
Semantic type classification
PFL054 (Introduction to Machine Learning)

Project

Anna Lauschmannová
anna.lauschmannova@gmail.com

February 20, 2011

1 Project description

The aim of this project is to create a binary classifier for distinguishing between
ordinary and semantic collocations. By a collocation we mean any meaningful
and grammatical word combination that often occurs in natural language. The
meaning and usage of many collocations may be inferred directly from the meaning
of its parts. On the other hand, semantic collocations are multiword expressions
that are lexically, syntactically, semantically, pragmatically and/or statistically
idiosyncratic. It means that semantic collocations have semantic and/or syntactic
properties that cannot be fully predicted from those of their components, and
therefore semantic collocations have to be listed in a lexicon.

For example, compare the following 5 expressions: ”they are”, ”black horse”,
”red wine”, ”black market”, and ”weapons of mass destruction”. While the first
two are considered only ”ordinary” collocations, the other three are semantic
collocations.

2 Data description

The available data consists of 9232 collocation candidates extracted from the
[PDT 2.0]1.

1The data was taken from the set of the collocation candidates occurring in the PDT at least
six times and having part-of-speech patterns that can possibly form a collocation. The total size
of this set is 12 232 candidates — the remaining 3000 candidates will be used for the evaluation
of this project.

1

2.1 Baseline hypothesis

1945 of these candidates are semantic collocations, the rest are not. Thus, with
the simples hypothesis that no candidates are semantic collocations, we get the
baseline accuracy of 78.9%2.

This hypothesis is more prone to errors resulting from biased sampling of the
population than the models obtained by learning. To demonstrate this, let us
think of the well-known iris data set [And35]. It consists of 50 instances of each
three different species of the iris flower. 50 instances represent a large enough
sample for determining the variance of the features within each species as well as
differences between them. However, it is extremely unlikely that the proportion of
these species would be 1 : 1 : 1 in any real life situation. If we want to distinguish
Iris setoza from the other two species, the proportion of train instances leads us to
the hypothesis that no instances are setoza. The accuracy of the hypothesis on the
training data is 66%. However, if we take a sample from a geographical location
rich in setoza, the accuracy will be much worse — and if we take a sample from
a location where setoza does not grow, the accuracy may be 100%. Therefore, if
we were to classify unknown samples of iris flowers, we would prefer any model
based on features to the model based on proportion in the training data, even if
its accuracy on the training data would be much below 66%.

Nonetheless, in the case of semantic collocations, we will assume that if a new
sample is obtained with the same preprocessing and filtering of the candidates,
the ratio of semantic collocations among the test instances will be roughly the
same as in the training data. It would be interesting to investigate how far is
this assumption misleading when we start handling texts from different domains,
genres or languages.

2.2 Features

There are 100 features assigned to each one of the candidates; they are listed in
Tables 1 and 2.3 The feature named tp is the classification — true or false
semantic collocation; there are also three features, named a, b and z, which have
been obtained from human annotators and should not be used for the classification
as they directly determine the feature tp.

Six features are categorial: the lemma, part-of-speech and dependency relation
for each of the two words.

The remaining ninety features take numeric values. It is important to realize
that for some machine learning algorithms, it is necessary to scale these values so
that all of the features have the same variance.

2In this report, all accuracies are rounded to one per mille.
3See [Pec09, p. 39–44] for a more detailed description of the lexical association measures.

2

Table 1: List of basic features

feature name feature description
Categorial features

l1 Lemma 1 Lemma of the first word.5

t1 POS tag 1 Reduced part-of-speech tag of the first word.6

a1 Dependency relation 1 Value ”Head” if the first word is a head of the bigram,
simplified dependency type otherwise.

l2 Lemma 2 Lemma of the second word.5

t2 POS tag 2 Reduced Part-Of-Speech tag of the second word.6

a2 Dependency relation 2 Value ”Head” if the second word is a head of the bigram,
simplified dependency type otherwise.

Frequency features
fA frequency Frequency of the dependency bigram.
fB second without first Frequency of the second word not being in a dependency

relation with the first word.
fC first without second Frequency of the first word not being in a dependency

relation with the second word.
fD other bigrams Frequency of all other dependency bigrams in the PDT.

Occurence statistics
b1 Mean gap number
b2 Variance gap number
b3 Mean component offset
b4 Variance component

offset
Multiword expression (MWE) categories

a first annotator 0: not a semantic collocation; 1: stock phrases, frequent
unpredictable usages; 2: names of persons, organizations,
geographical locations, and other entities; 3: support verb
constructions; 4: technical terms; 5: idiomatic expressions

b second annotator
z third annotator

tp semantic collocation 0 for false; 1 for true semantic collocation (all three
annotators assigned a number different from 0)

5By ”lemma” we generally mean the ”lemma proper” (without technical suffixes) of PDT
2.0, see section 2.1. ”Lemma structure” of the ”Manual” or http://ufal.mff.cuni.cz/pdt2.
0/doc/manuals/en/m-layer/html/ch02s01.html.

6By part-of-speach we mean the concatenation of the 1st, 3rd, 10th, and 11th
character of the PDT 2.0 morphological tag (positional tag), see section 2.2.1.1. ”Part of
speech” of the ”Manual” or http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/
html/ch02s02s01.html#POS.

3

Table 2: List of lexical association measures

Association measures
x1 Joint probability; x2 Conditional probability; x3 Reverse conditional
probability; x4 Pointwise mutual information; x5 Mutual dependency; x6 Log
frequency biased mutual dependency; x7 Normalised expectation; x8 Mutual
expectation; x9 Salience; x10 Pearson’s χ2 test; x11 Fisher’s exact test; x12

Student’s t test; x13 z score; x14 Poison significance measure; x15 Log likelihood
ratio; x16 Squared log likelihood ratio
Association coefficients
x17 Russel-Rao; x18 Sokal-Michiner; x19 Rogers-Tanimoto; x20 Hamann; x21

Third Sokal-Sneath; x22 Jaccard; x23 First Kulczynski; x24 Second Sokal-Sneath;
x25 Second Kulczynski; x26 Fourth Sokal-Sneath; x27 Odds ratio; x28 Yulle’s
ω; x29 Yulle’s Q; x30 Driver-Kroeber; x31 Fifth Sokal-Sneath; x32 Pearson; x33
Baroni-Urbani; x34 Braun-Blanquet; x35 Simpson; x36 Michael; x37 Mountford;
x38 Fager; x39 Unigram subtuples; x40 U cost; x41 S cost; x42 R cost; x43 T
cost; x44 Phi; x45 Kappa; x46 J measure; x47 Gini Index; x48 Confidence; x49
Laplace; x50 Conviction; x51 Piatersky-Shapiro; x52 Certainity factor; x53 Added
value; x54 Collective strength; x55 Klosgen
Context measures
x56 Context entropy; x57 Left context phrasal entropy; x58 Right context phrasal
entropy; x59 Left context divergence; x60 Right context divergence; x61 Cross
entropy; x62 Reverse cross entropy; x63 Intersection measure; x64 Euclidean
norm; x65 Cosine norm; x66 L1 norm; x67 Confusion probability; x68 Reverse
confusion Probability; x69 Jensen-Shannon divergence; x70 Cosine of pointwise
mutual information; x71 KL divergence; x72 Reverse KL divergence; x73 Skew
divergence; x74 Reverse skew divergence; x75 n-gram word coocurrence; x76 n-
gram word assotiation
Context similarity
x77 Cosine context similarity in boolean vector space; x78 Cosine context
similarity in term frequency vector space; x79 Cosine context similarity in
term frequency–document frequency vector space; x80 Dice context similarity in
boolean vector space; x81 Dice context similarity in term frequency vector space;
x82 Dice context similarity in term frequency–document frequency vector space

In order to get some preliminary idea about the features, I plotted several
kinds of plots. In all plots throughout this report, red points represent semantic
collocations and grey points represent ordinary collocations. This is achieved by
the following commands:4

4

colors <- rep("grey35",number_of_instances)

colors[data_all[,"tp"]==1] <- "red"

We may start with the investigation of each feature and its relationship to the
classification tp. This may be done in three different ways:

(a) plotting the selected feature against feature tp:

plot(data[,feature], data[,"tp"], col=colors)

(b) plotting the value of the feature against the instance number:

plot(data[,feature], 1:number_of_instances, col=colors)

If the order of the instances is random, the points in this kind of plot are
spread over a large area, and hence more of them are actually visible.

(c) plotting the cummulative graph:

colors <- rep("grey35",number_of_instances)

colors[data[,"tp"][names(sort(data[,feature]))]==1] <- "red"

plot(sort(data[,feature]), 1:number_of_instances, col=colors)

Figure 1 shows a sample of these plots for features x2, x11 and x18. From the
first kind of plot we see immediately that feature x2 by itself will not be a good
predictor of tp; the other two features seem far more interesting, as for each one
of them there is an interval I ⊆ R such that if for any given instance x the value
of the feature is in I, then x is classified as ordinary collocation.7

The first kind of plot for features a1 and a2 also shows that predicates, auxiliaries,
appositions, complements of non-verb elements and nominal parts of predicates
with copula never appear in semantic collocations (at least in our data). This
information could be used to extend the pre-processing of the data.

The second and third kind of plot give us a better idea about the distribution
of the values. We find out that although all semantic collocations have x11 very
near 0 and larger values imply ”ordinary” collocation, it helps us to classify only
few instances — simply almost all instances have x11 near 0. On the other hand,

4Throughout this report, I add snippets of the R code when I consider it interesting. However,
the code is simplified, for example I do not list all optional arguments.

7However, no single feature f completely predicts tp in the sense that we could find an r ∈ R
such that if f(x) < r then x is a semantic collocation and otherwise it is not — or vice versa.

5

Figure 1: Three kinds of plots for features x2, x11 and x18

x18 allows a larger set of values for the positive instances, but about twice as many
instances fall into the interval I containing only negative instances.

We also notice that while features x2 and x11 have a continuous range of values,
the values of x18 form at least three disjoint intervals. We may ask ourselves
whether this corresponds to any natural characteristics of the data, such as the
part-of-speech. This leads us directly to the idea of plotting pairs of features agains
each other. By plotting x18 against a1, a2, t1 and t2 we find out that these
”clusters” correspond neither to the part-of-speech of one of the members nor to

6

Figure 2: a) Linearly correlated features x18 and x19; b) non-linearly correlated
features x22 and x23; c) uncorrelated features x2 and x40

the dependency relation between them.

When we plot the features against each other, we can see that some of them
are strongly (often almost linearly) correlated (Figure 2).

The use of several linearly correlated features is similar to the use of uncorrelated
but weighted features; in the second approach it is more obvious which features are
”preferred”. Nonetheless, I have used the whole feature set for my experiments.

2.3 Collocation candidates

It should be noted here that instances of the co-occurence of the same pair of
words are further distinguished as to the dependency relation between them and
the detailed part-of-speech of both members. Thus, for example, the word-pair
”zcela jiný” is considered as three different candidates: in all three cases, ”jiný”
is the Head and it is an adjective, but it is either feminine, neuter or masculine
inanimate. Due to the use of the detailed part-of-speech tags, these three cases
form separate entries in the data.

Among 8531 different word pairs that appear in the data, there are 633 word
pairs that correspond to more than one candidate, covering altogether more than
14% of the candidate set (1334 candidates). However, there are only 7 word pairs
such that some corresponding candidate is a semantic collocation and some is not
(see Table 3).

From our data it seems that it is highly unlikely that the same word pair would
be used in one gramatical context only in its literal meaning and in other gramatical

7

Table 3: Word pairs such that some and not all of the
corresponding candidates are semantic collocations

l1 a1 t1 l2 a2 t2 a b z tp
československý Atr AF1A armáda Head NF-A 1 1 2 1
československý Atr AX1A armáda Head NF-A 1 0 2 0
doba Head NF-A určitý Atr AF1A 4 1 4 1
doba Head NF-A určitý Atr AF1N 0 4 0 0
konec Head NI-A rok Adv NI-A 1 1 1 1
konec Head NI-A rok Atr NI-A 1 0 1 0
konec Head NI-A rok Adv NN-A 0 0 1 0
tak-3 Adv D— zvaný Head AF1A 4 4 1 1
tak-3 Adv D— zvaný Head AI1A 4 4 0 0
uzavř́ıt Head V— dohoda Obj NF-A 3 3 3 1
uzavř́ıt Head V— dohoda Sb NF-A 0 0 3 0
velký Atr AF1A společnost Head NF-A 1 1 1 1
velký Atr AF3A společnost Head NF-A 0 0 1 0
vyspělý Atr AF1A země Head NF-A 4 4 4 1
vyspělý Atr AF3A země Head NF-A 0 0 1 0

context as a semantic collocate.8 The question whether this is linguistically plausible
or rather result of the annotation scheme (see [Pec09] for the details) should be left
to linguists. However, it seems reasonable to use the word pair as the primary key
for the classification of new instances. By this I mean the following strategy: when
faced with a new instance, first check whether the same word pair has appeared
in one of the training candidates. If so, and if it is not one of the 7 ”undecidable”
cases, assign to it the same value of the tp feature as seen in the training data.
Only if the word pair has not been seen in the training data, use your favourite
model for the prediction.

2.4 Development and test data

I divided the data into two parts, the development part consisting of 8260 instances
and the ”publication” part intended for final evaluation of the selected methods
consisting of 972 instances. The development part was further divided into 7

8Note that the annotators were instructed to judge any candidate which could eventually
appear in a context where it has character of collocation as true collocation [Pec09, p. 56]. This
includes the possibility that the same candidate (with given grammatical structure) sometimes
appears as a semantic collocate and sometimes in its literal meaning. However, a difference may
arise when the same word pair appears with different grammatical structure. This is the case
for seven word pairs in Table 3.

8

subparts with 1180 instances each which I used for cross-validation during the
parameters optimization.

3 Theoretical aspects of methods (models)

3.1 k-Nearest Neighbours

In this method, a new instance is assigned the classification which is most common
among k training instances which are nearest to it. If there is no clear winner, the
algorithm selects at random. Clearly, the concept of ”nearest” neighbours depends
on the metric that is used; the most common option is the Euclidean metric, in
which case it is impossible to use categorial features. However, categorial features
may be converted to numerical ones for example by creating a new numerical
feature for each possible value of the categorial feature:

f(x) ∈ I −→ ∀i ∈ I fi(x) = 1 iff f(x) = i.

Scaling and weighing is especially important for the k-NN algorithm because it
strongly influences the distances between the points. Figure 3 demonstrates this.
In this toy example, I used six training points: ”s-1 funkce”, ”všechen firma”, ”z-1
územı́”, ”židovský stát-1”, ”živnostenský úřad”, ”životńı podmı́nka”; the last three
are semantic collocations. The new instance ”zájemce muset” is then classified

Figure 3: The effect of scaling on the choice of nearest neighbours

9

using 3 nearest neighbours and feature space consisting of features x11 and x23;
before scaling9 it is classified as ordinary collocation but after scaling it is classified
as semantic collocation. We see that before scaling, feature x23 has a larger impact
on the classification because the values of the feature x11 almost do not differ;
however, during the scaling, x11 was multiplied by about 118, whilst x23 was
only multiplied by roughly 5. This means that the distances on the x11 axis have
increased much more than the distances on the x23 axis, or in yet another words,
x11 was given a larger weight.

3.2 Decision trees and boosting

As the second method, I selected decision trees with boosting.
Decision trees as such use a very intuitive approach: as we have already

mentioned, a simple look at the plots of some features shows that there is an
interval I such that if the value of the feature falls into this interval, the predicted
function is known. (See Figure 1.) If we were to classify some new instances
manually, we would definitely start with something like this:

Look at the dependency relations a1 and a2; one of them is Head, look at the
other one:

1. if it is Atv, Aux, Pnom, Pred or Apos, classify the candidate as ordinary
collocation;

2. else look at feature x18:

(a) x18 < 0.985, classify the candidate as ordinary collocation;

(b) else . . .

After a while we would arrive at a set of training instances which cannot be
clearly cut with the help of any feature, i.e. for each feature f and each x ∈ R,
neither f(i) < x nor f(i) > x implies a definite classification of the instance i. In
the decision tree approach, this is not considered a serious obstacle. Some feature
and some subset of its values are selected so that the division of instances into two
subsets according to f(i) creates subsets which are less mixed with respect to the
predicted function. The subsets are then divided with the help of further features;
the process goes on recursively. Only when such recursively constructed subset
becomes smaller than a certain preset number, the most common class is assigned

9I scaled the features to have mean 0 and variance 1 on the whole data, with no respect to the
instances selected for this example. The mean value is not important for the k-NN algorithm,
it is just a side effect of the scale function in R, which first centralizes each column and then
scales it.

10

to all instances in the subset, creating some small error, but avoiding overfitting
to the training data.

More exact discussion of decision trees may be found on [Wikipedia] in articles
”Decision tree learning”, ”ID3 algorithm”, ”C4.5 algorithm” and ”Decision tree
pruning”, or [Hla10, Decision trees].

Boosting is a general method for developing classifiers with high accuracy on
the training data. The main idea of the algorithm is to iteratively train models on
the same data, giving higher weight to the training instances that were classified
incorrectly in the previous iteration step. Finally, all models are combined into
a single one using weighted voting. Because the instances that were classified
incorrectly in one iteration are given higher weight in the next iterations, boosting
leads to improved accuracy on the training data. See [Fre99] for more details.

3.3 Naive Bayes classifier

As the third method, I selected the Naive Bayes classifier. It is a direct implementation
of the Bayes’ rule for prediction based on several pairwise independent features:

tpPREDICT = argmaxtp∈{0,1}P (tp)
96∏
i=1

P (ai|tp),

where ai, i ∈ {1, . . . 96} are the values of the features for the given instance.
Besides the assumption that the features are independent (which is made for any
Naive Bayes classifier), the implementation in R also assumes that the continuous
features have Gaussian distribution given the target class. As we have seen in the
discussion of features in Section 2.2, neither of these two assumptions holds for
this data. And indeed, of the three kinds of models that I have experimented with,
the Naive Bayes classifier gave the poorest results.

4 Implementation of the selected methods

My best classifier can be quickly obtained by running the script

Lauschmannova.best.model.R;

it is also in the file

Lauschmannova.RData

as the object LAUSCHMANNOVA_BEST_MODEL.

11

4.1 k-Nearest Neighbours

The k-Nearest Neighbours algorithm is implemented in the R system in several
different ways. Below I list them with the most commonly used parameters and
their short explanations (not the default values).

• library class for basic prediction and cross-validation:

prediction <- knn(train = train_data, test = test_data,

cl = train_classes,

k = num_of_nearest_neighbours,

l = minimum_num_of_votes_otherwise_doubt,

prob = return_proportion_of_votes?,

use.all = use_all_inst_of_same_distance?)

prediction <- knn.cv(train, cl, k, l, prob, use.all)

The latter has the advantage that the data does not need to be divided
into training and test part, but the cross-validation is performed by the
take-one-out method on the whole training data; this is equivalent to size-
of-the-data–fold crossvalidation.

• library kknn for weighed k-NN:

kknn(class ~ ., train = train_data, test = test_data,

k = num_of_nearest_neighbours,

distance = parameter_of_Minkowski_distance,

kernel = "rectangular"_Euklidean___"triangular"___

_"inv"_1/distance___"gaussian"___others)

train.kknn(class ~ ., data, distance, kernel,

kmax = try_all_k_in_1:kmax)

Both of these functions return a complex object with many components. One
of them is the list of the fitted values (in train.kknn for every combination
of k and kernel). The former of these two functions also returns classes,
weights and distances of the k nearest neighbours. The latter allows for
automatic evaluation of misclassification erros and best parameters; and –
most importantly – it already employs the leave-one-out cross-validation.

• library knnflex for adjusting the way the distance is calculated:

distances <- knn.dist(train_and_test_data,

dist.meth = any_of_euclidean_maximum_manhattan_

12

canberra_binary_minkowski,

p = power_of_minkowski_distance)

knn.predict(train = train_rows_of_data,

test = test_rows_of_data,

dist.matrix = distances_from_knn.dist,

k = num_nearest_neighbours,

ties.meth = "min"_use_all___"max"_use_none___

"random"___"first"_in_data)

knn.probability(train, test, dist.matrix, k, ties.meth)

• library RWeka

classifier <- IBk(class ~ .,

data,

subset, na.action,

control = Weka_control(

I = weight_by_1/distance?,

F = weight_by_1-distance?,

K = num_nearest_neighbours,

X = take_one_out_cv_for_k_in_1:K

)

)

summary(classifier)

evaluate_Weka_classifier(classifier,

numFolds = num_of_folds_for_crossvalidation,

newdata = for_evaluation_on_test_set)

predict(classifier, test_data_set)

For the selection of the parameters, I decided to use train.kknn, because
it uses the leave-one-out cross-validation and it outputs the best combination of
parameters. As far as I could tell, IBk was somewhat quicker, but I came across a
problem with the interpretation of the evaluation on previously unseen data which
I could not solve, so I rather used train.kknn.10

10The problem was the following: when I used the function evaluate Weka classifier with
the parameter newdata, the confusion matrix looked differently than when I constructed the
confusion matrix with table(newdata[,"tp"], predict(classifier, newdata)). Because I
could not explain this difference, I was not sure about the right interpretation of the output of
RWeka functions and decided not to use them.

13

4.2 Decision trees and boosting

I used the ada function from the package of the same name. The following piece
of code stores the accuracies on the train and test part of the development data
and can be used for later decision which combination of parameters works best
and how many iterations of the boosting algorithm should be performed:

control <- rpart.control(method="class", minsplit=min, cp=cpcko,

maxdepth=max, maxsurrogate=0, xval=7)

dec_tree <- ada(tp~., data=data_train[,c(-1, -4)],

test.x=data_test[,c(-1, -4, -97)],

test.y=data_test[,97],

type = "gentle", control=control, iter=30)

dec_tree_accuracies[[paste("minsplit=",min, ", cp=", cpcko,

", maxdepth=", max, sep=" ")]] <-

dec_tree$model$err

Note that in the decision tree approach, it is necessary to exclude the two
features containing the lemmas, because otherwise the algorithm would tend to
build a decision tree based on them.

The rpart function already contains some cross-validation, so I decided not to
use cross-validation for every possible combination of parameters, as this would be
too time consuming: the boosting algorithm constructs a large number of decision
trees and if the boosting itself should be performed several times in order to cross-
validate, it would take too long. After going through a larger set of possible
combinations of the parameters minsplit, cp and maxdepth, I selected three of
them by their accuracy on one, fixed portion of the development data (called
data_test in the above code). Only for these three combinations I performed
cross-validation, dividing the development data into data_test and data_train

in seven different ways and selecting the combination that gave the best mean
accuracy on data_test. However, I am aware that the confidence intervals for
some of these mean accuracies overlap.

4.3 Naive Bayes classifier

Again, this is a method which is sensitive to the choice of particular features.
I experimented with the ordering of the features that can be obtained by the
package FSelector. With the help of the functions in this package, it is easy to
order the features according to the information.gain, gain.ratio, chi.squared
coefficient or symmetrical.uncertainty relative to feature tp. However, the
functions in FSelector assume that the features are discrete, so applying them to
continuous features might be extremely misleading. In selecting the parameters for

14

the Naive Bayes algorithm, I decided to use the following strategy: going through
the features starting with those marked by FSelector as most relevant, and for
each feature, adding it to the feature set if this leads to improved accuracy of
the classifier. I experimented with allowing the same feature to be added several
times, although this violates the independence assumption present in the Naive
Bayes classifier model.

After some experiments, the best accuracy still was only 83.3% (with features
x4+x4+x4+x4+x37+x50+fA); as this is still much less than what I could obtain
with decision trees or the k-NN algorithm, so I did not try to further optimize tha
parameters for the Naive Bayes classifier.

5 Project analysis

After choosing one combination of parameters for each of the three methods,
I performed seven-fold cross-validation11 and a test on the ”publication” data
for the three models. For the test on the ”publication” data I used the whole
development set as the training set. The confidence intervals are computed for the
95% confidence level. A comparison of the results may be found in Table 4.12

A few things need to be said about the table:
The performance of the best classifier on the unseen data is even higher than

the upper bound of the confidence interval. This may be pure chance or it may
be because the last classifier was trained on a larger training set. An argument
in favour of the latter explanation would be that also the accuracy of the k-NN
algorithm on the publication data is at the upper end of the confidence interval.
However, it may simply be the case that by chance the publication set is such that
it is easy to predict it from the development set and some other division would
behave differently.

The confidence intervals do not overlap at all. Thus we may confidently say
that of these three classifier, the boosted model is the best and the Naive Bayes
classifier is only slightly better than the baseline. And indeed, we know from the

11In this final evaluation, I performed crossvalidation with the same division of the data into
folds for all three classifiers; during development, I used crossvalidation methods specific to the
models, i.e. the ”leave-one-out” cross-validation for k-Nearest Neighbours, the built-in cross-
validation of the function ada and the usual cross-validation with the Naive Bayes classifier.
Each one of these is suitable for choosing the best combination of parameters for a given method;
however, their results cannot really be compared.

12Just for fun, let me note that if the models are trained on the (unseen) publication data and
evaluated on the development data (on which they were tuned), their respective accuracies are
86.5%, 89.1% and 82.1%. These numbers are smaller than the accuracy on unseen data in the
table, probably because they are obtained from training on a much smaller set.

15

Table 4: Chosen parameters and resulting accuracies

method
R library
R function

parameters mean
accuracy

conf.
interval
(lower,
upper)

accuracy
on
unseen
data

k-Nearest
Neighbours

library kknn

kknn

kernel: ”inv”
k: 18
44 features:
x2+x3+x5+x7+x10+x12+x13

+x20+x21+x22+x23+x24+x27

+x29+x30+x33+x34+x37+x38

+x39+x41+x45+x47+x48+x51

+x53+x55+x57+x59+x60+x61

+x63+x64+x65+x69+x70+x74

+x77+x80+x81+fA+fC+b3+b4

87.6 86.9,
88.3

88.3

decision trees
with boosting

library ada

ada

minsplit: 5
cp: -1
maxdepth: 7
iter: 21

89.9 89.4,
90.4

90.5

Naive Bayes

library e1071

naiveBayes

features:
x4+x4+x4+x4+x37+x50+fA

laplace: 0.001

82.1 81.4,
82.8

82.0

theory that boosting yields increased performance already after a small number of
iterations.

However, the poor performance of the Bayes classifier is probably caused by
poor parameter tuning, not by insufficiency of the method itself.

6 What else to learn

Here, I would like to mention a few topics that I believe I need to consider seriously
in my future attempts to use machine learning methods.

6.1 Feature selection

One of the major issues in tuning both k-NN and Naive Bayes classifier is the
selection of features. I need to learn more about measures of feature relevancy to

16

the predicted function, and about the R functions that can be used to determine
such measures. In particular, I did not find any suitable package for working with
continuous features predicting a discrete function and I suspect that the functions
chi.squared, info.gain, gain.ratio and symmetrical.uncertainty from the
FSelector package give misleading predictions by assuming that the features are
discrete. On the other hand, linear.correlation did not seem relevant for a
two-class problem.

I also assume that different measures would be relevant for different models:
for the k-NN algorithm, a measure of feature relevance should have something to
do with distances between points; for the Bayesian approach, such a measure will
likely be based on some statistical theory.

Also, it has been suggested in the literature that simpler machine learning
algorithms may be used for selection of features which are later used in more
complex algorithms: for example, we might first evaluate misclassification error
of the k-NN algorithm with each feature separately (for some fixed k) and then
select features with smallest error; or we might decide to work only with those
features that are actually used in a decision tree built from the whole data. Both
of these methods are also implemented in the FSelector package, however, they
are rather time consuming.

6.2 Optimization algorithms

I have also found out that I need to learn more about optimization strategies and
algorithms. The only method really covered in the class was ”try many values from
the parameter space and choose the best one”. However, the size of the parameter
space is growing exponentially with increasing number of parameters and/or their
possible values.

17

References

[And35] Edgar Anderson (1935). ”The irises of the Gaspé Peninsula”. Bulletin
of the American Iris Society 59: 2–5. The Iris flower data set was first
used as an example of discriminant analysis in [Fis36]. The complete Iris
flower data set can be found at http://en.wikipedia.org/wiki/Iris_
flower_data_set or within the ”HSAUR” package of the R-system.

[Fis36] Fisher, R.A. (1936). ”The Use of Multiple Measurements in Taxonomic
Problems”. Annals of Eugenics 7: 179–188. http://digital.library.
adelaide.edu.au/coll/special//fisher/138.pdf.

[Fre99] Yoav Freund, Robert E. Schapire: ”A Short Introduction to Boosting”.
Journal of Japanese Society for Artificial Intelligence, 14(5), p. 771-780,
September 1999. Translation by Naoki Abe. Available online at http:

//www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf.

[Hla10] Barbora Vidová Hladká, teaching materials for the course Introduction
to machine learning (in natural language processing), academic year
2010/11; chapter ”Decision trees” is available at http://ufal.mff.

cuni.cz/~hladka/jsmath/test/decision-tree-learning.pdf.

[PDT 2.0] Prague Dependency Treebank 2.0, Linguistic Data Consortium, catalog
number LDC2006T01. See http://ufal.mff.cuni.cz/pdt2.0/.

[Pec09] Pavel Pecina: Lexical Association Measures: Collocation Extraction. In
the series Jan Hajič (ed.). Studies in Computational and Theoretical
Linguistics. Institute of Formal and Applied Linguistics, Prague, Czech
Republic, 2009.

[Wikipedia] English Wikipedia, http://en.wikipedia.org/wiki/.

18

Contents

1 Project description 1

2 Data description 1
2.1 Baseline hypothesis . 2
2.2 Features . 2
2.3 Collocation candidates . 7
2.4 Development and test data . 8

3 Theoretical aspects of methods (models) 9
3.1 k-Nearest Neighbours . 9
3.2 Decision trees and boosting . 10
3.3 Naive Bayes classifier . 11

4 Implementation of the selected methods 11
4.1 k-Nearest Neighbours . 12
4.2 Decision trees and boosting . 14
4.3 Naive Bayes classifier . 14

5 Project analysis 15

6 What else to learn 16
6.1 Feature selection . 16
6.2 Optimization algorithms . 17

List of Tables

1 List of basic features . 3
2 List of lexical association measures 4
3 A few interesting word pairs . 8
4 Chosen parameters and resulting accuracies 16

List of Figures

1 Three kinds of plots for features x2, x11 and x18 6
2 Correlated and uncorrelated pairs of features 7
3 The effect of scaling on the choice of nearest neighbours 9

19

