Feature Extraction for Native Language Identification

Vincent Kríž, Martin Holub, Pavel Pecina

{kriz, holub, pecina}@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

- the task of Native Language Identification (NLI)
- **TOEFL11 corpus** (Blanchard et al., 2013)
- supervised learning: combining the SVM learner with a language modeling approach to feature extraction
- cross-entropy scores as features for supervised learning
- results achieved with reduced feature space and comparing with results of the First Shared Task in NLI

Native Language Identification

- automatic identification of the writers' native language (L1)
- based on a sample of their writing in a second language (L2)

Contrastive Analysis Hypothesis (Lado, 1957)

- speakers and writers of the same L1 can sometimes be identified by similar L2 errors
- linguistic interference

NLI as a text classification task

- raw texts \rightarrow feature vectors \rightarrow classified texts

Educational settings

• more targeted feedback to language learners about their errors (Smith and Swan, 2001)

Authorship analysis (Stamatatos, 2009)

- criminal law (identifying writers of harassing messages)
- civil law (copyright disputes)
- literary research (attributing anonymous or disputed literary works to known authors)

Approaches to the task

- Support Vector Machines (SVM)
- n-grams, function words, POS, spelling errors, writing quality (grammatical errors, style markers)
- Tree Substitution (TSG) structures (Swanson and Charniak, 2012)
- recurring n-grams (Bykh et al., 2013)
- string kernels & multiple kernel learning (lonescu et al, 2014)

Tetreault et al. (2012)

- extensive study
- includes language modeling and entropy-based features

Hissar, 9.9.2015

The First NLI Shared Task (Tetreault et al., 2013)

- new corpus TOEFL11 (Blanchard et al., 2013)
- common set of L1s as well as evaluation standards
- a direct comparison of approaches

We experiment with exactly the same data, using the same cross-validation splits as the participants of the Shared Task, so we can provide the exact comparison with the published results.

TOEFL11 (Blanchard et al., 2013)

- a corpus of non-native English writings contains 1,100 essays per L1 language with an average of 348 word tokens per essay
- consists of essays on 8 different topics (prompts)
- written by non-native speakers of three *proficiency levels* (low, medium, high)
- the essays' authors have 11 different native languages:

L1	ID	L1	ID	L1	ID
Arabic	ARA	Hindi	HIN	Telugu	TEL
Chinese	CHI	Italian	ITA	Turkish	TUR
French	RFE	Japanese	JAP	Spanish	SPA
German	GER	Korean	KOR		

Language modeling fundametals

- n-gram is a contiguous sequence of n items from a given sequence of text
- language model (LM) estimates the probabilities of possible n-grams
- estimated probability distributions should be **smoothed** (assigning non-zero probability to unseen n-gram)

Our approach

- a small set of **cross-entropy based features** computed over different language models
- significant reduction of the usual feature space based on n-grams
- features are then used by a SVM classifier

Basic idea

- 11 special LMs of English, based on the same L1 language in the training data $(M_1, ..., M_{11})$
- compare M_i to a general LM of English (M_G)
- the cross-entropy of text t given a language model M is

$$\mathsf{H}(t,M) = -\sum_{x} p(x) \log q(x).$$

Normalized cross-entropy score

$$D_G(t, M_i) = \mathsf{H}(t, M_i) - \mathsf{H}(t, M_G) = -\sum_x p(x) \log rac{q_i(x)}{q_G(x)}$$

 M_i with distributions q_i , M_G with the distribution q_G

Hissar, 9.9.2015

Cross-entropy Based Features

Family	ID	Description	
Tokens	Т	token based LM	
Characters	C	character based LM	
Suffixes	Sn	LMs on suffixes of the length {2,, 6}	
POS tags	Р	POS tags based LM	

Statistical features (ST)

- Text length characteristics: # of sentences, tokens, characters
- Lexical variety family: number of unique tokens, proportion between # of unique tokens and # of all tokens in texts

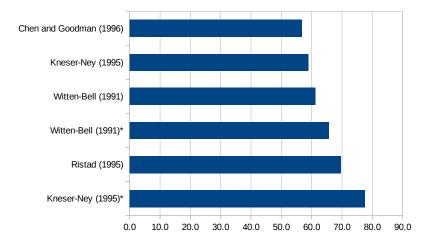
Prompt and proficiency (PR)

Hissar, 9.9.2015

Experiments and results

- **1** different smoothing methods
- 2 effect of lower-cased letters
- **3** performance of different feature families
- 4 different n-gram range used by LMs
- **6** different combinations of feature families

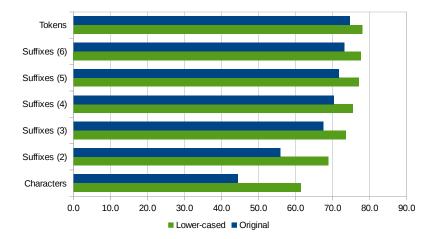
Smoothing methods – comparison



* indicates models with interpolation

Hissar, 9.9.2015

Effect of lower-cased letters



		Maximum n-gram order					
ID	Feature family	3	4	5	6	7	8
С	Characters	61.4	70.5	73.0	74.1	74.6	74.9
S ₂	Suffixes (2)	68.8	68.4	68.3	68.3	68.3	68.2
S ₃	Suffixes (3)	73.6	73.2	73.2	73.2	73.1	73.0
S ₄	Suffixes (4)	75.5	75.3	75.4	75.5	75.4	75.4
S_5	Suffixes (5)	77.1	76.9	77.2	77.1	77.1	77.1
S ₆	Suffixes (6)	77.7	77.8	77.8	77.8	77.7	77.8
Т	Tokens	78.0	78.0	77.9	78.0	77.9	78.0
Р	POS tags	53.1	53.2	52.0	50.4	49.1	48.2

Classification accuracy using background language models built on different n-gram families. Each system uses 11 cross-entropy based features over the specified language model.

Hissar, 9.9.2015

С	Т	S ₄	Р	PR	ST	Accuracy
х	х	х	х	x	х	82.43 ± 0.5
х	х	x	x	x		82.18 ± 0.8
x	х	x		x		82.16 ± 0.6
	х	x	x	x		81.97 ± 0.5
x	х	x		x	х	81.91 ± 0.6
x	х	x				81.31 ± 0.4
	х	x				81.07 ± 0.5
x	х					80.94 ± 0.7
х		x	x	x	х	78.29 ± 0.7
	х					77.99 ± 0.7

C – characters, T – tokens, S₄ – suffixes of length 4, P – POS tags, PR – proficiency and prompt, ST – statistical features.

Hissar, 9.9.2015

System	# of feat.	Acc.	Approach
Gebre et al.	-	84.6	T, C, POS, spelling errors
Jarvis et al.	400,000	84.5	T, L, POS
Lynum	867,479	83.9	Т, С, Ѕ
Malmasi et al.	-	82.5	T, function words, POS, syntax
Our system	55*	82.4	LMs using T, C, POS, S
Bykh et al.	-	82.4	T, POS, syntax, S

* traditional n-grams are hidden in the language models

T - tokens, C - characters, POS - part of speech tags, L - lemmas

- new NLI system for identifying the native language (L1) of a non-native English writer
- significantly reduced feature space (10⁵ \rightarrow 55)
- using language modeling improved performance
 - different smoothing methods
 - combination of language models based on different types of n-grams
 - using normalized cross-entropy score
- resulting accuracy 82.4 % comparable to the state-of-the-art