Outline

• Why we need feature selection
 • Curse of dimensionality
 • Benefits of successful feature selection

• Feature selection heuristics
 • Feature filtering
 • Feature ranking + greedy selection/elimination
 • Feature importances generated by Random Forests and AdaBoost
 • SVM-RFE – illustration
 • FSelector package

• Bayes error

• Chi-square tests
 • Independence test
 • Goodness-of-fit test
Feature extraction and feature selection

Processes and terminology related to feature extraction/selection

- Development data
 - primary feature extraction
 - initial feature vectors
 - advanced feature extraction
 - transformed feature vectors
 - feature selection
 - reduced feature vectors
Why we need feature selection?

Features without useful information make noise in the data!

Goal of the feature selection process
= to efficiently find a minimum set of features that contain all the substantial information needed for predicting the target value

More compact feature set can lead to
• improved model interpretability,
• shorter training times,
• enhanced generalisation by reducing overfitting.
The *curse of dimensionality* refers to various phenomena that arise when analyzing and organizing data *high-dimensional spaces* (often with hundreds or thousands of dimensions) *that do not occur in low-dimensional settings*.

Data sparsity
The common theme of these problems is that *when the dimensionality increases, the volume of the space increases so fast that the available data become sparse*. This sparsity is problematic for any method that requires statistical significance. In order to obtain a statistically sound and reliable result, the *amount of data needed* to support the result often *grows exponentially with the dimensionality*.

Dissimilarity of data points
Also organizing and searching data often relies on detecting areas where objects form groups with similar properties; *in high dimensional data however all objects appear to be sparse and dissimilar* in many ways which prevents common data organization strategies from being efficient.
High dimensional data is difficult to work because there are not enough observations to get good/reliable statistical estimates

Consider a simple example. Random vector of binary variables with the same Bernoulli distributions. \((X_1, X_2, \ldots, X_n)\).

- Observe the frequency of different vector values if e.g.
 \[\Pr(X_i = 1) = \frac{1}{2} \text{ or } \Pr(X_i = 1) = \frac{1}{10}. \]

- If \(\Pr(X_i = 1) = \frac{1}{10}\), then \(\Pr(1, 1, \ldots, 1) = \frac{1}{10^n} (!!)\)

 Thus, the need for data grows exponentially with the number of features!

→ See the curse demo, Part I.
Curse of dimensionality – data sparsity

High-dimensional data is difficult to work not only because there are not enough observations to get good estimates... but also because data distributed in a high dimensional space necessarily tends to be very sparse!

This fact implies long distances between randomly distributed points

Example
Consider a simple example. Uniformly distributed random points in a unit n-dimensional hypercube.

– What will be their average/expected distance from the origin?

→ See the curse demo, Part II.
Randomly distributed points in a hypercube

Unit hypercube

- The corners of the n-dimensional hypercube with sidelength 1 are all those points with coordinates being either 0 or 1.
- Volume of a unit hypercube is 1
- Length of the diagonal of the n-dimensional unit hypercube is \sqrt{n}

What is the proportion of points with the distance from the origin ≤ 1?

- Two dimensions $\sim \pi r^2 / 4 = \pi / 4$
- Three dimensions $\sim \frac{4}{3} \pi r^3 / 8 = \pi / 6$
- n dimensions $\sim ? \ldots$ goes to zero!
Curse of dimensionality – a geometric illustration

Ratio of the volumes of unit hypersphere and embedding hypercube
"Spherical hedgehog"

While volume of the n-dimensional hypercube is 1, the length of its diagonal (\sqrt{n}) goes to infinity for increasing n, and volume of the embedded hypersphere goes to 0.
Curse of dimensionality

... also, in high-dimensional spaces there are long distances between randomly selected points...

Another example with uniformly distributed random points in an n-dimensional hypercube:

- What will be the mutual distance between two randomly selected points?
 → See the curse demo, Part III.

“Near neighbours” often do not exist!
- Instead, typically you have only many “far neighbours”...
 ... and you cannot recognize the “similar ones”
to generate a vector of N random distances in a hypercube of dim dimensions

```r
distances.cube = function(N, dim) {
    distances = numeric(N)
    for(i in 1:N) {
        x = runif(dim); y = runif(dim)  # two random points in the cube
        distances[i] = sqrt(sum((x-y)^2)) # Euclidean distance
    }
    return(distances)
}
```

example plot with empirical density in 3 dimensions

```r
plot(((1:500)*5/500)[1:173],
     table(cut(distances.cube(10^6, 3), breaks = (0:500)*5/500))[1:173]/10^6,
     xlim = c(0,5), ylim = c(0,0.017),
     yaxt="n", xlab="Random distances in dimension 3", ylab=""
     axis(2, at=c(0,0.005,0.01,0.015))
```
Empirical density of distances between random points in a unit hypercube

Random distances in dimension 2

Random distances in dimension 3

Random distances in dimension 4

Random distances in dimension 9

Random distances in dimension 36

Random distances in dimension 100
Benefits of successful feature selection

• **Better performance**
 – enhanced generalization by reducing overfitting
 → irrelevant input features may lead to overfitting
 → removing them can improve prediction performance
 – some learning methods do not work well with highly dependent features
 → removing them can improve prediction performance

• **Better interpretability**
 – lower model complexity and improved model interpretability
 – better chance to analyse the impact/importance of the features

• **Technical**
 – feasible/shorter training times
 – reduced feature space dimension in the dataset
Practical feature selection methods are heuristic

Feature selection methods can be basically divided into

- **filters** – select feature subsets as a pre-processing step, independently of the learning method

- **wrappers** – use a machine learning algorithm in conjunction with internal cross validation procedure to score feature subsets by measuring their predictive power

- **embedded methods** – perform feature selection during the process of training
Filters, wrappers, and embedded methods

• **Filters** select features based on criteria independent of any supervised learner. Therefore, the performance of filters may not be optimum for a chosen learner.

• **Wrappers** use a learner as a black box to evaluate the relative usefulness of a feature subset. Wrappers search the best feature subset for a given supervised learner, however, wrappers tend to be computationally expensive.

• Instead of treating a learner as a black box, **embedded methods** select features using the information obtained from training a learner.

Example
A well-known example is SVM-RFE (support vector machine based on recursive feature elimination). At each iteration, SVM-RFE eliminates the feature with the smallest weight obtained from a trained SVM.
Feature ranking
≈ aka variable importance metrics/measures

• We need a (real) function to evaluate how useful a feature is

• Frequently/mostly used:
 Information Gain, Gini Index, Chi-square, correlation coefficient, etc.
 • see Wikipedia: “Feature Selection”
 • see the FSelector package in R

• Disadvantages: such methods consider only one variable’s contribution without other variables’ influences

• However, using them you can easily recognize
 • really useful ones
 • completely unuseful ones
 • highly dependent/correlated ones
Simple methods in R: the FSelector package

> packageDescription('FSelector')

Description

This package provides functions for selecting attributes from a given dataset. Attribute subset selection is the process of identifying and removing as much of the irrelevant and redundant information as possible.
Practical methods for feature selection
Selected examples

• Filters and wrappers
 • greedy forward selection
 • greedy backward elimination

• Variable importance produced by ensembles
 • by Random Forests
 • by Adaboost

• SVM-RFE – Recursive Feature Elimination

• Feature selection by Lasso
 • – will be explained/discussed later in the lecture on Regularization
Example of the variable importance distribution
Example of successfully combined heuristics

Algorithm 2 Recursive feature elimination using the SVM learner with cross-validated optimization of the SVM parameter *cost* in each iteration step.

Input: Training data set and the initial feature set

Output: The best SVM classifier M_{max} and the corresponding feature subset S_{max}

1. $K \leftarrow \text{the initial feature set size}$
2. $S_K \leftarrow \text{the initial feature set}$
3. for $k \leftarrow K \text{ downto } 1$ do
 4. learn a linear SVM model using the feature set S_k and tune its parameter *cost*
 5. $M_k \leftarrow \text{the best tuned linear SVM model using the feature set } S_k$
 6. $f_{\text{worst}} \leftarrow \text{the least useful feature in the model } M_k$
 7. $S_{k-1} \leftarrow S_k \setminus \{f_{\text{worst}}\}$
4. end for
5. $M_{\text{max}} \leftarrow \text{choose the best model from } \{M_i\}_{i=1}^{K}$
6. $S_{\text{max}} \leftarrow \text{the best feature subset corresponding to the best model } M_{\text{max}}$
Imagine that you are able to develop a really optimal classifier. Is the zero test error always feasible?
Imagine that you are able to develop a really optimal classifier. Is the zero test error always feasible?

The Bayes classifier minimises the probability of misclassification.

Thus, by definition, error produced by the Bayes classifier is irreducible and is called Bayes error.
What is the lowest possible error rate

Bayes classifier assigns each example to the most likely class, given its feature values

\[
\hat{y} = \max_y \Pr(y | x)
\]

The Bayes classifier produces the lowest possible test error rate, so called **Bayes error rate**

\[
1 - E \left(\max_y \Pr(y | x) \right)
\]
What is the lowest possible error rate

Practical view on your development data

Are there identical feature vectors in your data set?

- Get the same feature vectors
- How many of them have the same target value?
Pearson’s χ^2 tests [chi-squared]

- **Test of independence**
 Are two variables, expressed in a contingency table, independent of each other?

- **Goodness-of-fit test**
 Does an observed frequency distribution differ from a hypothesized theoretical probability distribution?

- **Test of homogeneity**
 Does two observed frequency distributions of the same categorical variable come from populations with different probability distributions?
Let $Z_i \sim N(0, 1)$ be independent variables with standard normal distribution.

Then what is the distribution of $\sum_{i=1}^{k} Z_i^2$?

```r
show.sum.Z.square <- function(k) {
  # shows the empirical distribution of the sum of
  # k independent standard normal variables
  # mean = k, variance = 2k

  sum.Z2 = 0
  for(i in 1:k){ sum.Z2 = sum.Z2 + rnorm(10^6)^2 }

  cat("Sample statistics:
  print(summary(sum.Z2))
  cat("\nSample variance: ", var(sum.Z2), "\n")
  plot(cut(sum.Z2, 200))
}
```
χ^2 distribution – density
A test of independence assesses whether observations on two variables, expressed in a contingency table, are independent of each other.
We observe two categorical variables. $O_{i,j}$ are the observed frequencies arranged in an contingency table. Expectations $E_{i,j}$ can be computed using estimated marginal probabilities. Pearson’s χ^2 test is based on the following formula for Pearson’s cumulative test statistic

$$X^2 = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

Pearson’s cumulative test statistic X^2 has approximately χ^2_{df} distribution, where the degrees of freedom is

$$df = (\text{Rows} - 1) \times (\text{Cols} - 1)$$
Then we compare the test statistic with the \(\chi^2 \) critical value \(\chi^2_k(\alpha) \), which is defined by

\[
\Pr \{ X^2 > \chi^2_k(\alpha) \} = \alpha
\]

Practical note

\(\chi^2 \) critical value can be computed as a quantile.

```r
> qchisq( (1-alpha), df=k )
```

TODO: Get familiar with functions \{p|d|q\}chisq() available in R.
The Chi-Squared Goodness of Fit Test is a test for comparing a theoretical distribution with the observed data from a sample.
Example 1
Rolling a die – after 600 rolls you got the following distribution

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>108</td>
<td>101</td>
<td>85</td>
<td>110</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>

Question: Is the die fair? = Does it have the uniform distribution?

Example 2
Our hypothesis is that our classifier accuracy is 78%. However, a test on 100 randomly chosen instances gives the following result

<table>
<thead>
<tr>
<th>correct</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>19</td>
</tr>
</tbody>
</table>

Question: Should we reject the hypothesis?
Pearson’s χ^2 goodness-of-fit test is based on the following formula for Pearson’s cumulative test statistic

$$X^2 = \sum_{i=1}^{m} \frac{(O_i - E_i)^2}{E_i}$$

If the observed variables O_i have multinomial distribution, then Pearson’s cumulative test statistic X^2 has approximately χ^2_{m-1} distribution.
Goodness-of-fit test — example

Example based on real data

<table>
<thead>
<tr>
<th>SENSES</th>
<th>estimated probabilities</th>
<th>test set observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>cord</td>
<td>9.2%</td>
<td>37</td>
</tr>
<tr>
<td>division</td>
<td>8.9%</td>
<td>51</td>
</tr>
<tr>
<td>formation</td>
<td>8.1%</td>
<td>52</td>
</tr>
<tr>
<td>phone</td>
<td>10.6%</td>
<td>44</td>
</tr>
<tr>
<td>product</td>
<td>53.5%</td>
<td>268</td>
</tr>
<tr>
<td>text</td>
<td>9.8%</td>
<td>48</td>
</tr>
</tbody>
</table>

```r
> x = c(37, 51, 52, 44, 268, 48)
> p = c(9.2, 8.9, 8.1, 10.6, 53.5, 9.8)/100
```
Examination requirements

- Curse of dimensionality – what is the issue
- Feature selection – principles and heuristics
 - Feature importances generated by Random Forests and AdaBoost
- Bayes classifier and Bayes error – definition and meaning
- Chi-square tests – theory and practical use
 - Independence test
 - Goodness-of-fit test