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Feature analysis, importance, and selection

Outline

* Why we need feature selection

® Curse of dimensionality
® Benefits of succesfull feature selection

® Feature selection heuristics

® Feature filtering

® Feature ranking + greedy selection/elimination

Feature importances generated by Random Forests and AdaBoost
SVM-RFE - illustration

FSelector package

® Bayes error

® Chi-square tests

® Independence test
® Goodness-of-fit test
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Feature extraction and feature selection

Processes and terminology related to feature extraction/selection

Reduced
feature

feature vectors

selection

Initial
feature
vectors

primary
feature
extraction

advanced
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extraction Transformed

feature
vectors
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Why we need feature selection?

Features without useful information make noise in the data!

Goal of the feature selection process
= to efficiently find a minimum set of features that contain all the substantial
information needed for predicting the target value

More compact feature set can lead to
® improved model interpretability,
® shorter training times,

® enhanced generalisation by reducing overfitting.
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Curse of dimensionality

Source: Wikipedia

The curse of dimensionality refers to various phenomena that arise when analyzing
and organizing data high-dimensional spaces (often with hundreds or thousands of
dimensions) that do not occur in low-dimensional settings.

Data sparsity

The common theme of these problems is that when the dimensionality increases,
the volume of the space increases so fast that the available data become sparse.
This sparsity is problematic for any method that requires statistical significance.
In order to obtain a statistically sound and reliable result, the amount of data
needed to support the result often grows exponentially with the dimensionality.

Dissimilarity of data points

Also organizing and searching data often relies on detecting areas where objects
form groups with similar properties; in high dimensional data however all objects
appear to be sparse and dissimilar in many ways which prevents common data
organization strategies from being efficient.
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Curse of dimensionality — example in high dimension

High dimensional data is difficult to work because there are not enough
observations to get good/reliable statistical estimates

Consider a simple example. Random vector of binary variables with the same
Bernoulli distributions. (X1, Xz, ..., X,).

® Observe the frequency of different vector values if e.g.
Pr(X;=1)=1/2or
Pr(X; = 1) = 1/10.

e If Pr(X; =1) = 1/10, then Pr(1,1,...,1) = 1/10" (1)
Thus, the need for data grows exponentially with the number of
features!

— See the curse demo, Part I.
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Curse of dimensionality — data sparsity

High-dimensional data is difficult to work not only because there are not enough
observations to get good estimates... but also because data distributed in a
high dimensional space necesarily tends to be very sparse!

This fact implies long distances between randomly distributed points

Example
Consider a simple example. Uniformly distributed random points in a unit
n-dimensional hypercube.

— What will be their average/expected distance from the origin?

— See the curse demo, Part Il.

NPFLO054, 2019 Hladka & Holub Lecture 8, page 7/38



Randomly distributed points in a hypercube

Unit hypercube

® The corners of the n-dimensional hypercube with sidelength 1 are all those
points with coordinates being either 0 or 1.
® Volume of a unit hypercube is 1

e Length of the diagonal of the n-dimensional unit hypercube is \/n

What is the proportion of points with the distance from the origin < 17

® two dimensions ~7r?/4=7/4
® three dimensions ~ gmri/8=m/6
® n dimensions ~ 7 ... goes to zero!
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Curse of dimensionality — a geometric illustration

Source: “The curse of dimensionality” by Mario Képpen

SII/CII

SIX
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Ratio of the volumes of unit hypersphere and embedding hypercube
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Curse of dimensionality — a hyperball in a unit cube

Source: “The curse of dimensionality” by Mario Képpen

n-dimensional
unit cube of
volume 1

n-dimensional ball
within the cube
(radius 1/2)

2" "Spikes" of
length n'?/2 = o0

—
—

“Spherical hedgehog”
While volume of the n-dimensional hypercube is 1, the length of its diagonal (1/n) goes

to infinity for increasing n, and volume of the embedded hypersphere goes to 0.
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Curse of dimensionality

. also, in high-dimensional spaces there are long distances between
randomly selected points. ..

Another example with uniformly distributed random points in an n-dimensional
hypercube:

® What will be the mutual distance between two randomly selected points?
— See the curse demo, Part Ill.

“Near neighbours” often do not exist!
— Instead, typically you have only many “far neighbours”. ..
. and you cannot recognize the “similar ones”
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Curse of dimensionality — demo code

# to generate a vector of N random distances in a hypercube of dim dimensions
distances.cube = function(N, dim) {

distances = numeric(N)

for(i in 1:N) {

x = runif(dim); y = runif(dim) # two random points in the cube
distances[i] = sqrt(sum((x-y)~2)) # Euclidean distance

}

return(distances)

# example plot with empirical density in 3 dimensions
plot (((1:500)*5/500) [1:173],
table(cut (distances.cube(10°6, 3), breaks = (0:500)*5/500))[1:173]1/1076,
xlim = ¢(0,5), ylim = ¢(0,0.017),
yaxt="n", xlab="Random distances in dimension 3", ylab="")
axis(2, at=c(0,0.005,0.01,0.015))
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Demo — distances of random points in a hypercube

Empirical density of distances between random points in a unit hypercube
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Benefits of succesfull feature selection

® Better performance
— enhanced generalization by reducing overfitting
— irrelevant input features may lead to overfitting
— removing them can improve prediction performance
— some learning methods do not work well with highly dependent features
— removing them can improve prediction performance

® Better interpretability
— lower model complexity and improved model interpretability
— better chance to analyse the impact/importance of the features

® Technical
— feasible/shorter training times
— reduced feature space dimension in the dataset
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Introduction to practical feature selection

Practical feature selection methods are heuristic

Feature selection methods can be basically divided into
e filters — select feature subsets as a pre-processing step, independently of the

learning method

® wrappers — use a machine learning algorithm in conjunction with internal
cross validation procedure to score feature subsets by measuring their
predictive power

® embedded methods — perform feature selection during the process of
training
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Filters, wrappers, and embedded methods

® Filters select features based on criteria independent of any supervised
learner. Therefore, the performance of filters may not be optimum for a
chosen learner.

® Wrappers use a learner as a black box to evaluate the relative usefulness of a
feature subset. Wrappers search the best feature subset for a given
supervised learner, however, wrappers tend to be computationally expensive.

® Instead of treating a learner as a black box, embedded methods select
features using the information obtained from training a learner.

Example

A well-known example is SVM-RFE (support vector machine based on recursive
feature elimination). At each iteration, SVM-RFE eliminates the feature with the
smallest weight obtained from a trained SVM.
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Feature ranking

~ aka variable importance metrics/measures

We need a (real) function to evaluate how useful a feature is

Frequently /mostly used:

Information Gain, Gini Index, Chi-square, correlation coefficient, etc.
® see Wikipedia: “Feature Selection”
® see the FSelector package in R

® Disadvantages: such methods consider only one variable’s contribution
without other variables' influences

However, using them you can easily recognize

® really useful ones
® completely unuseful ones
® highly dependent/correlated ones
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Simple methods in R: the FSelector package

> packageDescription(’FSelector’)

Description

This package provides functions for selecting attributes from a given dataset.
Attribute subset selection is the process of identifying and removing as much of
the irrevelant and redundant information as possible.
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Practical methods for feature selection

Selected examples

Filters and wrappers

® greedy forward selection
® greedy backward elimination

Variable importance produced by ensembles

® by Random Forests
® by Adaboost

SVM-RFE - Recursive Feature Elimination

® Feature selection by Lasso
® — will be explained/discussed later in the lecture on Regularization
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Variable importance (AdaBoost) — cry

Example of the variable importance distribution

e, decreasing = T)

sori{model.abSimporianc
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SVM-RFE feature selection alg

Example of succesfully combined heuristics

Algorithm 2 Recursive feature elimination using the SVM learner with cross-validated
optimization of the SVM parameter cost in each iteration step.
Input: Training data set and the initial feature set
Output: The best SVM classifier Mjyax and the corresponding feature subset Sy,ax
: K < the initial feature set size
: Sk < the initial feature set
: for k <~ K downto 1 do
learn a linear SVM model using the feature set Sy, and tune its parameter cost
M, < the best tuned linear SVM model using the feature set Sy,
Sfworst <— the least useful feature in the model My,
Sk—l — Sk \ {fworst}
end for
Minax ¢ choose the best model from (M}
Smax < the best feature subset corresponding to the best model M, ax

VXN DD RN

—
=4
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SVM-RFE - cry
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SVM-RFE - submit
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Bayes classifier and Bayes error

Imagine that you are able to develop a really optimal classifer.
Is the zero test error always feasible?

Real world
objects
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Bayes classifier and Bayes error

Imagine that you are able to develop a really optimal classifer.
Is the zero test error always feasible?

The Bayes classifier minimises the probability of misclassification

Thus, by definition, error produced by the Bayes classifier is irreducible and is
called Bayes error.
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What is the lowest possible error rate

Bayes classifier assigns each example to the most likely class, given its feature
values

§ = max, Pr(y|x)

The Bayes classifier produces the lowest possible test error rate,
so called Bayes error rate

1 —E (max, Pr(y|x))
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What is the lowest possible error rate

Practical view on your development data

Are there identical feature vectors in your data set?
® Get the same feature vectors

® How many of them have the same target value?
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Pearson’s x? tests [chi-squared]

® Test of independence
Are two variables, expressed in a contingency table, independent of each
other?

® Goodness-of-fit test
Does an observed frequency distribution differ from a hypothesized
theoretical probability distribution?

® Test of homogeneity

Does two observed frequency distributions of the same categorical variable
come from populations with different probability distributions?
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Sum of k independent standard normal variables

Let Z; ~ N(0,1) be independent variables with standard normal distribution.

k
Then what is the distribution of ZZ,2 ?
i=1

show.sum.Z.square <- function(k) {
# shows the empirical distribution of the sum of
# k independent standard normal variables
# mean = k, variance = 2k

sum.Z2 = 0
for(i in 1:k){ sum.Z2 = sum.Z2 + rnorm(1076)"2 }

cat("Sample statistics:\n")

print (summary (sum.Z2))

cat("\nSample variance: ", var(sum.Z2), "\n")
plot(cut(sum.Z2, 200))
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xz distribution — density
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Chi-Squared test of independence

A test of independence assesses whether observations on two variables, expressed
in a contingency table, are independent of each other.
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x“ independence test

We observe two categorical variables. O; ; are the observed frequencies arranged
in an contingency table. Expectations E;; can be computed using estimated
marginal probabilities. Pearson’s x? test is based on the following formula for
Pearson’s cumulative test statistic

Pearson’s cumulative test statistic X? has approximately x2; distribution, where
the degrees of freedom is

df = (Rows — 1) x (Cols — 1)
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xz independence test

Then we compare the test statistic with
X2 critical value x%(«), which is defined by

PriX?> ()} =a

Practical note
X? critical value can be computed as a quantile.

|> qchisq( (1-alpha), df=k )

TODO: Get familiar with functions {pldlq}chisq() available in R.
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Chi-Squared Goodness of Fit Test

The Chi-Squared Goodness of Fit Test is a test for comparing a theoretical
distribution with the observed data from a sample.
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xz Goodness-of-fit test

Example 1
Rolling a die — after 600 rolls you got the following distribution

1 2 3 4 5 6
95 108 101 85 110 101

Question: Is the die fair? = Does it have the uniform distribution?

Example 2
Our hypothesis is that our classifier accuracy is 78 %. However, a test on 100
randomly chosen instances gives the following result

correct error
81 19

Question: Should we reject the hypothesis?
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xz Goodness-of-fit test

Pearson's x? goodness-of-fit test is based on the following formula for Pearson's
cumulative test statistic

X2:Zm:w

If the observed variables O; have multinomial distribution, then Pearson’s
cumulative test statistic X2 has approximately x2,_; distribution.
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x> Goodness-of-fit test — example

Example based on real data

estimated test set

SENSES probabilities observations
cord 9.2% 37

division 8.9% 51

formation 8.1% 52

phone 10.6% 44

product 53.5% 268

text 9.8% 48

> X
>Pp

c(37, 51, 52, 44, 268, 48)
c(9.2, 8.9, 8.1, 10.6, 53.5, 9.8)/100
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Examination requirements

Curse of dimensionality — what is the issue

Feature selection — principles and heuristics

— Feature importances generated by Random Forests and AdaBoost

Bayes classifier and Bayes error — definition and meaning
® Chi-square tests — theory and practical use

— Independence test
— Goodness-of-fit test
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