NPFL116 Compendium of Neural Machine Translation

Large Vocabulary Issues March 22, 2017

Jindřich Helcl, Jindřich Libovický

Charles Univeristy in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Decoding of a Word

The decoder computes a distribution over the vocabulary

 $p(y|h) = g(\mathbf{x}, h, \theta)$

 Vanilla attentive decoder: softmax over hidden state projection

$$e_{ij} = y_j^\top W_o t_i$$

$$p(y_i|h) = \frac{\exp e_{ij}}{\sum_{k=0}^{|V|} \exp e_{kj}}$$

- $\dots y_i$ is an one-hot representation of the target word $\dots t_i$ is the output hidden state of the decoder $\dots W_o$ is a trainable parameter matrix
- The softmax computation is expensive (cannot be computed in parallel)

Limited Vocabulary

- Simple solution: limit the size of the vocabulary
- Usually around 50k
- Many words get thrown away

Ein brauner Hund rennt dem schwarzen Hund hinterher .

 \downarrow

Ein <unk> Hund rennt dem <unk> Hund <unk> .

Large vocabulary NMT

Jean et al., 2014 (https://arxiv.org/abs/1412.2007)

- During training, only a subset of the vocabulary by segmenting the training data
- During testing, compose the vocabulary from:
 - A list of K most frequent words (15–50 thousand)
 - K' candidate translations for each word (10–20 words)
 - Candidate translations are obtained from alignment
- Can use very large vocabulary (~500k)

Copying Source Words

Luong et al., 2014 (https://arxiv.org/abs/1410.8206)

- Learn alignment on the training data
- During truncating the vocabulary, keep track of relative positions of the <unk> tokens
- Postprocess the result by replacing the unknown tokens with dictionary translations of the corresponding source words
- If there is no dictionary translation, just copy the source word

Subword Units

Sennrich et al., 2016 (https://arxiv.org/abs/1508.07909)

- Byte-pair encoding (BPE)
- Build vocabulary from characters, merging to larger groups
- Stop when vocabulary limit is reached
- Rare words are modeled as groups of subwords
- There are no out-of-vocabulary tokens

Chung et al., 2016 (https://arxiv.org/abs/1603.06147)

- Encoder works on byte-pair encoded source sentences
- Decoding is done one character at a time

Sennrich et al., "Nematus: a Toolkit for Neural Machine Translation" arXiv:1703.04357 (2017). https://arxiv.org/pdf/1703.04357

Question:

Compare the Nematus models with the models from Bahdanau et al., 2014. How do they differ? Think of at least three differences.