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Ensemble learning methods

Outline
• Decision Trees – deeper learning details and overfitting

• Combining classifiers into ensembles – general scheme

• Generating random samples by bootstrapping

• Bagging vs. boosting

• Bagging – example classifier

• Random Forests

• Simple boosting – the regression case

• Adaptive boosting – classification with AdaBoost
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Historical excursion

• ID3 ∼ Iterative Dichotomiser
• AID ∼ Automatic Interaction Detection
• CART ∼ Classification and Regression Trees

Probably most well-known is the “C 5.0” algorithm (Quinlan), which has become the
industry standard.
Packages in R: rpart
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Building a classification tree from training data

We work with decisions on the value of only a single feature

• For each categorical feature Aj having values Values(Aj) = {b1, b2, ..., bL}

is xj = bi? as i = 1, ..., L

• For each categorical feature Aj

is xj ∈ a subset ∈ 2Values(Aj )?

• For each numerical feature Aj

is xj ≤ k?, k ∈ (−∞,+∞)
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Building a classification tree from training data

Which decision is the best?

• Focus on the distribution of target class values in the associated subset of
training examples.

• Then select the decision that splits training data into subsets as pure as
possible.
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Building a classification tree from training data

Which decision is the best?

We say a data set is pure (or homogenous) if it contains only a single class. If a
data set contains several classes, then the data set is impure (or heterogenous).

Example:

⊕: 5, 	: 5 ⊕: 9, 	: 1
heterogenous almost homogenous

high degree of impurity low degree of impurity
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Building a classification tree from training data

Which decision is the best?
1. Define a candidate set S of splits at each node using possible decisions.

s ∈ S splits t into two subsets t1 and t2.
2. Define the node proportions p(yj |t), j = 1, . . . , k, to be the proportion of

instances 〈x, yj〉 in t.
3. Define an impurity measure i(t), i.e. splitting criterion, as a non-negative

function Φ of the p(y1|t), p(y2|t), . . . , p(yk |t),

i(t) = Φ(p(y1|t), p(y2|t), . . . , p(yk |t)), (1)

such that
• Φ( 1

k ,
1
k , ...,

1
k ) = max , i.e. the node impurity is largest when all examples are

equally mixed together in it.
• Φ(1, 0, ..., 0) = 0,Φ(0, 1, ..., 0) = 0, ...,Φ(0, 0, ..., 1) = 0, i.e. the node impurity

is smallest when the node contains instances of only one class
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Building a classification tree from training data

Which decision is the best?
4. Define the goodness of split s to be the decrease in impurity

∆i(s, t) = i(t)− (p1 ∗ i(t1) + p2 ∗ i(t2)),
where pi is the proportion of instances in t that go to ti .

5. Find split s∗ with the largest decrease in impurity:
∆i(s∗, t) = maxs∈S∆i(s, t).

6. Use splitting criterion i(t) to compute ∆i(s, t) and get s∗.
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Building a classification tree from training data

Which decision is the best?

Splitting criteria – examples that are really used
• Misclassification Error – i(t)ME

• Information Gain – i(t)IG
• Gini Index – i(t)GI
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Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)ME = 1−maxj=1,...,kp(yj |t) (2)

Example:

⊕: 0, 	: 6 ⊕: 1, 	: 5 ⊕: 2, 	: 4 ⊕: 3, 	: 3

i(t)ME 1− 6
6 = 0 1− 5

6 = 0.17 1− 4
6 = 0.33 1− 3

6 = 0.5
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Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)IG = −
k∑

j=1
p(yj |t) ∗ log p(yj |t). (3)

Recall the notion of entropy H(t), i(t)IG = H(t).

Gain(s, t) = ∆i(s, t)IG (4)
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Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)GI = 1−
k∑

j=1
p2(yj |t) =

k∑
j=1

p(yj |t)(1− p(yj |t)). (5)
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Building a classification tree from training data

Which decision is the best?
Splitting criteria

⊕: 0 ⊕: 1 ⊕: 2 ⊕: 3
	: 6 	: 5 ⊕: 4 ⊕: 3

Gini 0 0.278 0.444 0.5
Entropy 0 0.65 0.92 1.0
ME 0 0.17 0.333 0.5

For two classes (k = 2), if p is the proportion of the class "1", the measures are:
• Misclassification error: 1−max(p, 1− p)
• Entropy: −p ∗ log p − (1− p) ∗ log(1− p)
• Gini: 2p ∗ (1− p)
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Building a classification tree from training data
Which decision is the best?
Splitting criteria
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Building a regression tree from training data

Again, we work with decisions on the value of only a single feature

Which decision is the best?

Splitting criterion – usually used
• Squared Error – i(t)SE

i(t)SE = 1
|t|
∑
xi∈t

(yi − y t)2,

where y t = 1
|t|
∑

xi∈t yi .
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Building decision tree from training data

The recursive binary splitting is stopped when a stopping criterion is fulfilled.
Then a leaf node is created with an output value.

Stopping criteria, e.g.
• the leaf node is associated with less than five training instances
• the maximum tree depth has been reached
• the best splitting criteria is not greater than a certain threshold
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Building a decision tree from training data

Overfitting can be avoided by
• applying a stopping criterion that prevents some sets of training instances
from being subdivided,
• removing some of the structure of the decision tree after it has been
produced.

Preferred strategy
Grow a large tree T0, stop the splitting process when only some minimum node
size (say 5) is reached. Then prune T0 using some pruning criteria.
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Decision trees learning parameters

2 phases of decision tree learning:
• growing
• pruning

Learning parameters are used to control these two phases:

• when to stop growing
• how much to prune the tree

... to avoid overfitting and improve performance
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Learning parameters in rpart

rpart.control

minsplit
• the minimum number of observations that must exist in a node in order for a

split to be attempted
cp
• complexity parameter, influences the depth of the tree

... and others, see ?rpart.control

T: try to set different cp and minsplit values in the M1 model learning and
observe the resulting tree
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cp parameter

Any split that does not decrease the relative training error by a factor of cp is
not attempted

⇒ That means, the learning algorithm measures for each split how it improves the
tree relative error and if the improvement is too small, the split will not be
performed.

Relative error is the error relative to the misclassification error (without any
splitting relative error is 100%)

NPFL054, 2018 Hladká & Holub Lecture 7, page 20/48



How to choose the optimal cp value?
> m = rpart(profits ~ category + sales + assets + marketvalue,

data=F[data.train, 1:8], cp=0.001)
> m$cptable

CP nsplit rel error xerror xstd
1 0.543259557 0 1.0000000 1.0482897 0.03178559
2 0.027162978 1 0.4567404 0.4607646 0.02673551
3 0.007042254 3 0.4024145 0.4446680 0.02640028
4 0.006036217 6 0.3762575 0.4507042 0.02652763
5 0.005030181 8 0.3641851 0.4567404 0.02665301
6 0.004024145 15 0.3279678 0.4768612 0.02705703
7 0.003018109 19 0.3118712 0.4688129 0.02689795
8 0.002012072 21 0.3058350 0.4869215 0.02725122
9 0.001006036 23 0.3018109 0.5171026 0.02780383
10 0.001000000 25 0.2997988 0.5412475 0.02821490

rel error relative error on training data

xerror relative error in x-fold cross-validation

xstd standard deviation of xerror on x validation folds
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How to choose the optimal cp value?
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Ensemble classifiers – a motivation exercise

Consider the following task – we have a binary classification problem and a
number of predictors, each with error less than 0.5. Will the resulting majority
voting ensemble have an error lower than the single classifers?

Depends on the accuracy and the diversity of the base learners!

Illustrative example
Particular settings – assume that you have
• 21 classifiers
• each with error p = 0.3
• their outputs are statistically independent

Compute the error of the ensemble under these conditions!
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Solution of the exercise

How many classifiers will produce error output?
Key idea: The number of them will be binomially distributed! ∼ Bi(21, 0.3)

> plot(0:21, dbinom(0:21, 21, 0.3))
> dbinom(11, 21, 0.3)
[1] 0.01764978
> pbinom(10, 21, 0.3)
[1] 0.9736101
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Conslusion: Accuracy of the ensemble will be more than 97.3%!
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General scheme of combining classifiers
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Resampling approach

Resampling can be used as a way to produce diversity among base learners

• Distribute the training data into K portions

• Run the learning process to get K different models

• Collect the output of the K models use a combining function to get a final
output value
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Bootstrapping principle

• New data sets Data1, . . . , DataK are drawn from Data with replacement,
each of the same size as the original Data, i.e. n.

• In the i-th step of the iteration, Datai is used as a training set, while the
examples {x | x ∈ Data ∧ x /∈ Datai} form the test set.

• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick it
after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and the
error estimate will be pessimistic. So the solution is to repeat the process
many times.
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Same algorithm, different classifiers
Combining classifiers to improve the performance

Ensemble methods – key ideas
• combining the classification results from different classifiers to produce the

final output
• using (un)weighted voting
• different training data – e.g. bootstrapping
• different features
• different values of the relevant paramaters
• performance: complementarity −→ potential improvement

Two fundamental approaches
• Bagging works by taking a bootstrap sample from the training set
• Boosting works by changing the weights on the training set
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Bagging and boosting — the difference

• Bagging: each predictor is trained independently

• Boosting: each predictor is built on the top of previous predictors trained
– Like bagging, boosting is also a voting method. In contrast to bagging,
boosting actively tries to generate complementary learners by training the
next learner on the mistakes of the previous learners.
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Are ensembles effective?

Combining multiple learners
• the more complementary the learners are, the more useful their combining is
• the simpliest way to combine multiple learners is voting
• in weighted voting the voters (= base-learners) can have different weights

Unstable learning
• learning algorithm is called unstable if small changes in the training set cause

large differences in generated models
• typical unstable algorithm is the decision trees learning
• bagging or boosting techniques are a natural remedy for unstable algorithms
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Bagging

• Bagging is a voting method that uses slightly different training sets
(generated by bootstrap) to make different base-learners. Generating
complementary base-learners is left to chance and to unstability of the
learning method.

• Generally, bagging can be combined with any approach to learning.
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Bagging – algorithm

Bootstrap AGGregatING
1 for i ← 1 to K do
2 Traini ← bootstrap(Data)
3 hi ← TrainPredictor(Traini)

Combining function
• Classification: hfinal(x) = MajorityVote(h1(x), h2(x), . . . , hK(x))
• Regression: hfinal(x) = Mean(h1(x), h2(x), . . . , hK(x))
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Random Forests

• an ensemble method based on decision trees and bagging

• builds a number of random decision trees and then uses voting

• introduced by L. Breiman (2001), then developed by L. Breiman and
A. Cutler

• very good (state-of-the-art) prediction performance

• a nice page with description
www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

• important: Random Forests helps to
• avoid overfitting (by random sampling the training data set)
• select important/useful features (by random sampling the feature set)
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Building Random Forests

The algorithm for building a tree in the ensemble
1 Having a training set of the size n, sample n cases at random – with

replacement, and use the sample to build a decision tree.

2 If there are M input features, choose a less number m� M. When building
the tree, at each node a random sample of m features is selected as split
candidates from the full set of M available features. Then the best split on
these m features is used to split the node. A fresh sample of m features is
taken at each split.
– m is fixed for the whole procedure

3 Each tree is grown to the largest extent possible. There is no pruning.

The more trees in the ensemble, the better.
There is no risk of overfitting!
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Regularized Random Forests

• a recent extension of the original Random Forest
– introduced by Houtao Deng and George Runger (2012)

• produces a compact feature subset

• provides an effective and efficient feature selection solution for many practical
problems

• overcomes the weak spot of the ordinary RF: Random Forest importance
score is biased toward the variables having more (categorical) values

• a useful page: https://sites.google.com/site/houtaodeng/rrf
– a presentation
– a sample code
– links to papers
– a brief explanation of the difference between RRF and guided RRF
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R packages for Random Forests

• randomForest: Breiman and Cutler’s random forests for classification and
regression
– Classification and regression based on a forest of trees using random inputs.

• RRF: Regularized Random Forest
– Feature Selection with Regularized Random Forest. This package is based
on the ’randomForest’ package by Andy Liaw. The key difference is the RRF
function that builds a regularized random forest.
– http://cran.r-project.org/web/packages/RRF/index.html

• party: A Laboratory for Recursive Partytioning
– a computational toolbox for recursive partitioning
– cforest() provides an implementation of Breiman’s random forests
– extensible functionality for visualizing tree-structured regression models is
available
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Boosting

Boosting combines the outputs of many “weak” classifiers (“rules of thumb”) to
produce a powerfull “commitee.”

Motivation
• How to extract rules of thumb that will be the most useful?
• How to combine moderately accurate rules of thumb into a single highly

accurate prediction rule?

Basic idea
• Boosting is a method that produces a very accurate predictor by combininig

rough and moderately accurate predictors.
• It is based on the observation that finding many rough predictors (rules of

thumb) can be easier than finding a single, highly accurate predictor.
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Simple boosting with regression trees

1 Initialization: Set h(x) = 0 and ri = yi for all i = 1, . . . , n in the training set

2 For b = 1, . . . ,B, repeat
(a) Fit a tree hb with only d splits to the training set (X , r)
(b) Update h by adding the new tree

h(x)←− h(x) + λhb(x)
(c) Update the residuals

ri ←− ri − λhb(xi)

3 Output the boosted model

h(x) =
B∑

b=1
λhb(x)
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Boosting with regression trees – tuning parameters

• The number of trees B

• The shrinkage parameter λ

• The number d of splits in each tree
— trees with just d = 1 split are called “stumps”

NPFL054, 2018 Hladká & Holub Lecture 7, page 39/48



Boosting — Adaboost (Adaptive Boosting)

AdaBoost is a boosting method that repeatedly calls a given weak learner, each
time with different distribution over the training data. Then we combine these
weak learners into a strong learner.

• originally proposed by Freund and Schapire (1996)

• great success
— “AdaBoost with trees is the best off-the-shelf classifier in the world.”

(Breiman 1998)

— “Boosting is one of the most powerful learning ideas introduced
in the last twenty years.” (Hastie et al, 2009)
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Boosting — Adaboost (Adaptive Boosting)

Key questions
• How to choose the distribution?
• How to combine the weak predictors into a single predictor?
• How many weak predictors should be trained?

Schapire’s strategy: Change the distribution over the examples in each iteration,
feed the resulting sample into the weak learner, and then combine the resulting
hypotheses into a voting ensemble, which, in the end, would have a boosted
prediction accuracy.
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Binary classification and AdaBoost.M1

AdaBoost.M1 (Freund and Schapire, 1997) is the most popular boosting
algorithm

• Consider a binary classification task with the training data

Data = {〈xi , yi〉 : xi ∈ X, yi ∈ {−1,+1}, i = 1, . . . , n}

• We need to define distribution D over Data such that
n∑

i=1
Di = 1.

• Assumption: a weak classifier ht has the property

errorD(ht) < 1/2.
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Adaboost (Adaptive Boosting) — key idea
Classifiers are trained on weighted versions of the original training data set, and
then combined to produce a final prediction

• Training examples −→ h1(x)
↓

• Weighted examples −→ h2(x)
↓

• Weighted examples −→ h3(x)
↓
...

• Weighted examples −→ hM(x)

Final hypothesis h(x) = sign
M∑
t=1

αtht(x), where αt are computed by the

boosting algorithm, and weight the contribution of each respective ht
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AdaBoost – iterative algorithm

• Initialize the training distribution D1(i) = 1/n for i = 1, . . . , n
• At each step t

• Learn ht using Dt : find the weak classifier ht with the minimum weighted

sample error errorDt (ht) =
n∑

i=1

Dt(i) δ(h(xi) 6= yi)

• Set weight αt of ht based on the sample error

αt = 1
2 ln

(
1− errorDt (ht)

errorDt (ht)

)
• Update the training distribution

Dt+1 = Dt e−αtyiht (xi )/Zt where Zt is a normalization factor

• Stop when impossible to find a weak classifier being better than chance

• Output the final classifier hfinal(x) = sign
T∑
t=1

αtht(x)
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AdaBoost – training data weighting

Constructing Dt

• On each round, the weights of incorrectly classified instances are increased so
that the algorithm is forced to focus on the hard training examples.

• D1(i) = 1/n for i = 1, . . . , n

• given Dt and ht (i.e. update Dt):

Dt+1(i) = Dt(i)
Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

= Dt(i)
Zt

e−αtyiht(xi ),

where Zt is normalization constant Zt =
∑

i Dt(i) e−αtyiht(xi )

• αt measures the importance that is assigned to ht

As the iterations proceed, examples that are difficult to classify correctly
receive ever-increasing influence
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AdaBoost – base learners weighting

Weights of the base learners αt

• errorDt (ht) < 1
2 ⇒ αt > 0

• the smaller the error, the bigger the weight of the (weak) base learner

• the bigger the weight, the more impact on the (strong) resulting classifier

errorDt (h1) < errorDt (h2) =⇒ α1 > α2

• Dt+1 = 1
Zt
Dt e−αtyiht(xi )

The weights of correctly classified instances are reduced while weights of
misclassified instances are increased.
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AdaBoost.M1 — multiclass problem

Multiclass problem – generalization of the two-class case

• Assume classification task where Y = {y1, . . . , yk}

ht : X → Y ,

Dt+1(i) = Dt(i)
Zt
·
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

hfinal(x) = argmaxy∈Y
∑

{t | ht(x)=y}

αt .
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Summary of examination requirements

• Decision Trees – splitting criteria

• Decision Trees – pruning and overfitting

• Ensembles, bagging, boosting – general principles

• Random Forests

• Boosting with regression trees

• AdaBoost
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