Prague Dependency Treebank:
Introduction – trees, dependency

Markéta Lopatková, Jiří Mírovský
Institute of Formal and Applied Linguistics, MFF UK
lopatkova@ufal.mff.cuni.cz
NPFL075 Prague Dependency Treebank

Lectures:
Markéta Lopatková Fri, S6, 14:00-15:30

Practical sessions:
Jiří Mírovský Fri, SU1, 12:20-13:50

http://ufal.mff.cuni.cz/course/npfl075

Requirements:
• Homework (40%)
• Activity (10%)
• Final test (50%)

Assessment:
• excellent (= 1) ≥ 90%
• very good (= 2) ≥ 70%
• good (= 3) ≥ 50%
Prague Dependency Treebank

Collection of:
 • linguistically annotated data (Czech)
 • tools and data format(s)
 • documentation

Another point of view:
 • annotation scheme
 • framework for annotation of different languages
 • underlying linguistic theory (Functional Generative Description)
Prague Dependency Treebank

Collection of:
 • linguistically annotated data (Czech)
 • tools and data format(s)
 • documentation

Another point of view:
 • annotation scheme
 • framework for annotation of different languages
 • underlying linguistic theory (Functional Generative Description)

What about other/similar approaches:
 • HamleDT
 • Universal Dependencies
Outline of the lecture

- trees (graph theory and data format)
- phrase structure trees and dependency trees
- dependency and non-dependency relations
- non-projectivity
How to capture sentence structure?

Gate *receipts* are only the Cowboys' second largest source of cash.
Graph theory: tree

tree (graph theory):
definition:
- finite graph \langle N, E \rangle, N \sim \text{nodes/vertices}, E \sim \text{edges} \{n_1,n_2\}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes
⇔ (undirected) graph
any two nodes are connected by exactly one simple path
Graph theory: tree

tree (graph theory):
definition:
- finite graph $\langle N, E \rangle$, $N \sim$ nodes/vertices, $E \sim$ edges $\{n_1, n_2\}$
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\iff (undirected) graph
any two nodes are connected by exactly one simple path

rooted tree
- rooted \Rightarrow orientation (i.e., edges ordered pairs $[n_1, n_2]$)
Graph theory: tree

tree (graph theory):

definition:

- finite graph $\langle N, E \rangle$, $N \sim$ nodes/vertices, $E \sim$ edges $\{n_1, n_2\}$
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\iff (undirected) graph

any two nodes are connected by exactly one simple path

rooted tree

- rooted \Rightarrow orientation (i.e., edges ordered pairs $[n_1, n_2]$)

directed tree ... directed graph

- which would be tree
 - if the directions on the edges were ignored, or
 - all edges are directed towards a particular node \sim the root
Data structure: tree

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the *root*
Data structure: tree

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the *root*

+ (linear) ordering of nodes:
 - the children of each node have a specific order
Data structure: tree (properties)

tree as a data structure:

- "tree-ordering" D ... partial ordering on nodes
 \[u \leq v \iff \text{def the unique path from the root to } v \text{ passes through } u \]
 (weak ordering ~ reflexive, antisymmetric, transitive)

- "linear ordering" ... (partial) ordering on nodes
 (strong ordering ~ antireflexive, asymmetric, transitive)
Tree-based structures in CL

two types of tree-based structures in CL:
- phrase structure tree / constituent structure tree
- dependency tree
My brother often sleeps in his study.

Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree}

Q \ldots \text{lexical and grammatical categories}

L \ldots \text{labeling function } N \rightarrow Q

D \ldots \text{oriented edges (branches)}

\sim \text{relation on lex. and gram. categories}

\textit{dominance relation}

+

P \ldots \text{relation on } N \sim \text{ (partial strong linear ordering)}

\text{relation of } \textit{precedence}
Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\langle N, D \rangle \ldots \textit{rooted tree, directed}

Q \ldots \text{lexical and grammatical categories}

L \ldots \text{labeling function } N \rightarrow Q

D \ldots \text{oriented edges (branches)}

\sim \text{ relation on lex. and gram. categories}

\textit{dominance relation}

P \ldots \text{relation on } N \sim \text{(partial strong linear ordering)}

\textit{relation of precedence}

Relating dominance and precedence relations:

- \textit{exclusivity} condition for D and P relations
- \textit{‘nontangling’} condition
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations

$$\forall \ x,y \in N \ holds: \ ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \not\in D \land [y,x] \not\in D)$$
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \land [y,x] \notin D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \land [w,y] \in D \land [x,z] \in D) \implies ([y,z] \in P) \]
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \& [y,x] \notin D) \]

- ‘nontangling’ condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \& [w,y] \in D \& [x,z] \in D) \Rightarrow ([y,z] \in P) \]

\[T = \langle N,D,Q,P,L \rangle \text{ phrase structure tree} \]
- \[\forall x,y \in N \text{ siblings } \Rightarrow [x,y] \in P \]
- the set of its leaves is totally ordered by P
Phrase structure tree

Pros

- derivation history / ‘closeness’ of a complementation
- coordination, apposition
- CFG-like
- derivation of a grammar
Phrase structure tree

derivation history / ‘closeness’:

... *often sleeps in his study*
Phrase structure tree

Pros

• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar

Contrás

• complexity
 (number of non-terminal symbols)
• complement
 (‘two dependencies’)
 přiběhl bos
 [(he) arrived barefooted]
• **free word order**
 discontinuous ‘phrases’
 non-projectivity
Phrases structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?
Phrases structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread. What will Mary eat?

S
 NP VP
 | |
 Mary will eat bread

NP
 VP NP
 | |
 will eat bread

S
 NP VP
 | |
 Mary AuxV V NP
 | | |
 will eat what
discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?

Phrase structure tree
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival the parents will go to the theatre.]
Corpora with phrase structure trees

- Penn Treebank (1995)
 http://www.cis.upenn.edu/~treebank/
 Penn Arabic Treebank, Penn Chinese Treebank

- International English Treebank (ICE)
 http://ice-corpora.net/ice/index.htm

- Paris 7
 http://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-fr.php

- Szeged Treebank 2.0

- many many others
Dependency tree
Dependency tree

My brother often sleeps in his study.

Dependency tree (definition)

$T = \langle N, D, Q, WO, L \rangle$

$\langle N, D \rangle \ldots$ *rooted tree, directed*

$Q \ldots$ lexical and grammatical categories

$L \ldots$ labeling function $N \rightarrow Q$

$D \ldots$ oriented edges \sim relation on lex. and gram. categories

‘*dependency’ relation*

$WO \ldots$ relation on $N \sim$ (strong total ordering on N) …

word order
Dependency tree

Pros

- economical, clear
 (complex labels, ‘word’~ node)
- free word order
- head of a phrase

Contrasts

- no derivation history / 'closeness'
- coordination, apposition
- complement

PDT – Intro

Lopatková
Dependency tree

discontinuous ‘phrases’: no problem

Mary will eat bread.

What will Mary eat?

eat. Pred

Mary. Sb will. AuxV bread. Obj

eat. Pred

What. Obj will. AuxV Mary. Sb
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival the parents will go to the theatre.]
Corpora with dependency trees

- PropBank (1995)
 http://propbank.github.io/

- family of Prague dependency treebanks: Czech, Arabic, English
 http://ufal.mff.cuni.cz/pdt.html

- HamleDT project (from 2012)
 http://ufal.mff.cuni.cz/hamledt

- Universal Dependencies
 http://universaldependencies.org/

- Danish Dep. Treebank
 http://mbkromann.github.io/copenhagen-dependency-treebank/

- Finnish: Turku Dependency Treebank
 http://bionlp.utu.fi/fintreebank.html

- Negra corpus
 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

- TIGERCorpus
 http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html/

- SynTagRus Dependency Treebank for Russian
Dependency and non-dependency relations
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- long discussion, number of linguistic criteria
 e.g., each complete subtree must be a “constituent“, i.e., it must allow for several constructions like topicalization, proform substitution,;

Mary will eat bread.

Topicalization:
... and eat Mary certainly will.

Proform substitution:
Mary will do so. (do=eat)

Answer fragment:
What will Mary do? Eat.

VP-ellipsis:
Pete will eat and Mary will, too.

⇒ lexical verb should be a dependent
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: possible reduction

 … dependent member of the pair may be deleted

 while the distributional properties are preserved (→ correctness is preserved)
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
 • endocentric constructions … OK

 malý stůl → stůl
 přišel včas → přišel
 (přišel) velmi brzo → (přišel) brzo

 small table → table
 he came in time → he came
 (he came) very soon → (he came) soon
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
 • endocentric constructions … OK
 • exocentric constructions … principle of analogy on word classes

Prší. ([It] rains.] … ∃ subjectless verbs
⇒ Král zemřel. [The king died.] … a verb rather than a noun is the head

The girl painted a bag. → The girl painted. … ∃ objectless verbs
⇒ The girl carried a bag … an object is considered as depending on a verb
Dependency and non-dependency relations

edges ~ *dependency relations* (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: *possible reduction*
 ... dependent member of the pair may be deleted
 while the distributional properties are preserved \(\rightarrow \) correctness is preserved

• endocentric constructions ... OK

• exocentric constructions ... *principle of analogy* on word classes

PLUS technical considerations

e.g.: prepositions are below nouns;
 auxiliary verbs are (typically) below content verbs
Dependency and non-dependency relations

BUT also other relations:

- **coordination** ... "multiplication" of a single syntactic position
- different referents
- coordination of sentence members / sentences
 - My sister Mary and John came late.
 - Mary came in time but John was late.
 - I can't leave since it hasn't stopped raining yet.
 - Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded
 - nice and romantic towers and castles
 - krásné a romantické hrady a zámky
Dependency and non-dependency relations

BUT also other relations:

coordination … "multiplication" of a single syntactic position

- different referents
- coordination of sentence members / sentences

 My sister Mary and John came late.
 Mary came in time but John was late.
 I can't leave since it hasn't stopped raining yet.
 Nemohu odejít, nebot ještě nepřestalo pršet.

- coordination may be embedded

 nice and romantic towers and castles
 krásné a romantické hrady a zámky

apposition … "multiplication" of a single syntactic position

- identical referent

 Charles IV, Holy Roman Emperor
 The Hobbit, or There and Back Again
Dependency and non-dependency relations

BUT also other relations:

- **coordination** … "multiplication" of a single syntactic position
 - different referents
 - coordination of sentence members / sentences
 - coordination may be embedded

- **apposition** … "multiplication" of a single syntactic position
 - identical referent

⇒ necessary to enrich the data structure
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- connecting node (= node for coordinating / appositing conjunction)
Coordination/apposition in dependency trees

PDT 2.0:

'connecting constructions' ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member
- **effective child(ren)** … modification(s) of the individual member of the connecting construction + common/shared modifier(s)

- 'pass-through' nodes
The center will gather and distribute the information on tenders and state commissions in this country as well as in abroad.
Coordination/apposition in dependency trees

PDT 2.0:

- embedded connecting constructions ➔ recursivity

- **TrEd** (Tree Editor, Pajas):
 - functions `GetEChildren`, `GetEParents`
Coordination/apposition in dependency

Universal Dependencies:

version 1
(2014):

the first conjunct
~ the head of all following conjuncts
~ the head of any intervening coordinating conjunctions and punctuation

(Slides stolen from Daniel Zeman)
Coordination/apposition in dependency

Universal Dependencies:

version 1 (2014):

the first conjunct
~ the head of all following conjuncts
~ the head of any intervening coordinating conjunctions and punctuation

version 2 (2016):

• the first conjunct ~ the head of all following conjuncts
• attach coordinating conjunctions and punctuation to the immediately succeeding conjunct (instead of the first)

(Slides stolen from Daniel Zeman)
Coordination/apposition in dependency trees

Mel'čuk (1988):

• ‘grouping’ (G) … treating the first conjunct as the head

• problem: shared modification vs. modification of a single member

Hubení (mladí muži, vojáci a starci)
[Thin young men, soldiers and old-men]
Coordination/apposition in dependency trees

Petkevič (1995) … formal representation of FGD

two types of brackets for tree linearization:
• 〈 〉 for dependencies
• [] for coordination

\[
\begin{align*}
\langle[(Jan,t); (Marie,t)]_\text{cop} RSTR \langle\langle(který,t)\rangle\rangle \text{ACT} (žít,t) \text{LOC} \langle\langle(Boston,t)\rangle\rangle \rangle \text{ACT} (být,f) \\
\text{PAT} \langle\langle(dobrý,f)\rangle\rangle RSTR (člověk,f)\end{align*}
\]
References

other non-dependency relations in PDT:

• technical root – effective root of a sentence
• syntactically unclear expressions
 rhematizers; sentence, linking and modal adverbial expressions, conjunction modifiers
• list structures
 names, foreign expressions
• phrasemes

PDT – Intro Lopatková