
Introduction to Machine Learning
NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

NPFL054, 2017 Hladká & Holub Lecture 4, page 1/47

http://ufal.mff.cuni.cz/course/npfl054


Lecture 4 — Evaluation and Statistical tests

Outline
I. Remarks on evaluation

• Sample error and generalization error – a brief recap
• Cross-validation, leave-one-out, bootstrap heuristic
• Binary classifier evaluation metrics

II. Statistical hypothesis testing
• General principles of hypothesis testing
– classical examples, fair die, classifier accuracy
– null hypothesis, test statistic, p-values, significance and confidence levels
– confidence intervals

• Testing the mean of normal population
– t-test and confidence interval for the mean

• Chi-square tests
– goodness-of-fit test, independence test
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Fundamentals of classifier evaluation

Definition (Empirical and sample error)
Given a sample set S, the empirical error (aka observed error) of classifier h is
the observed number of errors that h does on S.

The sample error of hypothesis h with respect to target function f and data
sample S is the proportion of examples that h misclassifies

errorS = 1
n
∑
x∈S

δ(f (x) 6= h(x))

where
• n = |S| is the sample size
• f (x) is the true classification of example x
• h(x) is the predicted class of example x
• δ(f (x) 6= h(x)) is 1 if f (x) 6= h(x), and 0 otherwise.

NPFL054, 2017 Hladká & Holub Lecture 4, page 3/47



Sample error and generalization error

Definition (Generalization error)
The generalization error (aka true error) of hypothesis h with respect to target
function f and distribution D is the probability that h will misclassify an instance
drawn randomly according to D.

errorD = Pr
x∈D
{δ(f (x) 6= h(x)}

Generalization error – how to estimate?
Typically, the generalization error is not an observable quantity because the
distribution D is usually unknown.

−→ The question is

How well does errorS estimate errorD?
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Classifier evaluation

The evaluation process

Is it enough to test your classifier on one test set?
You can get a good/bad result by chance!
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The ideal evaluation

The more test data, the more confident evaluation . . .
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k-fold cross-validation
Development working data is partitioned into k subsets
of equal (or approximately equal) size. Then you do k iterations.

In the i-th step of the iteration, the i-th subset is used as a test set, while the
remaining parts form a training set.

Example

NPFL054, 2017 Hladká & Holub Lecture 4, page 7/47



Using k-fold cross-validation: Which k is the best?

The goal: get a good estimate of generalization error
⇒ low bias: not to underestimate, nor overestimate
⇒ low variance: low sensitivity to the data sample

Small k (k close to 2)
−→ small training sets, error rate tends to be overestimated

Large k (up to the data set size)
−→ could be computationally demanding = main practical problem
−→ small test sets, training sets are almost identical
−→ low bias, but high variance

Heuristic recommendation: cca 5 ≤ k ≤ 10
−→ moderate bias, moderate variance, moderate computational cost
−→ has been empirically shown to yield good eror rate estimates

Stratified cross-validation – each class should be represented in roughly the
same proportion as in the entire data set
−→ if data sets are small, the risk of purely ramdom split should be avoided
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Leave-one-out cross-validation (LOOCV)

Extreme case: k = n, where n is the size of the development data set
−→ leave-one-out method (LOOCV)

Advantages
• using maximum training sets → low bias
• no randomness in data splitting

Disadvantages
• training sets are almost identical(!) → high bias

– LOOCV averages the outputs of n models that are highly positively correlated
with each other
– high bias is the reason why k-fold CV with moderate k often gives more accurate
estimates of the test error than does LOOCV

• may be (typically) too time-consuming
• similar class distribution in training and test data is not guaranteed

– The extreme case: 50% class A, 50% class B. Then the trivial MFC classifier has
true error 50%, but LOOCV estimate is 100% accuracy!
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Recommended evaluation procedure

Typically, use k-fold cross-validation for k = 5 or k = 10 for estimating the
performance (accuracy, etc.)

Then compute
• the mean value of performance estimate
• standard deviation
• confidence intervals

Report mean values of performance estimates and their standard deviations, or
(better) 95% confidence intervals around the mean.

NPFL054, 2017 Hladká & Holub Lecture 4, page 10/47



A simple sampling method

Motivation: When the total number of examples is very small (≤ 50), even the
leave-one-out method becomes unreliable.

• repeat 2-fold cross-validation (e.g. 100 times)

• it has been shown that the average quality of estimation is better than the
leave-one-out method

NPFL054, 2017 Hladká & Holub Lecture 4, page 11/47



Bootstrapping principle

Bootstrap sampling – generating different training subsets
• New data sets D1, . . . , DK are drawn from an original data set D

with replacement, each of the same size as the original |D| = n.

• Then in the i-th step of the iteration, Di is used as a training set, while all
the other examples x ∈ D \ Di form the actual test set.

How many examples will appear in the bootstrap samples?
• The probability that we pick an instance is 1/n, and the probability that we
do not pick an instance is 1− 1/n. The probability that we do not pick an
instance after n draws is (1− 1/n)n ≈ e−1 .= 0.368.

• It means that for training the system will not use 36.8% of the data, and
thus the error estimate will be rather pessimistic.
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A simple bootstrap heuristic
• Suppose a development data set of n examples
• An optimistic error rate e` of the model is obtained by building and testing
on all available examples

• Train a model using all n examples
– Get training error = optimistic estimate e`.

• A pesimistic error rate e0 is obtained by make 200 bootstrap samples
• Randomly select n examples with replacement and train a model
– on average, it will be 63.2% of the original set

• Test the model on the examples not used in the training
– on average, it will be 36.8% of the original set

• Get the test error

– Get mean test error as an average quality = pesimistic estimate e0.
• Finally, the error “.632 estimator” is defined as a linear combination

e = 0.368 · e` + 0.632 · e0Notes
The .632 estimator can break down in overfitting situations (when e` is close to 0).
The error estimation obtained by a hundred 2-fold CV runs may be used instead of e0.
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Evaluation of binary classifiers
Confusion matrix

Binary classification aka= 2-class classification aka= 0/1 classification

In binary classification tasks, examples are divided into two disjoint subsets:
• (true) positive examples – “to be retrieved” (ones)
• (true) negative examples – “not to be retrieved” (zeros)

# Example of confusion matrix for binary classification
> table(cv.test$Class, pred.test)

prediction
0 1

true 0 580 69
1 37 144

>
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Evaluation of binary classifiers
Confusion matrix

Predicted class
Positive Negative

True class Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

• ‘Trues’ are examples correctly classified
• ‘Falses’ are examples incorrectly classified
• ‘Positives’ are examples predicted as positives (correctly or incorrectly)
• ‘Negatives’ are examples predicted as negatives (correctly or incorrectly)
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Evaluation of binary classifiers
Confusion matrix
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Evaluation of binary classifiers
Basic performance measures

Measure Formula
Precision TP/(TP+FP)

Recall/Sensitivity TP/(TP+FN)
Specificity TN/(TN+FP)
Accuracy (TP+TN)/(TP+FP+TN+FN)

Very often you need to combine both good precision and good recall. Then
you usually use balanced F-score, so called F-measure

F = 2 Precision ∗ Recall
Precision + Recall
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General principles of hypothesis testing
Example 1 – historical

Lady tasting tea – a famous example introduced by R. Fisher (1935)

The example is based on a real story. Fisher met a lady (Muriel Bristol) who
claimed to be able to tell whether the tea or the milk was added first to a cup.

First we need to design an experiment to test her ability.
Then we need to meaningfully evaluate the result of the experiment.

Lady tasting tea – Experiment 1
The Lady is provided with 2 randomly ordered cups of tea – 1 prepared by first
adding milk, the other prepared by first adding the tea. She should select the one
prepared by first adding milk.

Result: The Lady selected the cup prepared by first adding milk.

What can we conclude from this experiment?
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Lady tasting tea – Experiment 2
We repeat the Experiment 1 four times.

The Lady is provided with 4 pairs of 2 randomly ordered cups of tea – in each pair
one cup is prepared by first adding milk, the other prepared by first adding the
tea. From each pair she should select the one prepared by first adding milk.

Result: The Lady selected the 4 cups prepared by first adding milk.

What can we conclude from this experiment?

Obviously, the Experiment 2 is more convincing than the Experiment 1.
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Lady tasting tea – Experiment 3 (Fisher’s)
In fact, Fisher proposed to give her eight cups, four of each variety, in random
order.

The Lady is provided with 8 randomly ordered cups of tea – 4 prepared by first
adding milk, 4 prepared by first adding the tea. She should select the 4 cups
prepared by first adding milk.

Result: The Lady selected the 4 cups prepared by first adding milk.

What can we conclude from this experiment?

Both Experiment 2 and Experiment 3 indicate that the results are probably
not random. Which one is more convincing?
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Fisher’s experiment – random selection

Compute the probability of getting the observed result if the selection is random?
# the eight cups -- four T and four F
> cups = c(T,T,T,T,F,F,F,F)

# one million random experiments
> N = 10^6; s = numeric(N)
> for(i in 1:N) s[i] = sum(sample(cups, 4, rep=F))
> table(s)
s

0 1 2 3 4
14433 228323 514215 228763 14266

# the probability of getting 4 T at random is
> mean(s == 4)
[1] 0.014266

Or, since the statistic has hypergeometric distribution, you can simply do
> dhyper(4,4,4,4)
[1] 0.01428571
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Lady tasting tea
– interpretation and analysis of the experiments

How to interpret the three experiments in the framework of “statistical hypothesis
testing” originally coined by R. Fisher?

• The null hypothesis H0 is that the Lady has no such ability to recognize
cups prepared by first adding milk.

– null hypothesis means that she (hypothetically) does random selection

• The test statistic is a simple count of the number of successes in selecting
the correct cups.

• The probability of getting the observed result (= the statistic value) at
random is

• 50% in the Experiment 1
• 6.25% in the Experiment 2
• 1.43% in the Experiment 3
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Rejecting the null hypothesis based on p-value

Assuming that the null hypothesis is true, the probability of getting the
observed result in Experiment 3 is only 1.43%, which could be considered as a
good reason to reject the null hypothesis.

P-value
In statistical tests, p-value is the probability of obtaining a test statistic result at
least as extreme as the one that was actually observed, assuming that the null
hypothesis is true.

The null hypothesis is rejected if the p-value is small enough

So, we need to set a threshold for the p-value.
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Test significance level α and confidence level 1− α

Could we make wrong decision when rejecting the null hypothesis?
• Yes, in the example above there is 1.43% chance of getting the result even if
the Lady selected randomly!

• Such an error is called error of the first kind or “Type I Error”.

The null hypothesis should be only rejected when an error is very unlikely
• Therefore we choose a significance level α as a threshold for p-value

– α is the test’s probability of incorrectly rejecting the null hypothesis
• Then the null hypothesis will be only rejected when p-value < α

• Usually, α = 5% or 1% or 0.5% or something like that
• The corresponding value 1− α is called confidence level

– which is the probability of not doing the error of the first kind

Remember: The significance level α is a property of the test itself,
while p-value is derived from the observed data!
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A remark on Czech terms

Česká terminologie
• significance level α = hladina významnosti testu

• confidence level 1− α = hladina spolehlivosti testu

• interval hodnot statistiky (e.g. t-values), které lze pozorovat
s pravděpodobností (pouze) α se nazývá kritický obor
−→ pokud statistika padne do kritického oboru, zamítáme H0

• α je míra rizika, že uděláme chybu I. druhu, tj. že chybně zamítneme H0,
ačkoliv ona platí

• p-value = p-hodnota = dosažená hladina testu
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Example 2 – Is your die fair?

You have got only 10 sixes when rolling a die 100 times
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Example 3 – Classifier accuracy

Example

Test sample size = 100; there are 73 correctly classified instances.
– Is it possible that classifier accuracy is 76%?
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Example 4 – men’s height mean

Assume that the population of men’s height is normally distributed with the
known variance σ2 = 100 and an unknown mean µ. In other words, the men’s
height will be represented by a continuous random variable X so that

X ∼ N(µ = ?, σ2 = 100).

We have a sample of n = 10 men’s heights:
> observation
[1] 174.7 178.0 195.9 181.0 181.6 197.5 184.9 167.6 173.4 175.8

Are we able to reliably estimate the mean of the population?

The best estimate is given by the sample mean:
> mean(observation)
[1] 181.04

Why do you believe that this estimate is the best one?
How confident are you about the estimated mean?
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Men’s height mean – test statistic distribution

The sample average x̄ = 1
n
∑

xi will be used as a test statistic.

• What is the distribution of the average represented by the random variable X̄
when we randomly sample the population?

Theorem
If X1, . . . ,Xn are independent and have the same distribution N(µ, σ2), then

X̄ =
n∑

i=1
Xi has the distribution N

(
µ,
σ2

n

)
.

When we formulate a hypothesis about the population mean, we will know the
hypothetical distribution of the statistic. Hence, we will be able to compute the
probability of the observed statistic.
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Men’s height mean – first example hypothesis

Let us consider the following null hypothesis about the populatin mean
H0 : µ = 190.

Under that assumption the distribution of the sample average is
X̄ ∼ N(µ = 190, σ2 = 100).

Then, what is the probability that X̄ ≤ 181.04?

The answer is 0.23%.
> pnorm(181.04, 190, sqrt(10))
[1] 0.00230278
>

Similarly, the probability that X̄ ≥ 198.96 is also 0.23%.

Conclusion
Assuming that the null hypothesis is true, the probability of obtaining the test
statistic x̄ as extreme or more extreme as the one that was actually observed is
only 0.46% (= the p-value). Hence, with the significance level α = 5% we will
reject the hypothesis.
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Men’s height mean – second example hypothesis

Let us consider the following null hypothesis about the populatin mean
H0 : µ = 180.

Under that assumption the distribution of the sample average is
X̄ ∼ N(µ = 180, σ2 = 100).

Then, what is the probability that X̄ ≥ 181.04?

The answer is 37.1%.
> 1 - pnorm(181.04, 180, sqrt(10))
[1] 0.3711244
>

Similarly, the probability that X̄ ≤ 178.96 is also 37.1%.

Conclusion
We will not reject the hypothesis. Assuming that the null hypothesis is true, the
probability of obtaining the test statistic x̄ as extreme or more extreme as the one
that was actually observed is 74.2%. If we rejected the hypothesis, we would take
the 74.2% risk of doing the error of the first kind.
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Men’s height mean – confidence interval

Obviously, hypothesized values of µ that are relatively close to the observed x̄
would not be rejected. On the other hand, values that are too far from the
observed x̄ would be rejected.

Question: What is the interval of all possibly hypothesized values of µ that
would NOT be rejected?

• to determine this interval you need to know or choose a required
significance level α

• this interval is called confidence interval for the population mean with the
confidence level 1− α
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Statistical tests – first little summary

Statistical tests are used to test a hypothesis about a population

Always we observe only a sample (often only a small one) of the population.
Then we should make a decision according to this observation.
Having the observed data we compute a test statistic.

The value of the test statistic can be
• in contradiction with the hypothesis
−→ then we reject the hypothesis

• NOT in contradiction with the hypothesis
−→ then we do not reject the hypothesis
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Example 5 – Confidence interval for the mean
of normal population with known variance σ2

Example exercise
Given the confidence level 99%, find the confidence interval for the men’s height
population mean based on the given observation. The given assumptions are:

• the men’s height population variance σ2 = 100
• the observed sample mean x̄ = 181.04
• the observed sample size n = 10

The confidence interval contains all possible values of the population mean that
could not be rejected if hypothesized at the given confidence level.

To generally derive how to compute the confidence interval we will use
standardized normal distribution and its critical values.
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Expected value and variance – basic properties

For any random variables X ,Y and any a, b ∈ R the following holds true:
• E(a + bX ) = a + b EX
• E(X + Y ) = EX + EY
• if X and Y are independent, then E(XY ) = EX EY

Variance of a random variable is defined by

varX = E(X − EX )2.

If a random variable X has finite variance, then the following holds true:
• varX = EX 2 − (EX )2

• var (a + bX ) = b2 varX
•
√

var (a + bX ) = |b|
√
varX
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Standardized random variable

Definition

If a random variable X has non-zero finite variance, then Z = X − EX√
varX

is called
standardized random variable.

Note: If Z is standardized, then EZ = 0 and varZ = 1.

Standardized normal distribution – notation

If X ∼ N(µ, σ2) then standardized variable Z = X − EX√
varX

= X − µ
σ

has the

distribution N(0, 1). Usual notation for standardized normal distribution is
• ϕ for the density,
• Φ for the distribution function,
• Φ−1 for the quantile function.
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Quantiles and critical values

Definition
Quantile function of a random variable X is defined as

F−1
X (α) = inf{x : F (x) ≥ α},

where FX is the distribution function of X and α ∈ (0, 1).

Value F−1(α) is called α-quantile.

Note: 0.5-quantile F−1(0.5) is called median.

Definition
Critical value of the standard normal distribution is defined as z(α) = Φ−1(1− α).

Note: If Z ∼ N(0, 1), then
• Pr{Z > z(α)} = α

• Pr{|Z | > z(α/2)} = α
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Computing confidence interval

Example exercise
Given the confidence level 99%, find the confidence interval for the men’s height
population mean based on the given observation. The given assumptions are:

• the men’s height population variance σ2 = 100
• the observed sample mean x̄ = 181.04
• the observed sample size n = 10

The confidence interval contains all possible values of the population mean that
could not be rejected if hypothesized at the given confidence level.

Idea of the solution
The confidence interval is a symmetric interval around the observed sample
mean x̄ . Hence, we are looking for the confidence interval radius r so that the null
hypothesis H0 : µ = µ0 is rejected if and only if |x̄ − µ0| > r .

Then the confidence interval will be given by (x̄ − r , x̄ + r).
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Assuming that H0 : µ = µ0 is valid, we have X̄ − µ0 ∼ N(0, σ2/n).

Since the significance level α, which is the probability of incorrectly rejecting the
null hypothesis, is given, we should choose the confidence interval radius r so that

Pr{|X̄ − µ0| > r} = α,

and after standardization

Pr
{∣∣∣∣ X̄ − µ0

σ/
√

n

∣∣∣∣ > r
σ/
√

n

}
= α,

which means that r
σ/
√

n
= z(α/2), and thus r = σ√

n
z(α/2).

Therefore the confidence interval for the population mean µ is(
x̄ − σ√

n
z(α/2), x̄ + σ√

n
z(α/2)

)
,

and Pr
{

X̄ − σ√
n

z(α/2) < µ < X̄ + σ√
n

z(α/2)
}

= 1− α.
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Example 6 – testing the classifier accuracy mean

You have two models, A and B, and for each of them 10 results – accuracies
obtained from 10-fold cross-validation experiment.

> A.acc
[1] 0.853 0.859 0.863 0.871 0.832 0.848 0.863 0.860 0.850 0.849

> mean(A.acc)
[1] 0.8548

> B.acc
[1] 0.851 0.848 0.862 0.871 0.835 0.836 0.860 0.859 0.841 0.843

> mean(B.acc)
[1] 0.8506

The average accuracy of A is 85.48%, while the average accuracy of B is only
85.06%.

Question: Is model A *really* better than model B?
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Using t-distribution as the principle of t-test

What if you do NOT know the variance?

When we get k different results from the cross-validation experiment, we can
assume that the values are (approximately) normally distributed. Then we use
t-test.

Theorem
If x1, . . . , xn is a random sample of size n selected from a normally distributed
population, then

T = X̄ − µ
S
√

n ∼ tn−1,

where n is the sample size, X̄ is the sample mean, S is the sample standard
deviation, µ is the population mean, T is called t-statistic, and tn−1 stands for
t-distribution with n − 1 degrees of freedom.
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Normal vs. t-distribution
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Using t-test – practical procedure

First, compute t-value T = X̄ − µ
S
√

n.
Then compare the t-value with the critical value tk(α).

Definition
Critical value tk(α) of the t-distribution tk is defined by the equation
Pr{|T | ≥ tk(α)} = α, where α is the test significance level.

Therefore Pr{−tn−1(α) < X̄ − µ
S
√

n < tn−1(α)} = 1− α

Note: Critical value corresponds to a given significance level and determines the
boundary between those samples resulting in a test statistic that leads to rejecting
the null hypothesis and those that lead to a decision not to reject the null
hypothesis. If the calculated value from the statistical test is greater than the
critical value, then the null hypothesis is rejected in favour of the alternative
hypothesis, and vice versa.
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Confidence interval for the mean µ using t-test

• If x̄ is the sample mean of a sample of the size n randomly chosen from a
normally distributed population and α is a significance level, then confidence
interval for the population mean µ is

(
x̄ − S√

n
tn−1(α), x̄ + S√

n
tn−1(α)

)

• The probability that the (true) population mean µ lies inside the confidence
interval is equal to 1− α, which is called confidence level.

Pr
{

X̄ − S√
n

tn−1(α) < µ < X̄ + S√
n

tn−1(α)
}

= 1− α
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Example 6 – checking the confidence interval

To test if the difference between the models A and B is statistically significant
we will check confidence intervals for the mean accuracy.
### Could the true mean of A accuracy be 0.8506?
> t.test(A.acc, mu=0.8506)

One Sample t-test

data: A.acc
t = 1.2195, df = 9, p-value = 0.2537
alternative hypothesis: true mean is not equal to 0.8506
95 percent confidence interval:
0.8470088 0.8625912

sample estimates:
mean of x

0.8548

We cannot reject the null hypothesis that the mean of A accuracy is equal
to 0.8506. The t-test says that the true mean of A accuracy could be between
0.847 and 0.863, which is the confidence interval at the significance level α = 5%.
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Using t-tests

When you get k different results from the cross-validation experiment,
what can you conclude then?

1 One Sample t-test
– to test if the mean of a (normally distributed) population is equal to a
given value

2 Paired Two-Sample t-test
– to test if the difference of the means of two populations is equal to zero
(or to another given value)
– assuming that the given samples contain paired individuals
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Example 7 – two-sample t-test
Using the same input data as in Example 6

### Could the true mean of the difference be equal to zero?
> t.test(A.acc, B.acc)

Welch Two Sample t-test

data: A.acc and B.acc
t = 0.8157, df = 17.803, p-value = 0.4254
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.006625999 0.015025999

sample estimates:
mean of x mean of y

0.8548 0.8506

We cannot reject the null hypothesis that the mean of the difference
between A accuracy and B accuracy is equal to 0.
Because the t-test says that the true mean of the difference could be between
−0.0066 and 0.015, which is the confidence interval at the significance level
α = 5%.
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