
ON THE COMPLEXITY OF REDUCTIONS
BY RESTARTING AUTOMATA

Martin Plátek

(A)
Markéta Lopatková

(A)

Dana Pardubská

(B)

(A)Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Prague, Czech Republic

martin.platek@mff.cuni.cz, lopatkova@ufal.mff.cuni.cz

(B)Comenius University in Bratislava,
Faculty of Mathematics, Physics and Informatics,
Mlynská dolina, 842 48 Bratislava, Slovak Republic

pardubska@dcs.fmph.uniba.sk

Abstract
The paper provides linguistic observations as a motivation for a formal study of analysis by
reduction (AR). It concentrates on a study of the whole mechanism through a class of restarting
automata with meta-instructions using pebbles, delete, and shift operations (DS-automata). The
complexity of DS-automata is naturally measured by the number of deletions, and the number
of word order shifts used in a single meta-instruction. We study reduction languages, backward
correctness preserving AR, correctness preserving AR, and show unbounded hierarchies (scales)
for various classes of reduction languages by the same finite witness languages. The scales make
it possible to estimate relevant complexity issues of analysis by reduction for natural languages.

1 Introduction

Analysis by reduction (AR) plays an important role in lexicalized syntax ([1]) of many natural
languages. It consists in a stepwise simplification of a sentence, which serves for identifying the
syntactic structure of the sentence, and the corresponding lexical categories as well.

We study formal models for the analysis by reduction, where a delete operation may be ac-
companied with a word order shift, an operation reflecting the word order freedom of natural
languages [3]. Section 2 provides linguistic motivation and an informal description of the pro-
cess.

(A)The paper reports on the research supported by the grants of GAČR No. P202/10/1333, and No.
P103/10/0783.
(B)The third author was supported by the Slovak Grant Agency for Science (VEGA) under the contract No.
1/0979/12.

208 Martin Plátek, Markéta Lopatková, Dana Pardubská

The core sections, sections 3 and 4 provide a formal study of the whole mechanism through a
refined class of restarting automata with meta-instructions (DS-automata), and their descrip-
tional complexity based on the number of deletions, and on the number of word order shifts
used within a single meta-instruction. With the help of these measures, we are able to show
that several features of natural languages (e.g., Czech) can be simply described using AR.

Four types of (in)finite sets defined by DS-automata in [6] are relevant: (basic) languages on
word forms marked with their (linguistic) categories, sets of reductions on basic languages
(reduction languages), proper languages on unmarked word forms, and categorial languages on
pure categories. The equivalence of proper languages can be considered as the weak equivalence
(close to the weak equivalence by formal automata and grammars), and the equivalence between
reduction languages as the (linguistically finest) strong equivalence between DS-automata. This
paper enhances the technical results from [6] with results about backward correctness preserving
AR, correctness preserving AR, and some new results about reduction languages.

Formal parts of this article are based on descriptional and editing complexity of selected classes
of reduction languages. We focus on those aspects of complexity of meta-instructions that
are shown by finite witness (reduction) languages. The obtained results give the theoretical
background for the incremental transfer from finite (linguistic) observations (as in [3]) to ade-
quate, fully lexicalized, formal descriptions of (potentially) infinite natural languages based on
sentence reductions.

2 Analysis by Reduction

(Surface) analysis by reduction (AR) helps one to identify a sentence syntactic structure and the
corresponding grammatical categories of an analyzed language. AR is based upon a stepwise
simplification of an analyzed sentence, see [3]. It defines possible sequences of reductions in the
sentence – each step of AR consists in deleting at least one word of the input sentence (and thus
shortening the sentence); here, we allow deleting to be accompanied by a shift of (a) word(s)
to another position(s) in the sentence.

Let us stress the basic constraints imposed on reduction steps of surface AR:

(i) individual words (word forms), their morphological characteristics and/or their syntactic
categories must be preserved in the course of AR;

(ii) a grammatically correct sentence must remain correct after its simplification;

(iii) shortening of any reduction would violate the principle of correctness

(iv) a sentence which contains a correct sentence (or its permutation) as a subsequence, must
be further reduced;

(v) specially, an application of the shift operation is limited only to cases when a shift is
enforced by the correctness preserving principle (ii), i.e., simple deletions would result in
an incorrect word order.

Note that the possible order(s) of reductions reflect(s) dependency relations between individual
sentence members, i.e., relations between governing and dependent nodes, as it is described

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 209

in [7].

Let us illustrate the basic principles of AR on the following example. The sentence undergoing
AR is represented as a string of word forms (words and punctuation) enriched with their
(disambiguated) lexical, morphological and syntactic categories.1

Example 2.1
(1) Petr.Sb se.AuxT boj́ı.Pred o.AuxP otce.Obj..AuxK

Peter – REFL – worries – about – father
‘Peter worries about his father.’

Petr.Sb se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT ..AuxK

Petr.Sb se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT o.AuxP otce.Obj ..AuxK

delete delete

shift delete

shiftdelete

Figure 1: The schema of AR for sentence (1).

The analysis by reduction of sentence (1) can be summarized with the scheme in Fig.1.

Our example sentence can be simplified in two ways (for simplicity, we do not make distinction
between upper and lower case letters at the beginning of the sentence; when deleting and shifting
individual word forms, also corresponding categories are deleted and shifted, respectively):
(i) either by deleting the prepositional group o otce ‘for father’ (according to the correctness
constraint on the simplified sentence (ii), the pair of word forms must be deleted in a single
step; see the left branch of the scheme);
(ii) or by deleting the subject Petr (the right part of the scheme); however, this simplification
results in the incorrect word order variant starting with the clitic se (such position of a clitic
is forbidden in Czech); thus the shift operation is enforced !shift Boj́ı se o otce. ‘(he) worries
about his father.’.
As these possible reductions are independent of each other, we can conclude that the words
Petr and o otce ‘for father’ are independent – in other words, both of them depend on (or
modify) some word(s) remaining in the simplified sentence, i.e., the verb and its clitic boj́ı se
‘(he) worries’.

Then, the reduction proceeds in a similar way in both branches of AR until the minimal correct
simplified sentence ! Boj́ı se. ‘(He) worries.’ is obtained. This sentence cannot be further
reduced.

1For the simplicity, only original word forms (as they appear in the sentence) and their syntactic categories
(like predicate (Pred), subject (Sb), object (Obj), auxiliary words (AuxT, AuxP)) are displayed in the examples.
For a more detailed description, see [7].

210 Martin Plátek, Markéta Lopatková, Dana Pardubská

As was stated above, the order of reductions reflects the dependency relations, which are usually
encoded in the form of a so called dependency tree, see [4]. Informally, the words are ‘cut from
the bottom of the tree’; i.e., a governing node must be preserved in a simplified sentence until
all its dependent words are deleted.2

Petr.Sb

bojí.Pred

otce.Obj
se.AuxT

o.AuxP ..AuxK

Figure 2: The dependency tree of sentence (1).

The following two sentences illustrate the fact that – despite relatively free word-order in Czech
– a meaning of a Czech sentence may depend on word-order (at least for certain phenomena).
Consequently, some additional constraints concerning word order must be put on the corre-
sponding analysis by reduction.

Example 2.2
(2) Petr.Sb se.AuxT boj́ı.Pred otce.Obj matky.Atr (svého) souseda.Atr..AuxK

Peter – REFL – is scared of – fathergen – mothergen – (his) neighborgen
‘Peter is scared of the father of the mother of (his) neighbor.’

Example 2.3
(3) Petr.Sb se.AuxT boj́ı.Pred souseda.Obj otce.Atr (své) matky.Atr..AuxK

Peter – REFL – is scared of – neighborgen – fathergen – (his) mothergen
‘Peter is scared of the neighbor of the father of his mother.’

The meaning of the previous two similar sentences is obviously di↵erent (both sentences are
correct despite the word order changes). The di↵erence is caused by the di↵erent order in the
sequence of nouns in genitive case. In such cases, we set additional technical constraints on
the analysis by reduction which allows AR to preserve a meaning of the simplified sentence:
individual genitives are obligatory deleted in the prescribed direction from the right to the left.

Using this additional constraint, the reduction (of the second part of) sentence (2) obligatory
starts with deleting the word (svého) souseda ‘(his) neighbor’; then, deletion of the word matky
‘mother’ proceeds; finally, the word otce ‘father’ is reduced. On the other hand, in (3) analysis
by reduction starts with (své) matky ‘(his) mother’, then otce ‘father’ is reduced and AR is
completed with deletion of the word souseda ‘neighbor’. In both sentences, the word Petr ‘Peter’
can be deleted any time in the course of the analysis by reduction; however, this reduction
enforces the shift operation correcting the resulting word order (as (ii) in sentence (1), right
branch of the scheme).

2As described in the cited article, the relation between the preposition and its ‘head’ noun as well as the
verb and this type of clitic is rather technical from our point of view as they must be reduced in a single step,
despite being represented as two nodes in the dependency tree. Here we adhere to the practice used in the large
collection of linguistically annotated data, the Prague Dependency Treebank [2]). In other words, AR makes it
possible to identify the dependency tree for sentence (1):

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 211

The change in the meaning in (2) and (3) is reflected in the corresponding dependency trees,
see Fig. 3 and 4.

Petr.Pred matky.Atr
otce.Obj

(svého)�souseda.Atr

bojí.Pred

se.AuxT
..AuxK

Figure 3: The dependency tree of sen-
tence (2).

Petr.Pred
otce.Atr

souseda.Obj

(své)�matky.Atr

bojí.Pred

se.AuxT
..AuxK

Figure 4: The dependency tree of sen-
tence (3).

3 Automata with Delete and Shift Operations

In what follows, � denotes the empty word, N+ and N denote the set of positive and the set of
nonnegative integers, respectively.

In order to model the analysis by reduction with shifts, we introduce a restarting automaton
that is allowed to use a limited number of pebbles, and that can perform several deletions
and shifts within one meta-instruction – a DS-automaton. The DS-automaton is a refinement
of the so called simple restarting sRL-automaton in [7]; the automaton is enriched with the
shift operation here, and with a composed basic alphabet, which is important for analysis by
reduction.

The class of DS-automata is introduced for modeling (more advanced) AR – these automata
allow for checking the whole input sentence (and marking selected words with pebbles) prior to
any changes. It resembles a linguist who can read the whole sentence first, and who can reduce
the sentence in a correct way. To enable simulation of various orders of reductions, we choose
a nondeterministic model of the automaton.

A DS-automaton M = (⌃p,⌃c,�, c, $, R,A, k) is (in general) a nondeterministic machine with
a finite proper alphabet ⌃p (modeling individual word forms), an alphabet of categories ⌃c,
and a composed tape (or basic) alphabet � ✓ ⌃p ⇥ ⌃c. The DS-automaton M works on a
flexible tape (i.e., a string of symbols from �) delimited by the left sentinel c and the right
sentinel $ (c, $ 62 �). M is controlled by finite sets of restarting meta-instructions R and
accepting meta-instructions A, respectively, and makes use of k pebbles p1, · · · , pk.

To realize a projection from �⇤ to ⌃⇤
p and ⌃⇤

c , respectively, we define two homomorphisms, a
proper homomorphism hp : � ! ⌃p and a categorial homomorphism hc : � ! ⌃c in the obvious
way: hp([a, b]) = a, and hc([a, b]) = b for each [a, b] 2 �.

Each computation of a DS-automaton consists of several phases called cycles, and a last halting
phase called tail. In each cycle, the automaton performs three passes through the tape with
symbols from �: during the first pass, it marks certain symbols of a processed sentence with
pebbles according to some meta-instruction I; then during the second and third passes, it per-
forms the shift and delete operations, respectively, as described by the chosen meta-instruction

212 Martin Plátek, Markéta Lopatková, Dana Pardubská

I; the operations are applied (only) on the symbols marked by pebbles. In each (accepting) tail,
the automaton – according to a selected meta-instruction Iacc from A – halts and accepts the
analyzed sentence. In accordance with the linguistic motivation, the meta-instructions check
only the categorial part (⌃c part) of tape (basic) symbols from �.3

Restarting meta-instructions. Each cycle of the DS-automaton M is controlled by a single
restarting meta-instruction I 2 R of the form

I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) (1)

where:

• each Ei, 0  i  s is a regular language over ⌃c [{�}, Ei is called the i-th context of I;

• ai 2 ⌃c [{c} (for 1  i  s  k) indicates that each ai is marked with pebble pi;

• Osh = o1, · · · , ops , oj 2 {sh[i, l] | 1  i, j  s, i 6= l}, is a sequence of shifting operations
performed in the second phase: if oj = sh[i, l] then it shifts the tape symbol marked with
pi to the position behind the symbol with pl;

• Od = o1, · · · , opd , oj 2 {dl[i] | 1  i  s}, is a sequence of delete operations performed in
the third phase: if oj = dl[i] then it deletes the tape symbol marked by pi;

• c is neither deleted nor shifted within I.

Let us note that E0 = � and a1 = c correspond to a pebble p1 put on the left sentinel c. We
require an ‘exclusivity’ of the shift operation: each symbol ai can be shifted only once (as a
maximum); moreover, if ai is shifted then it cannot be deleted within the same meta-instruction.
Formally, if Osh contains the shift operation sh[i, l] for some i then no other sh[i, r] can be in
Osh; moreover, Od cannot contain the dl[i] operation.

Each computation of M on the input w 2 �⇤ starts with the tape inscription cw$. After the
nondeterministic choice of a cycle C realizing the guessed restarting meta-instruction I, M
nondeterministically marks tape symbols b1, . . . , bs by pebbles in accordance with I. Thus, it
finds a factorization w = v0b1v1b2 . . . vs�1bsvs, 0  i  s, 1  j  s such that hc(vi) 2 Ei,
hc(bj) = aj in the first pass. Then, M applies the implied sequence of shifts Osh during the
second pass, and the implied sequence of deletions during the third pass. If the factorization
is not found within the first pass, the automaton gets stuck (and thus it rejects w). Notice
that due to regularity of individual Ei’s the instruction I can nondeterministically be identified
within one pass over cw$.

At the end of each cycle, the Restart operation removes all pebbles from the new tape inscription
w0 and places the head on the left sentinel. We write w `I w0, hc(w) `c

I hc(w0), and hp(w) `p
I

hp(w0).

Remember that none of the sentinels can be deleted/shifted and that M is required to execute
at least one delete operation during a (restarting) cycle.

If no further cycle is performed, each accepting computation necessarily finishes in a tail per-
formed according to one of the accepting meta-instructions.

3When considering only categorial symbols as a context we avoid both the problem of data sparsity and the
problem of a very large alphabet ⌃p (i.e., lexicon with hundred of thousands word forms for a natural language).

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 213

Accepting meta-instructions. Tails of accepting computations are described by a set of
accepting meta-instructions A, each of the form: Iacc = (a1 . . . as,Accept), where ai are symbols
from ⌃c.

The tail performed by the meta-instruction Iacc starts with the inscription on the tape cz$; if
hc(z) = a1 · · · as, then M accepts z (we write z `Iacc Accept), and the whole computation is
accepted as well. Otherwise, the computation halts with rejection.

We denote by u `M v the reduction of u to v byM performed during one cycle ofM (that begins
with the tape inscription cu$ and ends with the tape inscription cv$) and by `⇤

M the reflexive
and transitive closure of `M . We say that u1, u2, . . . , un,Accept is an accepting computation of
M if u `M u1, u1 `M u2, · · · , un�1 `M un, un `M Accept. We can also write hc(u) `c

M hc(v),
and hp(u) `p

M hp(v) if u `M v holds.

A string w 2 �⇤ is accepted by M , if w `⇤
M u for some word u such that (hc(u),Accept) 2 A. By

L(M) we denote the language consisting of all words accepted by M ; we say that M recognizes
(accepts) the basic language L(M). Let L(M, p) = {hp(w) 2 ⌃⇤

p | w 2 L(M)}. We say that
L(M, p) is the proper language of M . Let L(M, c) = {hc(w) 2 ⌃⇤

p | w 2 L(M)}. We call
L(M, c) categorial language of M .

Since the number of reductions performed within an accepting computation is of (linguis-
tic) interest, we denote by L0(M) the set of sentences accepted directly by accepting meta-
instructions; similarly, Ln(M) denotes the language of all sentences accepted by at most n
cycles of M . Obviously, L(M) =

S
n Ln(M).

Further, we define the reduction language of M as RED(M) = {u ! v | u `M v, u, v 2 L(M)},
and REDn(M) = {u ! v 2 RED(M) | v 2 Ln�1(M)}. Note that Ln(M), and REDn(M) are
finite for any n 2 N.
The notations Ln(M, p), Ln(M, c) denote the proper and categorial variants of Ln(M), re-
spectively. Moreover, the notations RED(M, p), RED(M, c) denote the proper and categorial
variants of RED(M), respectively.

Backward Correctness Preserving Property (bcp) Realize, that each meta-instruction I
of a DS-automatonM is backward correctness preserving : (v 2 L(M) and u `I v)) (u 2 L(M)) .
We will see that (bcp) plays a crucial role in the study of analysis by reduction.

We naturally suppose that any restarting meta-instruction of M can be associated with some
reduction from RED(M). Two conditions formulated below, map- and mrp- properties reflect
the linguists’ preference on as simple reductions as possible.

Minimal Accepting Property (map-): If w 2 L0(M), then neither any proper subsequence
of w nor any permutation of such a subsequence belongs to L0(M).

Minimal Reduction property (mrp-): Let u `M v for a cycle C realizing the restarting
meta-instruction controlled by the sequence of operations O = OshOd = o1, o2, · · · , op. Let ṽ
be obtained from u by a (new) restarting meta-instruction controlled by a proper subsequence
Õ of O. Then ṽ /2 L(M). (In a sense, the meta-instructions are minimal as none of the
shifts/deletions performed by u ! v can be left out in order to obtain a reducible or acceptable

214 Martin Plátek, Markéta Lopatková, Dana Pardubská

sentence.)

If M fulfils the conditions map-, mrp-, then it is said that M is normalized.

Correctness Preserving Property (cp)We say that a meta-instruction I of a DS-automaton
M is correctness preserving if (u 2 L(M) and u `I v)) (v 2 L(M)) . We say that M is cor-
rectness preserving if all its meta-instructions are correctness preserving.
Realize that any DS-automaton M which for any v 2 L(M) defines at most one reduction, and
for v 2 L0(M) defines no reduction, is correctness preserving. On the other hand there are
DS-automata which are not correctness preserving. The correctness preserving property (cpp)
ensures in general a transformation to a weakly equivalent deterministic restarting automaton
(e.g., see [5]). Note that the correctness preserving property ensures an adequate simulation of
manual analysis by reduction with the help of DS-automata.

While the definition of the meta-instruction of DS-automata provides a tool for the description
of individual syntactic phenomena of natural languages, we will choose complexity measures of
meta-instructions that will help us to classify the complexity of such phenomena.

4 Results

The focus of the paper is on the (global) power of DS-automata and the complexity of individual
meta-instructions. In particular, several results from [6] are shown to hold also for correctness
preserving DS-automata and new hierarchies for reduction languages are formulated. For hi-
erarchies, we consider the number of pebbles, deletions and/or shifts in individual restarting
meta-instructions.

We use particular abbreviations for automata/languages with restrictions on these complexity
measures. In particular, prefix DS- is used to identify the delete-shift automata without any
restriction, and D- is used for automata with deletions only. Further, the prefix (k)- is used
to indicate that at most k pebbles are available in one meta-instruction. As a special case,
(0)- means that the automaton contains only accepting meta-instructions and thus accepts in
tail computations only. We use the syllable d(i)- for automata with at most i deletions in one
meta-instruction and s(j)- for automata with at most j shifts in a single meta-instruction. The
basic requirements for normalized reduction languages are denoted by map-, and mrp-, and cp-
means correctness preserving property. The prefix nr- is used for normalized automata and
languages.

For each type X of restarting automata, we use L(X), LP(X), LC(X) to denote the class of all
basic, proper and categorial languages, recognizable by automata of this type. Analogously,
RED(X) denotes the class of all reduction languages of these automata, and REC(X), REP(X)
mean classes of categorial and proper variants of reduction languages. Further, Ln(X), LPn(X),
LCn(X) denote the classes of basic, proper, and categorial languages defined by at most n
reductions of X-automata; REDn(X) denotes analogical notion for reduction languages. Proper
inclusions are denoted by ⇢.

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 215

Here, FIN, REG, (D)CFL, and CSL are used for classes of finite, regular, (deterministic) context-
free, and context-sensitive languages, respectively, and FINR(X), REGR(X), and (D)CFR(X), are
used for the classes of reduction languages defined by X-automata (where X 2 {D,DS}), for
which their categorial (and basic) languages are from FIN, REG, and (D)CFR, respectively. We
can easily see that FINR(X) ✓ REGR(X) ✓ DCFR(X) ✓ CFR(X) ✓ RED(X) for X 2 {D,DS}.
We will show that all inclusions are in fact proper.

Consider shifts and deletions being the only operations allowed on (a set of) strings. The delete
operation is determined by the place of the deletion. By shift we mean a transfer of a symbol
within a string from one position in the string to a di↵erent one. Based on these operations,
we can naturally define the partial order �L on the set L of strings. We say that u DS-precedes
v in L and write u �L v i↵:

1. u, v 2 L, |u| > |v|;
2. v is a permutation of a proper subsequence of u that results from the application of a

sequence O of shifts and deletions on u; u
O! v;

3. the application of any proper subsequence O0 of the sequence of operations O on u would
end up with a word v0 such that v0 /2 L.

By �+
L we denote the transitive, non-reflexive closure of �L. Obviously, for any DS-automaton

M , u ! v 2 RED(M) implies u �+
L(M) v, and hp(u) �+

L(M,p) hp(v).

The partial order �L naturally defines the set L0
�L

of minimal words in L:
L0
�L

= {v 2 L | ¬9u 2 L : v �L u}, and further by induction: Ln+1
�L

= {v 2 L | 9u 2 Ln
�L

: v �L u}.
In what follows, we will alternatively use �L as abbreviation for a set of DS-precedences
{u ! v | u �L v}. The meaning will always be clear from the context.

For w 2 L we denote by �(w) any sequence �(w) = w0, w1, . . . , wn such that w = w0,
wi�1 �L wi, 1  i  n and wn 2 L0

�L
. We call �(w) the �L-sequence of w, and write w �+

L wn.
Notice that a �L-sequence of w needs not be uniquely given by L,w.

Note that every pair u, v with u �L v implicitly defines some (one or more) sequences O of

deletions and shifts that transforms u to v (u
O! v). For technical reasons, we will only work

with sequences of minimal length and will, for every pair u �L v, denote one of them as O(u, v).
Since the number of deletions and shifts in O(u, v) is determined unambiguously by the length
of it, we denote by S(u �L v) the number of shifts, and by D(u �L v) the number of deletions
of O(u, v). Let us stress that the minimal number of shifts and deletions needed to transform
u to v is a kind of edit-distance between words u, v. Not surprisingly, it will be shown that
these numbers are related to the numbers of deletions and shifts used in meta-instructions of
the corresponding DS-automaton. For that, we introduce several delete and shift complexities.

By D!(L) = max{D(u �L v); u, v 2 L} we denote the delete upper bound of L (or of �L).
Analogously, S!(L) = max{S(u �L v); u, v 2 L} denotes the shift upper bound of L.

For any word w and its �L-sequence �(w) = w0, w1, . . . , wn we define
D(�(w)) = maxi{D(wi�1 �L wi)}; further, we define the delete lower bound of w with respect
to L by D`(L,w) = min�(w){D(�(w))}. The shift lower bounds S(�(w)) and S`(L,w) are

216 Martin Plátek, Markéta Lopatková, Dana Pardubská

defined analogously. Further, let L1 ✓ L2. The technically useful delete and shift lower bounds
of L1 with respect to L2 are defined in the following way: D`(L1, L2) = maxw2L1{D`(L2, w)}
and S`(L1, L2) = maxw2L1{S`(L2, w)}.

We call the DS-automaton reduced if each of its meta-instructions uses exactly as many pebbles
as are needed to realize the involved sequence of operations.

The reduction languages correspond to possible steps by which the individual sentences were
reduced until they fell to a finite set of correct words. The number of steps by which an
individual w is reduced to one accepted in a tail computation can in fact vary; the reduction
can be detailed or can ”skip” some intermediate steps. Thus, the reduction languages are in
general only an approximation of the linguistic notion of an analysis by reduction. A more
precise definition of surface analysis by reduction follows. It reflects the linguists interest in
the formulation of as simple as possible reduction rules that within a reduction process allow
as large as possible sets/sequences of correct sentences.

Refined variants of AR. Let M be a DS-automaton. We say that RED(M) is a bcp-analysis
by reduction (bcp-AR) of L(M) (or M) if L0(M) = L0

�L(M)
, and RED(M) is a subset of �L(M).

If M is correctness preserving, then (bcp-AR) RED(M) is a cp-analysis by reduction (cp-AR)
of L(M).

Our approach formalizes the linguistic e↵ort to gradually prepare sets of categories for cor-
rectness preserving analyzes by reduction. A close relation between bcp-analysis by reduction,
the complexity of meta-instructions of nr-DS-automata and the above defined upper and lower
bounds of DS-complexity are formulated in Theorem 4.1 which follows from a similar theorem
from [6] and its proof.

Theorem 4.1. Let M be a reduced nr-s(i)-d(j)-DS-automaton. Then the following holds:

1. RED(M) is a bcp-AR of M ;

2. Ln(M) ✓ Ln
�L(M)

;

3. [6] S`(L(M), L(M))  i  S!(L(M)), and D`(L(M), L(M))  j  D!(L(M));

4. [6] (L ✓ L(M) and r  D`(L,L(M))� 1) implies L(M) /2 L(map-d(r)-DS);

5. [6] (L ✓ L(M) and r  S`(L,L(M))� 1) implies L(M) /2 L(map-s(r)-DS).

Note that assertions 2,3,4 and 5 hold also for categorial languages.

The above theorem is often used for separation results. Notice that without the nr-conditions
the assertions 1. and 2. of Theorem 4.1 would not hold.

Let M be a DS-automaton and RED(M) its bcp-analysis by reduction ; then it is not hard to
see that M is an nr-DS-automaton. On the other hand, reduction languages can substantially
di↵er from DS-precedences and bcp-analyzes by reductions in case of unrestricted DS-automata.

Consider the language L1 = {anbn|n 2 N+}. For any j 2 N+ a D-automaton Mj can easily
be constructed such that L(Mj, c) = L1, L0(Mj, c) = {anbn|1  n  j}, and RED(M1, c) =
{anbn ! an�jbn�j|n > j}. Realize that L0

�L1
= {ab} and �L1= {anbn �L1 an�1bn�1|n > 1}

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 217

implying that, for j > 1, automaton Mj categorially accepts words ab, a2b2, . . . , ajbj in an ac-
cepting tail. Obviously, L0(Mj, c) di↵ers from L0

�L1
illustrating that we are able to construct

arbitrarily many di↵erent D-automata categorially recognizing L1 with mutually di↵erent re-
duction languages which do not create a bcp-analysis by reduction of these automata.

Classes of AR. We use cp-AR(X) and (bcp-AR(X)) to denote the class of all (b)cp-AR of
DS-automata of the type X. Further, (b)cp-ARn(X) denote the classes of (b)cp-AR defined
with at most n reductions of X-automata.

4.1 On the Power of DS-Automata and Their Normalization

This subsection demonstrates the power of DS-automata by categorial, proper and reduction
languages, and their relation to the Chomsky hierarchy. It is therefore natural that presented
separation results are (and have to be) based on infinite witness languages. As shown in Corol-
lary 4.3, cp-map-D-automata are powerful enough for categorial recognition of deterministic
CF-languages and proper recognition of all CF-languages. Theorem 4.2 and Corollary 4.3 are
stronger variants of results from [6]. With almost the same proofs the correctness preserving
property of simulating automata can be achieved.

Theorem 4.2. Let X 2 {DS, D, cp-DS, cp-D}. Then LP(X) = LP(nr-X).

Corollary 4.3. DCFL ⇢ LC(cp-nr-D), CFL ⇢ LP(cp-nr-D), REP(DS) = REP(nr-DS)

Remark. Realize, that the above given results document the usefulness of the model, as the
linguistic requirement of normalization preserves the recognizing power of DS-automata as well
as analysis of proper languages. The correctness preserving property and regular languages are
dealt with in the next theorem.

Theorem 4.4. 1. Let M be a DS-automaton with L(M, c) that is a regular language. Then
there is a cp-DS-automaton M1 such that RED(M) = RED(M1), i.e., M1 is strongly
equivalent to M .

2. For any regular language L there is n 2 N and a cp-D-automaton M such that L = L(M, c),
RED(M) is a cp-AR of M , where for any u 2 L(M, c), |u| > n there is u ! v 2
RED(M, c) such that u = u1u2, v = v1u2, where u1  n.

3. Let M be a cp-D-automaton, and n 2 N such that for any u 2 L(M, c), |u| > n there is
u ! v 2 RED(M, c) such that u = u1u2, v = v1u2, where |u1|  n. Then L(M), L(M, c)
are regular.

Proof. At first we outline the proof of the first assertion. Since one transition over the analyzed
word is su�cient for recognition of regular languages, the applicability of a candidate meta-
instruction I can easily be combined with the computation of a DFA A recognizing L(M, c).
As a result, each meta-instruction I of M can be transformed to a correctness preserving I1 of
M1 such that I1 fulfills both the I and A requirements.

218 Martin Plátek, Markéta Lopatková, Dana Pardubská

Outline of the proof of 2. Let us suppose that A is a deterministic reduced minimal finite
automaton recognizing L, n be the number of its states. Every regular language L(A) can
be seen as a finite set of cycle free words F (A) and a finite set of cycles Cyc(a) of length at
most n such that every word w 2 L(A) either belongs to F (A) or can gradually be reduced by
replacement of the leftmost y 2 Cyc(A) by � to some v 2 F (A). Straightforward simulation
of described process results in bcp-D-automaton, combination with assertion 1 gives cp-D-
automaton whose reduction language might not form an AR. Thus, let us outline how the
cp-D-automaton M should reduce in one cycle a word w 2 L, |w| > n. Let w = xyz, where
y corresponds to the leftmost cycle in a computation of A on w. Then M will substitute y
by some of its shortest scattered subwords v such that xvz 2 L; realize that the decision is in
fact done on the right sentinel after w. Similarly if n � |w| then M substitutes w by shortest
scattered subword v of w such that v 2 L. If no such v exists then M accepts w 2 L(M, c).
Note that M rejects w /2 L(M, c) in the first cycle.

Outline of the proof of 3. It is not hard to see that M can be simulated by a one way automaton
with a finite bu↵er. That is, M can be simulated by a finite automaton. 2

Theorem 4.5. [6] Let X 2 {DS, D}. Then LC(X) ⇢ LP(X) ⇢ CSL.

Lemma 4.6. [6] Let M be a DS-automaton. Then there is a constant p such that, for each
of its restarting meta-instructions I, and for each of its contexts E the following holds: each
w 2 E, |w| > p can be written as w = xyz, where 0 < |yz| < p, and xyiz 2 E for i � 0.

For linguists, the correctness preserving property is desired within the analysis as no realized
reduction can destroy the analyzed sentence. To ensure this property, the reduction of the
analyzed sentence should proceed by a sequence of very careful steps. Our first example of a
categorial language for which correctness preserving property cannot be guaranteed follows.

Proposition 4.7. Let Lc = {anbm|n,m 2 N, n  m  2n}. Then no DS-automaton M such
that L(M, c) = Lc is correctness preserving.

Proof. Suppose for a contradiction that there is a correctness preserving (k)-DS-automaton
M such that L(M, c) = Lc. Its categorial alphabet needs to be {a, b}, the proper, and the basic
alphabet are irrelevant for the proof. Without loss of generality, suppose that the categorial
and proper languages of M are the same.

Let us suppose that M contains a meta-instruction I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart),
s  k, which deletes twice as many b’s as a’s. Let p be the number ensured by Lemma 4.6 for
I, m be the length of the longest word accepted by an accepting meta-instruction. Consider
n divisible by p!, n > max{k + (k + 1)p,m} and word w =anb2n 2 L(M, c). Then, the above
mentioned meta-instruction I is applicable to w realizing a reduction w = anb2n `I an1b2n1 .
More precisely, let n�n1 = �. Then I reduces w = x0a1x1 . . . asxs to an1b2n1 = x0b1x1b1 . . . bsxs,
bi 2 {ai,�} for all 1  i  k. The choice of n together with Lemma 4.6 guarantee the existence
of 0  ja  s such that xja = ↵a�a�a, �a 2 a+, 0 < |�a| < p, ↵a�

t
a�a 2 Eja for all t � 0.

The choice t = 1+n/|�a| implies the applicability of I on a2nb2n; i.e., a2nb2n `c
I a2n��b2n�2�.

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 219

Since a2nb2n 2 L(M, c), it follows from the correctness preserving property that a2n��b2n�2� 2
L(M, c), which is a contradiction.

The assumption L(M, c) = Lc, and the correctness preserving property of M ensures the
existence of such a meta-instruction I in a similar way as the proof above. 2

Corollary 4.8. For X 2 {D,DS} ve have
(a) FINR(X) ⇢ REGR(X) ⇢ DCFR(X) ⇢ CFR(X) ⇢ RED(X),
(b) cp-AR(X) ⇢ bcp-AR(X) ⇢ RED(X).
Further, for RX 2 {FINR,REGR,DCFR, CFR,RED} we have RX (D) ⇢ RX (DS).

4.2 Scales

In this subsection we focus on DS-automata which are not necessarily normalized. In order to
show some delete and shift hierarchies related to the Chomsky hierarchy, we use two families of
infinite sample languages; as before, the finite witness languages are not enough. Let j,m 2 N+,
i 2 N, ⌃ = {P, b, s}, �j = {a1, a2, . . . , aj}, ⇤ = {�} then we define:
LS(j, i) = { Psi{bj}+, {bj}+si, si}, and Le(j) = { an1an2 · · · anj | n > 0 }.

The construction of relevant DS-automata and delete and shift complexities of these languages
are given in the following lemma. The lemma is slightly stronger than a similar lemma from [6],
where the correctness preserving property was not required. Note that the languages LS(j, i)
are infinite regular, Le(2) 2 CFL \ REG, and for j � 3 it holds Le(j) 2 CSL \ CFL.

Lemma 4.9. For LX 2 {LC,LP}, j 2 N+, i 2 N we have:

(a) LS(j, i) 2 LX (d(j)-s(i)-cp-nr-DS) (b) Le(j) 2 LX (d(j)-cp-nr-D).

Proof. The proof is done by an informal construction of DS-automata. Although similar to
that from [6], it is given here for better understanding the results given below.

(a) We describe a d(j)-s(i)-cp-nr-DS-automaton MS(j, i) such that LS(j, i) = L(MS(j, i), c) =
L(MS(j, i), p), and which uses max{j, i+2} pebbles. The automaton MS(j, i) works with the
basic alphabet {[P, P], [b, b], [s, s]}, and categorial and proper alphabets equal to {P, b, s}. The
automaton MS(j, i) simulates the leftmost DS-precedence of any word of LS(j, i)); we have
two possibilities for one cycle, and one possibility for a tail:

• the word [P, P][s, s]i{[b, b]j}n is changed to {[b, b]j}n[s, s]i; for this, i+2 pebbles are used to
mark symbol [P, P], all symbols [s, s]i and the last symbol [b, b] first; then [P, P] is deleted
and [s, s]i are shifted after [b, b]’s;

• the prefix [b, b]j is marked with pebbles and deleted;

• the word [s, s]i is accepted in a tail computation.

(b) Here we describe a d(j)-cp-nr-D-automaton Me(j) such that Le(j) = L(Me(j), c) =
L(Me(j), p), and it uses j pebbles. The automaton Me(j) works with the basic alphabet
{[a1, a1], ..., [aj, aj]} and categorial and proper alphabets equal to �j. It simulates always the

220 Martin Plátek, Markéta Lopatková, Dana Pardubská

leftmost DS-precedence for any word from Le(j); in one cycle, the automaton marks by pebbles
and deletes the first copy of [a1, a1], [a2, a2], . . . , [aj, aj] from a tape word longer then j. The
automaton Me(j) accepts the word [a1, a1][a2, a2] . . . [aj, aj] in a tail computation.
It is not hard to see that the described automata fulfill the cp-nr- condition. 2

Theorem 4.10. For i > 2, j � 0, Y 2 {REGR, CFRr REGR, RED(DS)rCFR}, RX 2 {RED,
bcp-AR,cp-AR}, we have the following proper inclusions:

(a) Y \RX (d(i)-s(j)-DS) ⇢ Y \RX (d(i+1)-s(j)-DS),

(b) Y \RX (d(i)-s(j)-DS) ⇢ Y \RX (d(i)-s(j+1)-DS).

Proof. To separate RED(d(i)-s(j)-DS) from RED(d(i+1)-s(j)-DS) and RED(d(i)-s(j+1)-DS)
we analyze the automata for witness languages LS(i, j) and their reduction languages. The
proper inclusion can be shown applying the technique proposed in Theorem 4.1.

– LS(j, i); for corresponding automaton MS(i, j) its reduction language RED(MS(i, j)) be-
longs to REGR.
– LCFL\REG(i, j) = LS(i, j) [Le(2); the corresponding automaton MCR(i, j) contains all the

meta-instructions from MS(i, j), and all meta-instructions from Me(2); obviously,
RED(MCR(i, j)) is from CFR and from cp-AR, and is not from REGR.
– LCSL\CFL(i, j) = LS(i, j) [Le(3), the correspoding automaton MCSCF (i, j) contains all the

meta-instructions from MS(i, j), and all meta-instructions from Me(3); obviously,
RED(MCSCF (i, j)) is from cp-AR, and is not from CFR.

We can see that all DS-automata above described use reductions with i deletions, and reductions
with j shifts; further, the number of deletions does not depend on the number of shifts, and
vice versa. The second automaton uses also reductions with two deletions, and the third one
with three deletions. Thus, the presented separation results are valid for i > 2, j � 0. 2

Separations by finite witness languages. The last results of this section deal with languages
of reductions and analysis by reduction. Unlike the results concerning categorial and basic
languages (see [6]), these hierarchical results can be achieved by (rather small) finite witness
languages. Such small witness languages are closer to the technique of linguistic (syntactic)
observation.

Proposition 4.11. For j 2 N+, n > 1, i 2 N we have:
REDn(MS(j, i)) 2 cp-AR(d(j)-s(i)-DS), REDn(MS(j + 1, i)) 62 RED(d(j)-s(i)-DS),
REDn(MS(j, i+ 1)) 62 RED(d(j)-s(i)-DS).

Proof. The proof follows from Lemma 4.9 and Theorem 4.1. 2

To show the next corollary, it su�ces to consider RED2((MS(j, i)), i.e., a sequence of reduction
languages consisting only of two reductions.

ON THE COMPLEXITY OF REDUCTIONS BY RESTARTING AUTOMATA 221

Corollary 4.12. For i > 2, j � 0, n > 0, RX 2 {RED, bcp-AR,cp-AR}, we have the follow-
ing proper inclusions:

(a) RX (d(i)-s(j)-DS) ⇢ RX (d(i+1)-s(j)-DS), (b) RX (d(i)-s(j)-DS) ⇢ RX (d(i)-s(j+1)-DS),

(c) RX n(d(i)-s(j)-DS) ⇢ RX n(d(i+1)-s(j)-DS), (d) RX n(d(i)-s(j)-DS) ⇢ RX n(d(i)-s(j+1)-DS).

Theorem 4.13. Let n > 0, i > 0, j � 0, RX 2 {RED, bcp-AR, cp-AR}. Then
(a) RX n�1(d(i)-s(j)-DS) ⇢ RX n(d(i)-s(j)-DS), (b) RX n�1(DS) ⇢ RX n(DS).

Proof. To prove the theorem, we use the DS-precedence of Le(j) = { an1an2 · · · anj | n > 0 }. For
any word w = an1 · · · anj 2 Le(j), |w| > j, n > 0 there is exactly one word ↵ such that w �Le(j) ↵,
namely an1 · · · anj �Le(j) a

n�1
1 · · · an�1

j . That is why RED(Me(j), c) = {u ! v|u �Le(j) v} for
D-automaton Me(j) described above.

On the other hand, any DS-automaton M with the reduction language RED(Me(j), c) needs
to perform exactly the reductions an1 · · · anj �Le(j) an�1

1 · · · an�1
j for any n > 1. Obviously

REDn�1(M, c) is a proper subset of REDn(M, c), i.e., REDn�1(M, c) and REDn(M, c) are
di↵erent, and serve for separation of cp-ARn from REDn�1. That proves the proposition. 2

5 Conclusion and Perspectives

In this paper we have enhanced and deepened results from [6]: we have refined the results by the
correctness preserving property and we have introduced and studied two new formal variants
of analysis by reduction. We have (in a uniform way) obtained several infinite hierarchies of all
variants of analyses by reduction by (rather small) finite witness languages. That demonstrates
the similarity to linguistic observations about basic syntactic phenomena. We have also added
hierarchies based on the number of reductions. These new results on reduction languages di↵er
in some aspects from the results on basic and categorial languages from [6], as e.g., the hierar-
chies on reduction languages use finite witness languages more often. Motivated by linguistic
techniques, we defined four types of languages in [6] – basic, proper, categorial, and reduction
languages. The reduction languages (linguistically most important) allow for an explicit de-
scription of the integration of individual disambiguated word forms into the sentence structure.
While proper languages play a role of input languages for weak equivalence of DS-automata
(and other types of automata or grammars), reduction languages serve for (linguistically more
relevant) strong equivalence of DS-automata.

Based on [3], we estimate that roughly seven deletions in one reduction step su�ce to analyze
adequately any sentence from the Prague Dependency Treebank (PDT), a collection of 50.000
Czech sentences annotated with rich morphological and syntactic information, see [2]. As for
the shift complexity, we have only been able to find reductions of Czech sentences with at most
one shift in a single reduction step. From this point of view, AR of natural languages is quite
simple. The information which is obtained from dictionaries of individual natural languages
is in fact modeled by the information contained in the basic (tape) alphabet of DS-automata.

222 Martin Plátek, Markéta Lopatková, Dana Pardubská

Moreover, the average number of reductions necessary for processing (any branch of) analysis
by reduction of a sentence from PDT can be estimated on 20; the upper bound reaches approx.
120 reductions for PDT.

We have already used the analysis by reduction for explaining the basics of dependency syntax
of Czech (e.g., see [7]), but it can as well be used for explanation of the basic issues of lexicalized
syntax based on (even discontinuous) constituents. We propose a type of strong equivalence
which can serve for both types of syntactic methods.

Finally, we strongly believe that for linguistic applications, (relatively simple) star-free lan-
guages are su�cient as contexts in meta-instructions. In the future we plan to study the models
of restarting automata which simulate at the same time analysis by reduction and dependency
analysis of sentences of natural languages.

References

[1] K. AJDUKIEWICZ, Die syntaktische Konnexität. Studia Philosophica I (1935), 1–27.

[2] J. HAJIČ, J. PANEVOVÁ, E. HAJIČOVÁ, P. SGALL, P. PAJAS, J. ŠTĚPÁNEK,
J. HAVELKA, M. MIKULOVÁ, Z. ŽABOKRTSKÝ, M. ŠEVČÍKOVÁ-RAZÍMOVÁ, Prague
Dependency Treebank 2.0 . Linguistic Data Consortium, Philadelphia, 2006.

[3] V. KUBOŇ, M. LOPATKOVÁ, M. PLÁTEK, On Formalization of Word Order Properties. In:
A. GELBUKH (ed.), Theoretical Computer Science and General Issues, Computational Linguistics

and Intelligent Text Processing, CICLing 2012 . LNCS 7181, Springe Berlin Heidelberg, 2012, 130–
141.

[4] M. LOPATKOVÁ, M. PLÁTEK, V. KUBOŇ, Modeling Syntax of Free Word-Order Languages:
Dependency Analysis by Reduction. In: V. MATOUŠEK ET AL. (ed.), Proceedings of TSD 2005 .
LNCS 3658, Springer, Berlin Heidelberg, 2005, 140–147.

[5] F. MRÁZ, F. OTTO, M. PLÁTEK, The degree of Word-Expansion of Lexicalized RRWW-
automata: A New Measure for the Degree of Nondeterminism of (Context-Free) Languages. The-
oretical Computer Science 410 (2009) 37, 3530–3538.

[6] M. PLÁTEK, M. LOPATKOVÁ, D. PARDUBSKÁ, On Minimalism of Analysis by Reduction
by Restarting Automata. In: G. MORRILL ET AL. (ed.), Formal Grammar 2014 . LNCS 8612,
Springer, Berlin Heidelberg, 2014, 155–170.

[7] M. PLÁTEK, F. MRÁZ, M. LOPATKOVÁ, (In)Dependencies in Functional Generative Descrip-
tion by Restarting Automata. In: H. BORDIHN ET AL. (ed.), Proceedings of NCMA 2010 .
books@ocg.at 263, Österreichische Computer Gesellschaft, Wien, Austria, 2010, 155–170.

