
Introduction to Machine Learning
NPFL 054

http://ufal.mff.cuni.cz/course/npfl054

Barbora Hladká
hladka@ufal.mff.cuni.cz

Martin Holub
holub@ufal.mff.cuni.cz

Charles University,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

NPFL054, 2017 Hladká & Holub Lecture 2, page 1/81

http://ufal.mff.cuni.cz/course/npfl054

Lecture 2 — Decision Trees

Outline

• Brief recap of the last lesson

• Entropy and conditional entropy
— definition, calculation, and meaning
— application for feature selection

• Decision Trees
— building Decision Trees and using them as prediction function

NPFL054, 2017 Hladká & Holub Lecture 2, page 2/81

WSD task — distribution of target class values

> examples <- read.table("wsd.development.csv", header=T)
> plot(examples$SENSE)
>

NPFL054, 2017 Hladká & Holub Lecture 2, page 3/81

Amount of information contained in a value?

How much information do you gain when you observe a random event?
According to the Information Theory, amount of information contained in an
event is given by

I = log2
1
p = − log2 p

where p is probability of the event occurred.
Thus, the lower probability, the more information you get when you observe an
event (e.g. a feature value). If an event is certain (p = 100%), then the amount
of information is zero.

NPFL054, 2017 Hladká & Holub Lecture 2, page 4/81

Amount of information in SENSE values

probability distribution of SENSE
> round(table(examples$SENSE)/nrow(examples), 3)

cord division formation phone product text
0.095 0.091 0.084 0.108 0.522 0.100

>

amount of information contained in SENSE values
> round(-log2(table(examples$SENSE)/nrow(examples)), 3)

cord division formation phone product text
3.391 3.452 3.574 3.213 0.939 3.324

>

What is the average amount of information that you get when you observe
values of the attribute SENSE?

NPFL054, 2017 Hladká & Holub Lecture 2, page 5/81

Entropy

The average amount of information that you get when you observe random values
is

∑
value

Pr(value) · log2
1

Pr(value) = −
∑
value

Pr(value) · log2 Pr(value)

This is what information theory calls entropy.
• Entropy of a random variable X is denoted by H(X)

– or, H(p1, p2, . . . , pn) where
n∑

i=1
pi = 1

• Entropy is a measure of the uncertainty in a random variable
– or, measure of the uncertainty in a probability distribution

• The unit of entropy is bit; entropy says how many bits on average you
necessarily need to encode a value of the given random variable

NPFL054, 2017 Hladká & Holub Lecture 2, page 6/81

Properties of entropy

Normality
H(12 ,

1
2) = 1

Continuity
H(p, 1− p) is a continuous function

Non negativity and maximality

0 ≤ H(p1, p2, . . . , pn) ≤ H(1n ,
1
n , . . . ,

1
n)

Symmetry

H(p1, p2, . . . , pn) is a symmetric function of its arguments

Recursivity

H(p1, p2, p3, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H(p1
p1 + p2

,
p2

p1 + p2
)

NPFL054, 2017 Hladká & Holub Lecture 2, page 7/81

Entropy of SENSE

Entropy of SENSE is 2.107129 bits.
probability distribution of SENSE
> p.sense <- table(examples$SENSE)/nrow(examples)
>
entropy of SENSE
> H.sense <- - sum(p.sense * log2(p.sense))
> H.sense
[1] 2.107129

The maximum entropy value would be log2(6) = 2.584963
if and only if the distribution of the 6 senses was uniform.
> p.uniform <- rep(1/6, 6)
> p.uniform
[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
>
entropy of uniformly distributed 6 senses
> - sum(p.uniform * log2(p.uniform))
[1] 2.584963

NPFL054, 2017 Hladká & Holub Lecture 2, page 8/81

Distribution of feature values – A16

> levels(examples$A16)
[1] "‘‘" "," ":" "." "CC" "CD" "DT" "IN" "JJ"

[10] "JJR" "JJS" "NN" "NNS" "POS" "PRP" "PRP$" "RB" "RP"
[19] "-RRB-" "SYM" "VB" "VBD" "VBG" "VBN" "VBP" "VBZ" "WDT"
[28] "WP$" "X"
> plot(examples$A16)
>

NPFL054, 2017 Hladká & Holub Lecture 2, page 9/81

Distribution of feature values – A17

> levels(examples$A17)
[1] "‘‘" "," ":" "." "CC" "CD" "DT" "IN" "JJ"

[10] "JJR" "-LRB-" "MD" "NN" "NNS" "PRP" "RB" "RBR" "RP"
[19] "-RRB-" "TO" "VB" "VBD" "VBG" "VBN" "VBP" "VBZ" "WDT"
[28] "WRB"
> plot(examples$A17)
>

NPFL054, 2017 Hladká & Holub Lecture 2, page 10/81

Distribution of feature values – A4

> levels(examples$A4)
[1] "0" "1"
>

NPFL054, 2017 Hladká & Holub Lecture 2, page 11/81

Entropy of features

Entropy of A16 is 2.78 bits.
> p.A16 <- table(examples$A16)/nrow(examples)
> H.A16 <- - sum(p.A16 * log2(p.A16))
> H.A16
[1] 2.777606

Entropy of A17 is 3.09 bits.
> p.A17 <- table(examples$A17)/nrow(examples)
> H.A17 <- - sum(p.A17 * log2(p.A17))
> H.A17
[1] 3.093003

Entropy of A4 is 0.27 bits.
> p.A4 <- table(examples$A4)/nrow(examples)
> H.A4 <- - sum(p.A4 * log2(p.A4))
> H.A4
[1] 0.270267

NPFL054, 2017 Hladká & Holub Lecture 2, page 12/81

Conditional entropy H(C | A)

How much does target class entropy decrease if we have the knowledge of
a feature?

The answer is conditional entropy:

H(C |A) = −
∑

y∈C ,x∈A
Pr(y , x) · log2 Pr(y | x)

NPFL054, 2017 Hladká & Holub Lecture 2, page 13/81

Conditional entropy and mutual information

WARNING
There are NO SETS in this picture! Entropy is a quantity, only a number!

NPFL054, 2017 Hladká & Holub Lecture 2, page 14/81

Conditional entropy and mutual information

Mutual information measures the amount of information that can be
obtained about one random variable by observing another.

Mutual information is a symmetrical quantity.

H(C)− H(C |A) = I(C ;A) = H(A)− H(A |C)

Another name for mutual information is information gain.

NPFL054, 2017 Hladká & Holub Lecture 2, page 15/81

Conditional entropy – feature A4

NPFL054, 2017 Hladká & Holub Lecture 2, page 16/81

Conditional entropy – feature A19

NPFL054, 2017 Hladká & Holub Lecture 2, page 17/81

Conditional entropy – feature A17

NPFL054, 2017 Hladká & Holub Lecture 2, page 18/81

User-defined functions in R

Structure of a user-defined function
myfunction <- function(arg1, arg2, ...){

... statements ...
return(object)

}

Objects in a function are local to the function.

Example – a function to calculate entropy
> entropy <- function(x){
+ p <- table(x) / NROW(x)
+ return(-sum(p * log2(p)))
+ }
>

invoking the function
> entropy(examples$SENSE)
[1] 2.107129

NPFL054, 2017 Hladká & Holub Lecture 2, page 19/81

Conditional entropy and feature selection

Summary
• Information theory provides a measure for comparing how the knowledge
of features statistically contribute to the knowledge about target class.

• The lower conditional entropy H(C |A), the better chance that A is a useful
feature.

• However, since features typically interact, conditional entropy H(C |A) should
NOT be the only criterion when you do feature selection. You need
experiments to see if a feature with high information gain really helps.

Note
Also, decision tree learning algorithm makes use of entropy when it computes
purity of training subsets.

NPFL054, 2017 Hladká & Holub Lecture 2, page 20/81

Homework

• Write your own function for computing conditional entropy in R.
New function entropy.cond(x,y) will take two factors of the same length
and will compute H(x | y).

Example use: entropy.cond(examples$SENSE, examples$A4)

NPFL054, 2017 Hladká & Holub Lecture 2, page 21/81

Entropy – Summary of Examination Requirements

You should understand and be able to explain and practically use
• entropy

• motivation
• definition
• main properties
• calculation in R

• conditional entropy
• definition and meaning
• relation to mutual information
• calculation in R
• information gain – application in feature selection

NPFL054, 2017 Hladká & Holub Lecture 2, page 22/81

Decision Tree — a learning method

Decision Tree is a learning method suitable for both classification and
regression tasks

Example classification task: WSD
see the NPFL054 web page → Materials → wsd-attributes.pdf

NPFL054, 2017 Hladká & Holub Lecture 2, page 23/81

Decision tree structure

A decision tree T = (V ,E) is a rooted tree where V is composed of internal
decision nodes and terminal leaf nodes.

• Nodes
• Root node
• Internal nodes
• Leaf nodes with TARGET OUTPUT

VALUES

• Decisions

NPFL054, 2017 Hladká & Holub Lecture 2, page 24/81

Decision tree learning from training data

Decision tree learning corresponds to building a decision tree TD = (V ,E)
based on a training data set D = {〈x, y〉 : x ∈ X , y ∈ Y }.
When building a tree, each node is associated with a set t, t ⊆ D. The root node
is associated with t = D.
Each leaf node is designated by an output value.

NPFL054, 2017 Hladká & Holub Lecture 2, page 25/81

Building a decision tree from training data

A very basic idea: Assume binary decisions
• Step 1 Create a root node.

• Step 2 Select decision d and add child nodes to an existing node.

NPFL054, 2017 Hladká & Holub Lecture 2, page 26/81

Building a decision tree from training data

Example
Associate the root node with the training set t.
Example

1. Assume decision
if A4 = TRUE .

2. Split the training set t according
to this decision into two subsets
– "yellow" and "blue".

t

SENSE ... A4 ...
FORMATION TRUE
FORMATION FALSE
PHONE TRUE
CORD TRUE
DIVISION FALSE

...

NPFL054, 2017 Hladká & Holub Lecture 2, page 27/81

Building a decision tree from training data

3. Add two child nodes, "yellow" and
"blue", to the root. Associate each
of them with the corresponding
subset tL, tR , resp.

tL

SENSE ... A4 ...
FORMATION TRUE
CORD TRUE
PHONE TRUE

...

tR

SENSE ... A4 ...
FORMATION FALSE
DIVISION FALSE

...

NPFL054, 2017 Hladká & Holub Lecture 2, page 28/81

Building a decision tree from training data

• Step 4 Repeat recursively steps (2) and (3) for both child nodes and their
associated training subsets.

• Step 5 Stop recursion for a node if a stopping criterion is fulfilled. Create a
leaf node with an output value.

NPFL054, 2017 Hladká & Holub Lecture 2, page 29/81

Prediction on test data

Once the decision tree predictor is built, an unseen instance is predicted by
starting at the root node and moving down the tree branch corresponding to the
feature values asked in decisions.

NPFL054, 2017 Hladká & Holub Lecture 2, page 30/81

Prediction on test data

Decision tree predictor for the WSD-line task

NPFL054, 2017 Hladká & Holub Lecture 2, page 31/81

Prediction on test data

Decision tree predictor for the WSD-line task
Assign the correct sense of line in the sentence "Draw a line between the points P
and Q."
True prediction: DIVISION

NPFL054, 2017 Hladká & Holub Lecture 2, page 32/81

Prediction on test data

Decision tree predictor for the WSD-line task
First, get twenty feature values from the sentence

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

0 0 0 0 0 0 0 0 1 0 0

A12 A13 A14 A15 A16 A17 A18 A19 A20

a draw X between DT IN DT line dobj

NPFL054, 2017 Hladká & Holub Lecture 2, page 33/81

Prediction on test data

Decision tree predictor for the WSD-line task
Second, get the classification of the instance using the decision tree

NPFL054, 2017 Hladká & Holub Lecture 2, page 34/81

Prediction on test data

Decision tree predictor for the WSD-line task
Assign the correct sense of line in the sentence "Draw a line that passes through
the points P and Q."
True prediction: DIVISION

NPFL054, 2017 Hladká & Holub Lecture 2, page 35/81

Prediction on test data

Decision tree predictor for the WSD-line task
First, get twenty feature values from the sentence

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

0 0 0 0 0 0 0 0 0 0 0

A12 A13 A14 A15 A16 A17 A18 A19 A20

a draw X that DT WDT VB line dobj

NPFL054, 2017 Hladká & Holub Lecture 2, page 36/81

Prediction on test data

Decision tree predictor for the WSD-line task
Second, get the classification of the instance using the decision tree

NPFL054, 2017 Hladká & Holub Lecture 2, page 37/81

Decision trees

Classification trees

• Y is a categorical output feature

Figure: Tree for predicting the sense of line
based on binary features.

Regression trees

• Y is a numerical output feature

Figure: Tree for predicting the salary of a
baseball player based on the number of
years that he has played in the major
leagues (Year) and the number of hits that
he made in the previous year (Hits). See
the ISLR Hitters data set.

NPFL054, 2017 Hladká & Holub Lecture 2, page 38/81

Historical excursion

• ID3 ∼ Iterative Dichotomiser
• AID ∼ Automatic Interaction Detection
• CART ∼ Classification and Regression Trees

Probably most well-known is the “C 5.0” algorithm (Quinlan), which has become the
industry standard.
Packages in R: rpart

NPFL054, 2017 Hladká & Holub Lecture 2, page 39/81

Building a decision tree from training data

1 Tree growing
2 Tree pruning

Basic idea: First, grow a large tree that fits the training data. Second, prune this
tree to avoid overfitting.

NPFL054, 2017 Hladká & Holub Lecture 2, page 40/81

Building a decision tree from training data

1 Tree growing
2 Tree pruning

The growing process is
based on subdividing the
feature space recursively
into non-overlapping
regions.

NPFL054, 2017 Hladká & Holub Lecture 2, page 41/81

Building a decision tree from training data

NPFL054, 2017 Hladká & Holub Lecture 2, page 42/81

Classification and Regression trees

Each terminal node in the decision tree is associated with one of the regions in the
feature space. Then

Classification trees
• output value: the most common
class in the data associated with the
terminal node

Regression trees
• output value: the mean output
value of the training instances
associated with the terminal node

NPFL054, 2017 Hladká & Holub Lecture 2, page 43/81

Building a CLASIFICATION tree from training data

Notation
• Attr = {A1,A2, ...,Am},
• Y = {y1, y2, . . . , yk}
• Values(Ai) is a set of all possible values for feature Ai .
• Di,v = {〈x, y〉 ∈ D|xi = v}.

. Ai . . .
. v . . .

.

.
. v . . .
. v . . .

.

NPFL054, 2017 Hladká & Holub Lecture 2, page 44/81

Building a classification tree from training data

We work with decisions on the value of only a single feature

• For each categorical feature Aj having values Values(Aj) = {b1, b2, ..., bL}

is xj = bi? as i = 1, ..., L

• For each categorical feature Aj

is xj ∈ a subset ∈ 2Values(Aj)?

• For each numerical feature Aj

is xj ≤ k?, k ∈ (−∞, +∞)

NPFL054, 2017 Hladká & Holub Lecture 2, page 45/81

Building a classification tree from training data

Which decision is the best?
• Focus on a distribution of target class values in associated subsets of training
examples.

• Then select the decision that splits training data into subsets as pure as
possible.

NPFL054, 2017 Hladká & Holub Lecture 2, page 46/81

Building a classification tree from training data

Which decision is the best?
We say a data set is pure (or homogenous) if it contains only a single class. If a
data set contains several classes, then the data set is impure (or heterogenous).

⊕: 5, 	: 5 ⊕: 9, 	: 1
heterogenous almost homogenous

high degree of impurity low degree of impurity

NPFL054, 2017 Hladká & Holub Lecture 2, page 47/81

Building a classification tree from training data

Which decision is the best?
1. Define a candidate set S of splits at each node using possible decisions.

s ∈ S splits t into L subsets t1, t2, . . . tL.
2. Define the node proportions p(yj |t), j = 1, . . . , k, to be the proportion of

instances 〈x, yj〉 in t.
3. Define an impurity measure i(t), i.e. splitting criterion, as a nonnegative

function Φ of the p(y1|t), p(y2|t), . . . , p(yk |t),

i(t) = Φ(p(y1|t), p(y2|t), . . . , p(yk |t)), (1)

such that
• Φ(1

k , 1
k , ..., 1

k) = max , i.e. the node impurity is largest when all examples are
equally mixed together in it.

• Φ(1, 0, ..., 0) = 0, Φ(0, 1, ..., 0) = 0, ..., Φ(0, 0, ..., 1) = 0, i.e. the node impurity
is smallest when the node contains instances of only one class

NPFL054, 2017 Hladká & Holub Lecture 2, page 48/81

Building a classification tree from training data

Which decision is the best?
4. Define the goodness of split s to be the decrease in impurity

∆i(s, t) = i(t)−
∑L

l=1 pl ∗ i(tl), where pl is the proportion of instances in t
that go to tl .

5. Find split s∗ with the largest decrease in impurity:
∆i(s∗, t) = maxs∈S∆i(s, t).

6. Use splitting criterion i(t) to compute ∆i(s, t) and get s∗.

NPFL054, 2017 Hladká & Holub Lecture 2, page 49/81

Building a classification tree from training data

Which decision is the best?

Splitting criteria – examples that are really used
• Misclassification Error – i(t)ME

• Information Gain – i(t)IG

• Gini Index – i(t)GI

NPFL054, 2017 Hladká & Holub Lecture 2, page 50/81

Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)ME = 1−maxj=1,...,kp(yj |t) (2)

⊕: 0, 	: 6 ⊕: 1, 	: 5 ⊕: 2, 	: 4 ⊕: 3, 	: 3

ME 1− 6
6 = 0 1− 5

6 = 0.17 1− 4
6 = 0.33 1− 3

6 = 0.5

NPFL054, 2017 Hladká & Holub Lecture 2, page 51/81

Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)IG = −
k∑

j=1
p(yj |t) ∗ log p(yj |t). (3)

Recall the notion of entropy H(t), i(t)IG = H(t).

Gain(s, t) = ∆i(s, t)IG (4)

NPFL054, 2017 Hladká & Holub Lecture 2, page 52/81

Building a classification tree from training data

Which decision is the best?
Splitting criteria

i(t)GI = 1−
k∑

j=1
p2(yj |t) =

k∑
j=1

p(yj |t)(1− p(yj |t)). (5)

NPFL054, 2017 Hladká & Holub Lecture 2, page 53/81

Building a classification tree from training data

Which decision is the best?
Splitting criteria

⊕: 0 ⊕: 1 ⊕: 2 ⊕: 3
	: 6 	: 5 ⊕: 4 ⊕: 3

Gini 0 0.278 0.444 0.5
Entropy 0 0.65 0.92 1.0
ME 0 0.17 0.333 0.5

For two classes (k = 2), if p is the proportion of the class "1", the measures are:
• Misclassification error: 1−max(p, 1− p)
• Entropy: −p ∗ log p − (1− p) ∗ log(1− p)
• Gini: 2p ∗ (1− p)

NPFL054, 2017 Hladká & Holub Lecture 2, page 54/81

Building a classification tree from training data
Which decision is the best?
Splitting criteria

NPFL054, 2017 Hladká & Holub Lecture 2, page 55/81

Classification and Regression trees

Each terminal node in the decision tree is associated with one of the regions in the
feature space. Then

Classification trees
• Output value: the most common
class in the data associated with the
terminal node

• A criterion for making splits, e.g.
• Misclassification error
• Information gain
• Gini index

Regression trees
• Output value: the mean output
value of the training instances
associated with the terminal node

NPFL054, 2017 Hladká & Holub Lecture 2, page 56/81

Building a REGRESSION tree from training data

Notation
• Attr = {A1,A2, ...,Am}
• Y = R
• Values(Ai) is a set of all possible values for feature Ai

NPFL054, 2017 Hladká & Holub Lecture 2, page 57/81

Building a regression tree from training data

Again, we work with decisions on the value of only a single feature

Which decision is the best?

Splitting criterion – usually used
• Squared Error – i(t)SE

i(t)SE = 1
|t|

∑
xi∈t

(yi − y t)2,

where y t = 1
|t|

∑
xi∈t yi .

NPFL054, 2017 Hladká & Holub Lecture 2, page 58/81

Classification and Regression trees

Each terminal node in the decision tree is associated with one of the regions in the
feature space. Then

Classification trees
• Output value: the most common
class in the data associated with the
terminal node

• A criterion for making splits, e.g.
• Misclassification error
• Information gain
• Gini index

Regression trees
• Output value: the mean output
value of the training instances
associated with the terminal node

• A criterion for making splits, e.g.
Squared error

NPFL054, 2017 Hladká & Holub Lecture 2, page 59/81

Building decision tree from training data

The recursive binary splitting is stopped when a stopping criterion is fulfilled.
Then a leaf node is created with an output value.

Stopping criteria, e.g.
• the leaf node is associated with less than five training instances
• the maximum tree depth has been reached
• the best splitting criteria is not greater than a certain threshold

NPFL054, 2017 Hladká & Holub Lecture 2, page 60/81

Decision tree learning algorithms — ID3

As a splitting criterion, ID3 algorithm uses information gain.

Main idea
• Calculate the entropy of every attribute using the data set S
• Split the set S into subsets using the attribute for which entropy is minimum
(or, equivalently, information gain is maximum)

• Make a decision tree node containing that attribute
• Recurse on subsets using remaining attributes

ID3 algorithm is nicely described on the Wikiedia:
— https://en.wikipedia.org/wiki/ID3_algorithm

NPFL054, 2017 Hladká & Holub Lecture 2, page 61/81

Decision tree learning algorithms — ID3 and C4.5

ID3 −→ C4.5

ID3 is originally designed with two restrictions:
1 classification task
2 categorical features used to train a decision tree → Let’s extend ID3 for the

continuous-valued features

C4.5 algorithm: Incorporating continuous-valued features
For a continuous-valued feature A, define a boolean-valued feature Ac so that if
A(x) ≤ c then Ac(x) = 1 else Ac(x) = 0.

NPFL054, 2017 Hladká & Holub Lecture 2, page 62/81

Decision tree learning algorithms — ID3 and C4.5

C4.5 algorithm: Handling training examples with missing feature values

Consider the situation in which Gain(t,A) is to be calculated at node associated
with a training data set t in the decision tree. Suppose that 〈x, y〉 is one of the
training examples in t and that the value A(x) is unknown.

Possible solutions
• Assign the value that is most common among training instances associated
with the node.

• Alternatively, assign the most common value among instances associated
with the node t having the classification y .

NPFL054, 2017 Hladká & Holub Lecture 2, page 63/81

Building a decision tree from training data

1 Tree growing
√

2 Tree pruning

Basic idea: First, grow a large tree that fits the training data. Second, prune this
tree to avoid overfitting.

NPFL054, 2017 Hladká & Holub Lecture 2, page 64/81

Models built with different cp values

NPFL054, 2017 Hladká & Holub Lecture 2, page 65/81

Building a decision tree from training data

Overfitting can be avoided by
• applying a stopping criterion that prevents some sets of training instances
from being subdivided,

• removing some of the structure of the decision tree after it has been
produced.

Preferred strategy
Grow a large tree T0, stop the splitting process when only some minimum node
size (say 5) is reached. Then prune T0 using some pruning criteria.

NPFL054, 2017 Hladká & Holub Lecture 2, page 66/81

Decision trees — implementation in R

There are two widely used packages in R
• rpart
• tree

The algorithms used are very similar.

References
• An Introduction to Recursive Partitioning Using the RPART Routines
by Terry M. Therneau, Elizabeth J. Atkinson, and Mayo Foundation
(available online)

• An Introduction to Statistical Learning with Application in R
Chapters 8.1, 8.3.1, and 8.3.2
by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
(available online)

• R packages documentation — rpart, tree
(available online)

NPFL054, 2017 Hladká & Holub Lecture 2, page 67/81

Decision Trees – weak spots

• data splitting
— deeper nodes can learn only from small data portions

• sensitivity to training data set (unstable algorithm)
— learning algorithm is called unstable if small changes in the training set
cause large differences in generated models

NPFL054, 2017 Hladká & Holub Lecture 2, page 68/81

References

• Breiman Leo, Friedman Jerome H., Olshen Richard A., Stone Charles J.
Classification and Regression Trees. Chapman & Hall/CRC, 1984.

• Hunt, E. B. Concept Learning: An Information Processing Problem, Wiley.
1962.

• Morgan, J. N., Sonquist, J. A. Problems in the analysis of survey data, and a
proposal. Journal of the American Statistical Association 58, pp. 415–434.
1963.

• Quinlan, J. R. Discovering rules from large collections of examples: A case
study, in D. Michie, ed., Expert Systems in the Micro Electronic Age.
Edinburgh University Press. 1979.

• Quinlan, J. R. C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, California. 1993.

NPFL054, 2017 Hladká & Holub Lecture 2, page 69/81

Decision trees in R – rpart() implemetation

• library rpart (but there are also other libraries tree, party, ...)

Model=rpart(formula, data=, method=, control=)

• ?rpart
• formula in the format TargetClass~Feature1+Feature2+...
• data specifies the input data frame
• method is "class" for decision trees
• control other optional parameters

NPFL054, 2017 Hladká & Holub Lecture 2, page 70/81

Visualisation using rpart.plot()

Visualisation of the model with library rpart.plot

NPFL054, 2017 Hladká & Holub Lecture 2, page 71/81

Decision Trees – parameters

hypothesis parameters - parameters of the prediction function
• output of the learning algorithm, define the structure of the decision tree

learning parameters - parameters of the learning process
• "configuration" of the learning algorithm

NPFL054, 2017 Hladká & Holub Lecture 2, page 72/81

Decision trees learning parameters

2 phases of decision tree learning:
• growing
• pruning

Learning parameters are used to control these two phases:
• when to stop growing
• how much to prune the tree

... to avoid overfitting and improve performance

NPFL054, 2017 Hladká & Holub Lecture 2, page 73/81

Learning parameters in rpart

rpart.control

minsplit
• the minimum number of observations that must exist in a node in order for a
split to be attempted

cp
• complexity parameter, influences the depth of the tree

... and others, see ?rpart.control

T: try to set different cp and minsplit values in the M1 model learning and
observe the resulting tree

NPFL054, 2017 Hladká & Holub Lecture 2, page 74/81

cp parameter

Any split that does not decrease the relative training error by a factor of cp is
not attempted

⇒ That means, the learning algorithm measures for each split how it improves the
tree relative error and if the improvement is too small, the split will not be
performed.

Relative error is the error relative to the misclassification error (without any
splitting relative error is 100%)

NPFL054, 2017 Hladká & Holub Lecture 2, page 75/81

cp parameter

> M <- rpart(SENSE ~ A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11, data=train,
method="class", minsplit=5, cp=0.001)

> M$cptable
CP nsplit rel error xerror xstd

1 0.093053735 0 1.0000000 1.0000000 0.01844043
2 0.057667104 1 0.9069463 0.9069463 0.01830335
3 0.048492792 2 0.8492792 0.8591088 0.01817412
4 0.040629096 3 0.8007864 0.8106160 0.01800131
5 0.009174312 4 0.7601573 0.7601573 0.01777550
6 0.003931848 9 0.7064220 0.7070773 0.01748535
7 0.001000000 10 0.7024902 0.7044561 0.01746957

rel error relative error on training data

xerror relative error in x-fold cross-validation

xstd standard deviation of xerror on x validation folds

NPFL054, 2017 Hladká & Holub Lecture 2, page 76/81

Models built with different cp value

NPFL054, 2017 Hladká & Holub Lecture 2, page 77/81

Useful functions

plotcp(model) visualisation of the cross-validation error depending on cp value

prune(model, cp=) prune the model based on cp value

> M5$cptable[which.min(M5$cptable[,"xerror"]),"CP"]
[1] 0.001

NPFL054, 2017 Hladká & Holub Lecture 2, page 78/81

plotcp

• visualisation of the cross-validation error depending on cp value
• the horizontal line shows the minimal xerror + its standard deviation

NPFL054, 2017 Hladká & Holub Lecture 2, page 79/81

How to choose the optimal cp value?

demo code cp-and-pruning.Forbes.R on course page
> m = rpart(profits ~ category + sales + assets + marketvalue,

data=F[data.train, 1:8], cp=0.001)
> m$cptable

CP nsplit rel error xerror xstd
1 0.543259557 0 1.0000000 1.0482897 0.03178559
2 0.027162978 1 0.4567404 0.4607646 0.02673551
3 0.007042254 3 0.4024145 0.4446680 0.02640028
4 0.006036217 6 0.3762575 0.4507042 0.02652763
5 0.005030181 8 0.3641851 0.4567404 0.02665301
6 0.004024145 15 0.3279678 0.4768612 0.02705703
7 0.003018109 19 0.3118712 0.4688129 0.02689795
8 0.002012072 21 0.3058350 0.4869215 0.02725122
9 0.001006036 23 0.3018109 0.5171026 0.02780383
10 0.001000000 25 0.2997988 0.5412475 0.02821490

NPFL054, 2017 Hladká & Holub Lecture 2, page 80/81

How to choose the optimal cp value?

NPFL054, 2017 Hladká & Holub Lecture 2, page 81/81

	Learning parameters in rpart

