conjunct (instead of the first)

(Slides stolen from Daniel Zeman)
Coordination/apposition in dependency trees

Mel'čuk (1988):

• ‘grouping’ (G) … treating the first conjunct as the head
• problem: shared modification vs. modification of a single member

Hubení ((mladí muži), vojáci a starci)
[Thin young men, soldiers and old-men]
Coordination/apposition in dependency trees

Petkevič (1995) … formal representation of FGD

two types of brackets for tree linearization:

• \(\langle \rangle \) for dependencies
• \([\]\) for coordination
References

Dependency and non-dependency relations

other non-dependency relations in PDT:

- technical root – effective root of a sentence
- syntactically unclear expressions
 rhematizers; sentence, linking and modal adverbial expressions, conjunction modifiers
- list structures
 names, foreign expressions
- phrasemes