Prague Dependency Treebank: Introduction – trees, dependency

Markéta Lopatková, Jiří Mírovský

Institute of Formal and Applied Linguistics, MFF UK

lopatkova@ufal.mff.cuni.cz
NPFL075 Prague Dependency Treebank

Lectures:
Markéta Lopatková Fri, S8, 10:40-12:10 (cz/eng)
Fri, S8, 14:00-15:30 (eng)

Practical sessions:
Jiří Mírovský Fri, SU1, 9:00-10:30

http://ufal.mff.cuni.cz/course/npfl075

Requirements:
• Homework (35%)
• Activity (15%)
• Final test (50%)

Assessment:
• excellent (= 1) ≥ 90%
• very good (= 2) ≥ 70%
• good (= 3) ≥ 50%
Prague Dependency Treebank

Collection of:
- linguistically annotated data (Czech)
- tools and data format(s)
- documentation

Another point of view:
- annotation scheme
- framework for annotation of different languages
- underlying linguistic theory (Functional Generative Description)
Prague Dependency Treebank

Collection of:
- linguistically annotated data (Czech)
- tools and data format(s)
- documentation

Another point of view:
- annotation scheme
- framework for annotation of different languages
- underlying linguistic theory (Functional Generative Description)

What about other/similar approaches:
- HamleDT
- Universal Dependencies
Outline of the lecture

- trees (graph theory and data format)
- phrase structure trees and dependency trees
- dependency and non-dependency relations
- non-projectivity
How to capture sentence structure?

Gate receipts are only the Cowboys' second largest source of cash.
Graph theory: tree

tree (graph theory):
definition:

- finite graph \(\langle N, E \rangle \), \(N \)~nodes, \(E \)~edges/vertices \{n_1, n_2\}
- connected
- no cycles, no loops
- no more then 1 edge between any two different nodes

⇔ (undirected) graph
any two nodes are connected by exactly one simple path
Graph theory: tree

tree (graph theory):
definition:
- finite graph \(\langle N, E \rangle \), \(N \sim \) nodes, \(E \sim \) edges/vertices \(\{n_1, n_2\} \)
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

\(\iff \) (undirected) graph
- any two nodes are connected by exactly one simple path

rooted tree
- rooted \(\Rightarrow \) orientation (i.e., edges ordered pairs \([n_1, n_2]\))
Graph theory: tree

tree (graph theory):
definition:
- finite graph \(\langle N, E \rangle \), \(N \)~nodes, \(E \)~edges/vertices \{n_1, n_2\}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes
\(\iff \) (undirected) graph
- any two nodes are connected by exactly one simple path

rooted tree
- rooted \(\Rightarrow \) orientation (i.e., edges ordered pairs \([n_1, n_2]\))

directed tree ... directed graph
- which would be tree
 - if the directions on the edges were ignored, or
 - all edges are directed towards a particular node ~ the root
Data structure: tree

tree as a data structure:

properties:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root
- each non-root node has exactly one parent, and the root has no parent
 (each node has zero or more children nodes)
Data structure: tree

tree as a data structure:

properties:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the **root**
- each non-root node has exactly one parent, and the root has no parent
 (each node has zero or more children nodes)

+ (linear) ordering of nodes:
 the children of each node have a specific order
Data structure: tree (properties)

tree as a data structure:

- "tree-ordering" D ... partial ordering on nodes
 \[u \leq v \iff \text{the unique path from the root to } v \text{ passes through } u \]
 (weak ordering ~ reflexive, antisymmetric, transitive)

- "linear ordering" ... (partial) ordering on nodes
 (strong ordering ~ antireflexive, asymmetric, transitive)
Tree-based structures in CL

two types of tree-based structures in CL:
- phrase structure tree / constituent structure tree
- dependency tree
My brother often sleeps in his study.

Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

\(\langle N, D \rangle \) … *rooted tree*

Q … lexical and grammatical categories

L … labeling function \(N \rightarrow Q \)

D … oriented edges \(\sim \) relation on lex. and gram. categories

dominance relation

P … relation on \(N \sim \) (partial strong linear ordering)

precedence
Phrase structure tree (definition)

\[T = \langle N, D, Q, P, L \rangle \]

- \(\langle N, D \rangle \) … tree (as a data structure)
- \(Q \) … lexical and grammatical categories
- \(L \) … labeling function \(N \rightarrow Q \)
- \(D \) … oriented edges \(\sim \) relation on lex. and gram. categories
 - dominance relation
- \(P \) … relation on \(N \sim \) (partial strong linear ordering)
 - relation of precedence

Relating dominance and precedence relations:
- \(\textit{exclusivity} \) condition for \(D \) and \(P \) relations
- \(\textit{‘nontangling’} \) condition
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations

\[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \notin D \land [y,x] \notin D) \]
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x,y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \iff ([x,y] \not\in D \land [y,x] \not\in D) \]

- **‘nontangling’** condition
 \[\forall w,x,y,z \in N \text{ holds: } ([w,x] \in P \land [w,y] \in D \land [x,z] \in D) \Rightarrow ([y,z] \in P) \]
Phrase structure tree (relation P)

- **exclusivity** condition for D and P relations
 \[\forall x, y \in N \text{ holds: } ([x, y] \in P \lor [y, x] \in P) \iff ([x, y] \not\in D \land [y, x] \not\in D) \]

- **‘nontangling’** condition
 \[\forall w, x, y, z \in N \text{ holds: } ([w, x] \in P \land [w, y] \in D \land [x, z] \in D) \Rightarrow ([y, z] \in P) \]

$T = \langle N, D, Q, P, L \rangle$ phrase structure tree
- $\forall x, y \in N$ siblings $\Rightarrow [x, y] \in P$
- the set of its leaves is totally ordered by P
Phrase structure tree

Pros

• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar
Phrase structure tree

derivation history / ‘closeness’:

…often sleeps in his study
Phrase structure tree

Pros

• derivation history / ‘closeness’ of a complementation
• coordination, apposition
• CFG-like
• derivation of a grammar

Contras

• complexity (number of non-terminal symbols)
• complement (‘two dependencies’) *přiběhl bos* [(he) arrived barefooted]
• free word order discontinuous ‘phrases’
• non-projectivity
Phrase structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?
Po babiččině příjezdu půjdou rodiče do divadla. [After grandma's arrival the parents will go to the theatre.]
Phrase structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?
Phrase structure tree

discontinuous ‘phrases’: solution for English

Mary will eat bread.

What will Mary eat?

\[
\begin{align*}
S & \rightarrow NP \rightarrow N \rightarrow Mary \\
& \quad \rightarrow VP \rightarrow AuxV \rightarrow will \\
& \quad \rightarrow V \rightarrow eat \\
& \quad \rightarrow N \rightarrow bread \\
S' & \rightarrow NP \rightarrow what \\
& \quad \rightarrow AuxV \\
& \quad \rightarrow V \rightarrow eat \\
& \quad \rightarrow N \rightarrow trace_i \\
S & \rightarrow NP \rightarrow AuxV \rightarrow will \\
& \quad \rightarrow VP \rightarrow V \rightarrow eat \\
& \quad \rightarrow NP \rightarrow trace_i
\end{align*}
\]
Corpora with phrase structure trees

• Penn Treebank (1995)
 http://www.cis.upenn.edu/~treebank/
 Penn Arabic Treebank, Penn Chinese Treebank
• International English Treebank (ICE)
 http://ice-corpora.net/ice/index.htm
• Paris 7
 http://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-fr.php
• Szeged Treebank 2.0
• many others
Dependency tree
My brother often sleeps in his study.

Dependency tree (definition)

\[T = \langle N, D, Q, WO, L \rangle \]

\langle N, D \rangle \ldots \textit{tree} (as a data structure)
Q \ldots \text{lexical and grammatical categories}
L \ldots \text{labeling function } N \rightarrow Q
D \ldots \text{oriented edges } \sim \text{ relation on lex. and gram. categories}

\textit{‘dependency’ relation}
WO \ldots \text{relation on } N \sim \text{ (strong total ordering on } N) \ldots

\textit{word order}

PDT – Intro Lopatková
Dependency tree

Pros

• economical, clear
 (complex labels, ‘word’~ node)
• free word order
• head of a phrase

Contrasts

• no derivation history / 'closeness'
• coordination, apposition
• complement

PDT – Intro

Lopatková
Dependency tree

discontinuous ‘phrases’: no problem

Mary will eat bread.
What will Mary eat?

[Dependency tree diagram]
Po babiččině příjezdu půjdou rodiče do divadla.
[After grandma's arrival the parents will go to the theatre.]
Corpora with dependency trees

- PropBank (1995)
- family of Prague dependency treebanks: Czech, Arabic, English
 http://ufal.mff.cuni.cz/pdt.html
- HamleDT project (from 2012)
 http://ufal.mff.cuni.cz/hamledt
- Universal Dependencies
 http://universaldependencies.org/
- Danish Dep. Treebank
 http://code.google.com/p/copenhagen-dependency-treebank/wiki/CDT
- Finnish: Turku Dependency Treebank
 http://bionlp.utu.fi/fintreebank.html
- Negra corpus
 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html
- TIGERCorpus
 http://www.ims.uni-stuttgart.de/projekte/TIGER/
- SynTagRus Dependency Treebank for Russian
Dependency and non-dependency relations
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• long discussion, number of linguistic criteria
 i.e., each complete subtree must be a “constituent“, i.e., it must allow for several constructions like topicalization, proform substitution,;

Mary will eat bread.

Topicalization:
… and eat Mary certainly will.

Proform substitution:
Mary will do so. (do=eat)

Answer fragment:
What will Mary do? Eat.

VP-ellipsis:
Peter will eat and Mary will, too.

⇒ lexical verb should be a dependent
Dependency and non-dependency relations

edges ~ **dependency relations** (prototypically)
- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- PDT criterion: possible reduction
 ... dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation
• governing/modified unit (head) – dependent/modifying unit (modifier)
• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)

• endocentric constructions … OK

 malý stůl → stůl
 přišel včas → přišel
 (přišel) velmi brzo → (přišel) brzo

 small table → table
 he came in time → he came
 (he came) very soon → (he came) soon
Dependency and non-dependency relations

edges ~ dependency relations (prototypically)

• dependency relation: binary relation

• governing/modified unit (head) – dependent/modifying unit (modifier)

• PDT criterion: possible reduction
 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)

 • endocentric constructions … OK

 • exocentric constructions … principle of analogy on word classes

Prší. [(It) rains.] … ∃ subjectless verbs
⇒ Král zemřel. [The king died.] … a verb rather than a noun is the head

The girl painted a bag. → The girl painted. … ∃ objectless verbs
⇒ The girl carried a bag … an object is considered as depending on a verb
edges ~ *dependency relations* (prototypically)

- dependency relation: binary relation
- governing/modified unit (head) – dependent/modifying unit (modifier)
- PDT criterion: possible reduction

 … dependent member of the pair may be deleted
 while the distributional properties are preserved (→ correctness is preserved)

 - endocentric constructions … OK
 - exocentric constructions … *principle of analogy* on word classes

PLUS technological considerations
Dependency and non-dependency relations

BUT also other relations:

coordination … "multiplication" of a single syntactic position

- different referents
- coordination of sentence members / sentences

 My sister Mary and John came late.
 Mary came in time but John was late.
 I can't leave since it hasn't stopped raining yet.
 Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded

 nice and romantic towers and castles
 krásné a romantické hrady a zámky
Dependency and non-dependency relations

BUT also other relations:

coordination … "multiplication" of a single syntactic position
- different referents
- coordination of sentence members / sentences

 My sister Mary and John came late.
 Mary came in time but John was late.
 I can't leave since it hasn't stopped raining yet.
 Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded
 nice and romantic towers and castles
 krásné a romantické hrady a zámky

apposition … "multiplication" of a single syntactic position
- identical referent
 Charles IV, Holy Roman Emperor
 The Hobbit, or There and Back Again
Dependency and non-dependency relations

BUT also other relations:

- **coordination** … "multiplication" of a single syntactic position
 - different referents
 - coordination of sentence members / sentences

 My sister Mary and John came late.

 Mary came in time but John was late.

 I can't leave since it hasn't stopped raining yet.

 Nemohu odejít, neboť ještě nepřestalo pršet.

- coordination may be embedded

- **apposition** … "multiplication" of a single syntactic position
 - identical referent

 Charles IV, Holy Roman Emperor

 The Hobbit, or There and Back Again

→ necessary to enrich the data structure
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
Coordination/apposition in dependency trees

PDT 2.0:

connecting constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
Coordination/apposition in dependency trees

PDT 2.0:

'connecting constructions' ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member

```
men
Thin Atr

soldiers
Sb_Co

came
Pred

and
Coord

young
Atr

Sb_Co

Atr
```
Coordination/apposition in dependency trees

PDT 2.0:

'connecting' constructions ~ coordination, apposition (, OPER)

specific types of nodes and edges:

- **connecting node** (= node for coordinating / appositing conjunction)
- **effective parent** (= node for governing node, i.e. node modified by the whole construction, 'linguistic parent')
- **members of a connecting construction** (= nodes that are coordinated / are in apposition)
 - is_member
- **effective child(ren)** … modification(s) of the individual member of the connecting construction + common/shared modifier(s)

- ‘pass-through’ nodes
The center will gather and distribute the information on tenders and state commissions in this country as well as in abroad.
Coordination/apposition in dependency trees

PDT 2.0:
- embedded connecting constructions → recursivity

TrEd (Tree Editor, Pajas):
- functions GetEChildren, GetEParents
Coordination/apposition in dependency trees

Mel'čuk (1988):

‘grouping’ (G) … shared modification vs. modification of a single member

Hubení ((mladí muži), vojáci a starci)
[Thin young men, soldiers and old-men]
Coordination/apposition in dependency trees

Universal Dependencies (2014):

(Slides stolen from Daniel Zeman)
Dependency and non-dependency relations

other non-dependency relations in PDT:

• technical root – effective root of a sentence
• syntactically unclear expressions
 rhematizers; sentence, linking and modal adverbial expressions, conjunction modifiers
• list structures
 names, foreign expressions
• phrasemes