NPFL116 Compendium of Neural Machine Translation

Sequence-to-Sequence Learning March 15, 2017

Jindřich Libovický, Jindřich Helcl

Charles Univeristy in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

RNN Language Model

 train RNN as classifier for next words (unlimited history)

- ► can be used to estimate sentence probability / perplexity → defines a distribution over sentences
- we can sample from the distribution

Two views on RNN LM

- RNN is a for loop / functional map over sequential data
- ► all outputs are conditional distributions → probabilistic distribution over sequences of words

$$P(w_1,\ldots,w_n) = \prod_{i=1}^n P(w_i|w_{i-1},\ldots,w_1)$$

Encoder-Decoder – Image

source language LM + target language LM

Encoder-Decoder Model – Code

```
state = np.zeros(emb size)
for w in input words:
    input embedding = source embeddings[w]
    state, = enc cell(encoder state,
                        input embedding)
last w = " < s > "
while last w != "</s>":
    last w embeding = target embeddings[last w]
    state, dec output = dec cell(state,
                                  last w embeding)
    logits = output projection(dec output)
    last w = np.argmax(logits)
    vield last w
```

Encoder-Decoder Model – Formal Notation

Data

input embeddings (source language) $\mathbf{x} = (x_1, \dots, x_{T_x})$ output embeddings (target language) $\mathbf{y} = (y_1, \dots, y_{T_y})$

Encoder

initial state *j*-th state final state

$$egin{aligned} & h_{0} \equiv \mathbf{0} \ h_{j} = \mathsf{RNN}\mathsf{enc}(h_{j-1}, x_{j}) \ h_{T_{\mathbf{v}}} \end{aligned}$$

Decoder

initial state *i*-th decoder state *i*-th word score

output

$$\begin{split} & s_0 = h_{T_x} \\ & s_i = \mathsf{RNNdec}(s_{i-1}, \hat{y}_i) \\ & t_{i+1} = U_o + V_o E y_i + b_o, \\ & \text{or multi-layer projection} \\ & \hat{y}_{i+1} = \arg\max t_{i+1} \end{split}$$

Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)
- unknown true distribution p_i , we lay $p_i \equiv \mathbf{1}[y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = \mathbf{E}_{p} \left(-\log \hat{p} \right) = -\log \hat{p}(y_{i})$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is super simple

Implementation: Runtime vs. training

Sutskever et al.

- reverse input sequence
- impressive empirical results made researchers believe NMT is way to go

method	BLEU score
vanilla SMT	33.0
tuned SMT	37.0
Sutskever et al.: reversed	30.6
-"-: ensemble + beam search	34.8
 -"-: vanilla SMT rescoring 	36.5
Bahdanau's attention	28.5

Why is better Bahdanau's model worse?

Sutskever et al. \times Bahdanau et al.

Sutskever et al. Bahdanau et al.

vocabulary

encoder

decoder

word embeddings

training time

160k enc, 80k dec $4 \times$ LSTM, 1,000 units $4 \times$ LSTM, 1,000 units 1,000 dimensions 7.5 epochs 30k both bidi GRU, 2,000 GRU, 1,000 units 620 dimensions 5 epochs

With Bahdanau's model size:

method	BLEU score
encoder-decoder	13.9
attention model	28.5

Main Idea

- same as reversing input: do not force the network to catch long-distance dependencies
- use decoder state only for target sentence dependencies and a as query for the source word sentence
- RNN can serve as LM it can store the language context in their hidden states

Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content
- in fact does not work well it hardly manages simple algorithmic tasks
- ▶ content-based addressing → attention

Small Trick before We Start

- read the input sentence from both sides
- every h_i contains in fact information from the whole sentence

Attention Model

Attention Model in Equations (1)

Inputs: decoder state s_i encoder states $h_j = \left[\overrightarrow{h_j}; \overleftarrow{h_j}\right] \quad \forall i = 1 \dots T_X$

Attention energies: Attention distribution:

$$\mathbf{e}_{ij} = \mathbf{v}_{a}^{\top} \tanh \left(\mathbf{W}_{a} \mathbf{s}_{i-1} + \mathbf{U}_{a} \mathbf{h}_{j} + \mathbf{b}_{a}
ight) \qquad \alpha_{ij} = rac{\exp \left(\mathbf{e}_{ij}
ight)}{\sum_{k=1}^{T_{x}} \exp \left(\mathbf{e}_{ik}
ight)}$$

Context vector:

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

Attention Model in Equations (2)

Output projection:

 $t_i = \mathsf{MLP}\left(U_o s_{i-1} + V_o E y_{i-1} + C_o c_i + b_o\right)$

...attention is mixed with the hidden state

Output distribution:

 $p(y_i = k | s_i, y_{i-1}, c_i) \propto \exp(W_o t_i)_k + b_k$

Attention Visualization

Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

attention (NMT) probabilistic declarative LM generates

alignment (SMT)

discrete imperative LM discriminates

Image Captioning

Attention over CNN for image classification:

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Source: Xu, Kelvin, et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention." ICML. Vol. 14. 2015.

Reading for the Next Week

Chung, Junyoung, Kyunghyun Cho, and Yoshua Bengio. "A character-level decoder without explicit segmentation for neural machine translation." arXiv preprint arXiv:1603.06147 (2016). https://arxiv.org/pdf/1603.06147.pdf

Question:

What are the reasons authors do not use character-level encoder? How would you improve the architecture such that it would allow character level encoding?