1 Project description

The aim of this project is to create a binary classifier for distinguishing between ordinary and semantic collocations. By a collocation we mean any meaningful and grammatical word combination that often occurs in natural language. The meaning and usage of many collocations may be inferred directly from the meaning of its parts. On the other hand, semantic collocations are multiword expressions that are lexically, syntactically, semantically, pragmatically and/or statistically idiosyncratic. It means that semantic collocations have semantic and/or syntactic properties that cannot be fully predicted from those of their components, and therefore semantic collocations have to be listed in a lexicon.

For example, compare the following 5 expressions: ”they are”, ”black horse”, ”red wine”, ”black market”, and ”weapons of mass destruction”. While the first two are considered only ”ordinary” collocations, the other three are semantic collocations.

2 Data description

The available data consists of 9232 collocation candidates extracted from the [PDT 2.0]¹.

¹The data was taken from the set of the collocation candidates occurring in the PDT at least six times and having part-of-speech patterns that can possibly form a collocation. The total size of this set is 12232 candidates — the remaining 3000 candidates will be used for the evaluation of this project.
2.1 Baseline hypothesis

1945 of these candidates are semantic collocations, the rest are not. Thus, with the simplest hypothesis that no candidates are semantic collocations, we get the baseline accuracy of 78.9%\(^2\).

This hypothesis is more prone to errors resulting from biased sampling of the population than the models obtained by learning. To demonstrate this, let us think of the well-known iris data set [And35]. It consists of 50 instances of each three different species of the iris flower. 50 instances represent a large enough sample for determining the variance of the features within each species as well as differences between them. However, it is extremely unlikely that the proportion of these species would be 1 : 1 : 1 in any real life situation. If we want to distinguish Iris setosa from the other two species, the proportion of train instances leads us to the hypothesis that no instances are setosa. The accuracy of the hypothesis on the training data is 66%. However, if we take a sample from a geographical location rich in setosa, the accuracy will be much worse — and if we take a sample from a location where setosa does not grow, the accuracy may be 100%. Therefore, if we were to classify unknown samples of iris flowers, we would prefer any model based on features to the model based on proportion in the training data, even if its accuracy on the training data would be much below 66%.

Nonetheless, in the case of semantic collocations, we will assume that if a new sample is obtained with the same preprocessing and filtering of the candidates, the ratio of semantic collocations among the test instances will be roughly the same as in the training data. It would be interesting to investigate how far is this assumption misleading when we start handling texts from different domains, genres or languages.

2.2 Features

There are 100 features assigned to each one of the candidates; they are listed in Tables 1 and 2.\(^3\) The feature named \(tp\) is the classification — true or false semantic collocation; there are also three features, named \(a\), \(b\) and \(z\), which have been obtained from human annotators and should not be used for the classification as they directly determine the feature \(tp\).

Six features are categorial: the lemma, part-of-speech and dependency relation for each of the two words.

The remaining ninety features take numeric values. It is important to realize that for some machine learning algorithms, it is necessary to scale these values so that all of the features have the same variance.

\(^2\)In this report, all accuracies are rounded to one per mille.

\(^3\)See [Pec09, p. 39–44] for a more detailed description of the lexical association measures.
Table 1: List of basic features

<table>
<thead>
<tr>
<th>feature name</th>
<th>feature description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorial features</td>
<td></td>
</tr>
<tr>
<td>l1</td>
<td>Lemma 1</td>
</tr>
<tr>
<td>t1</td>
<td>POS tag 1</td>
</tr>
<tr>
<td>a1</td>
<td>Dependency relation 1</td>
</tr>
<tr>
<td>l2</td>
<td>Lemma 2</td>
</tr>
<tr>
<td>t2</td>
<td>POS tag 2</td>
</tr>
<tr>
<td>a2</td>
<td>Dependency relation 2</td>
</tr>
<tr>
<td>Frequency features</td>
<td></td>
</tr>
<tr>
<td>fA</td>
<td>frequency</td>
</tr>
<tr>
<td>fB</td>
<td>second without first</td>
</tr>
<tr>
<td>fC</td>
<td>first without second</td>
</tr>
<tr>
<td>fD</td>
<td>other bigrams</td>
</tr>
<tr>
<td>Occurrence statistics</td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>Mean gap number</td>
</tr>
<tr>
<td>b2</td>
<td>Variance gap number</td>
</tr>
<tr>
<td>b3</td>
<td>Mean component offset</td>
</tr>
<tr>
<td>b4</td>
<td>Variance component offset</td>
</tr>
<tr>
<td>Multiword expression (MWE) categories</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>first annotator</td>
</tr>
<tr>
<td>b</td>
<td>second annotator</td>
</tr>
<tr>
<td>z</td>
<td>third annotator</td>
</tr>
<tr>
<td>tp</td>
<td>semantic collocation</td>
</tr>
</tbody>
</table>

\(^5\)By “lemma” we generally mean the "lemma proper" (without technical suffixes) of PDT 2.0, see section 2.1. "Lemma structure" of the "Manual" or http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02s01.html.

\(^6\)By part-of-speech we mean the concatenation of the 1st, 3rd, 10th, and 11th character of the PDT 2.0 morphological tag (positional tag), see section 2.2.1.1. "Part of speech" of the "Manual" or http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/html/ch02s02s01.html#POS.
Table 2: List of lexical association measures

<table>
<thead>
<tr>
<th>Association measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1 Joint probability; x2 Conditional probability; x3 Reverse conditional probability; x4 Pointwise mutual information; x5 Mutual dependency; x6 Log frequency biased mutual dependency; x7 Normalised expectation; x8 Mutual expectation; x9 Salience; x10 Pearson’s χ² test; x11 Fisher’s exact test; x12 Student’s t test; x13 z score; x14 Poison significance measure; x15 Log likelihood ratio; x16 Squared log likelihood ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Association coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>x17 Russel-Rao; x18 Sokal-Michiner; x19 Rogers-Tanimoto; x20 Hamann; x21 Third Sokal-Sneath; x22 Jaccard; x23 First Kulczynski; x24 Second Sokal-Sneath; x25 Second Kulczynski; x26 Fourth Sokal-Sneath; x27 Odds ratio; x28 Yulle’s ω; x29 Yulle’s Q; x30 Driver-Kroeber; x31 Fifth Sokal-Sneath; x32 Pearson; x33 Baroni-Urban; x34 Braun-Blanquet; x35 Simpson; x36 Michael; x37 Mountford; x38 Fager; x39 Unigram subtuples; x40 U cost; x41 S cost; x42 R cost; x43 T cost; x44 Phi; x45 Kappa; x46 J measure; x47 Gini Index; x48 Confidence; x49 Laplace; x50 Conviction; x51 Pietersky-Shapiro; x52 Certainty factor; x53 Added value; x54 Collective strength; x55 Klosgen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Context measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>x56 Context entropy; x57 Left context phrasal entropy; x58 Right context phrasal entropy; x59 Left context divergence; x60 Right context divergence; x61 Cross entropy; x62 Reverse cross entropy; x63 Intersection measure; x64 Euclidean norm; x65 Cosine norm; x66 L1 norm; x67 Confusion probability; x68 Reverse confusion Probability; x69 Jensen-Shannon divergence; x70 Cosine of pointwise mutual information; x71 KL divergence; x72 Reverse KL divergence; x73 Skew divergence; x74 Reverse skew divergence; x75 n-gram word cooccurrence; x76 n-gram word association</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Context similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>x77 Cosine context similarity in boolean vector space; x78 Cosine context similarity in term frequency vector space; x79 Cosine context similarity in term frequency-document frequency vector space; x80 Dice context similarity in boolean vector space; x81 Dice context similarity in term frequency vector space; x82 Dice context similarity in term frequency-document frequency vector space</td>
</tr>
</tbody>
</table>

In order to get some preliminary idea about the features, I plotted several kinds of plots. In all plots throughout this report, red points represent semantic collocations and grey points represent ordinary collocations. This is achieved by the following commands:4
colors <- rep("grey35", number_of_instances)
colors[data_all[,"tp"] == 1] <- "red"

We may start with the investigation of each feature and its relationship to the classification tp. This may be done in three different ways:

(a) plotting the selected feature against feature tp:

```r
plot(data[,feature], data[,"tp"], col=colors)
```

(b) plotting the value of the feature against the instance number:

```r
plot(data[,feature], 1:number_of_instances, col=colors)
```

If the order of the instances is random, the points in this kind of plot are spread over a large area, and hence more of them are actually visible.

(c) plotting the cumulative graph:

```r
colors <- rep("grey35", number_of_instances)
colors[data[,"tp"][names(sort(data[,feature]))] == 1] <- "red"
plot(sort(data[,feature]), 1:number_of_instances, col=colors)
```

Figure 1 shows a sample of these plots for features x_2, x_{11} and x_{18}. From the first kind of plot we see immediately that feature x_2 by itself will not be a good predictor of tp; the other two features seem far more interesting, as for each one of them there is an interval $I \subseteq \mathbb{R}$ such that if for any given instance x the value of the feature is in I, then x is classified as ordinary collocation.\footnote{Throughout this report, I add snippets of the R code when I consider it interesting. However, the code is simplified, for example I do not list all optional arguments.}

The first kind of plot for features a_1 and a_2 also shows that predicates, auxiliaries, appositions, complements of non-verb elements and nominal parts of predicates with copula never appear in semantic collocations (at least in our data). This information could be used to extend the pre-processing of the data.

The second and third kind of plot give us a better idea about the distribution of the values. We find out that although all semantic collocations have x_{11} very near 0 and larger values imply "ordinary" collocation, it helps us to classify only few instances — simply almost all instances have x_{11} near 0. On the other hand,\footnote{However, no single feature f completely predicts tp in the sense that we could find an $r \in \mathbb{R}$ such that if $f(x) < r$ then x is a semantic collocation and otherwise it is not — or vice versa.}
Figure 1: Three kinds of plots for features x_2, x_{11} and x_{18}

x_{18} allows a larger set of values for the positive instances, but about twice as many instances fall into the interval I containing only negative instances.

We also notice that while features x_2 and x_{11} have a continuous range of values, the values of x_{18} form at least three disjoint intervals. We may ask ourselves whether this corresponds to any natural characteristics of the data, such as the part-of-speech. This leads us directly to the idea of plotting pairs of features against each other. By plotting x_{18} against a_1, a_2, t_1 and t_2 we find out that these "clusters" correspond neither to the part-of-speech of one of the members nor to
When we plot the features against each other, we can see that some of them are strongly (often almost linearly) correlated (Figure 2).

The use of several linearly correlated features is similar to the use of uncorrelated but weighted features; in the second approach it is more obvious which features are ”preferred”. Nonetheless, I have used the whole feature set for my experiments.

2.3 Collocation candidates

It should be noted here that instances of the co-occurrence of the same pair of words are further distinguished as to the dependency relation between them and the detailed part-of-speech of both members. Thus, for example, the word-pair ”zcela jiný y” is considered as three different candidates: in all three cases, ”jiný” is the Head and it is an adjective, but it is either feminine, neuter or masculine inanimate. Due to the use of the detailed part-of-speech tags, these three cases form separate entries in the data.

Among 8531 different word pairs that appear in the data, there are 633 word pairs that correspond to more than one candidate, covering altogether more than 14% of the candidate set (1334 candidates). However, there are only 7 word pairs such that some corresponding candidate is a semantic collocation and some is not (see Table 3).

From our data it seems that it is highly unlikely that the same word pair would be used in one grammatical context only in its literal meaning and in other grammatical
Table 3: Word pairs such that some and not all of the corresponding candidates are semantic collocations

<table>
<thead>
<tr>
<th>l1</th>
<th>a1</th>
<th>t1</th>
<th>l2</th>
<th>a2</th>
<th>t2</th>
<th>a</th>
<th>b</th>
<th>z</th>
<th>tp</th>
</tr>
</thead>
<tbody>
<tr>
<td>československý</td>
<td>Atr</td>
<td>AF1A</td>
<td>armáda</td>
<td>Head</td>
<td>NF-A</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>československý</td>
<td>Atr</td>
<td>AX1A</td>
<td>armáda</td>
<td>Head</td>
<td>NF-A</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>doba</td>
<td>Head</td>
<td>NF-A</td>
<td>určitý</td>
<td>Atr</td>
<td>AF1A</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>doba</td>
<td>Head</td>
<td>NF-A</td>
<td>určitý</td>
<td>Atr</td>
<td>AF1N</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>konec</td>
<td>Head</td>
<td>NI-A</td>
<td>rok</td>
<td>Adv</td>
<td>NI-A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>konec</td>
<td>Head</td>
<td>NI-A</td>
<td>rok</td>
<td>Atr</td>
<td>NI-A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>konec</td>
<td>Head</td>
<td>NI-A</td>
<td>rok</td>
<td>Adv</td>
<td>NN-A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>tak-3</td>
<td>Adv</td>
<td>D—</td>
<td>zvaný</td>
<td>Head</td>
<td>AF1A</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tak-3</td>
<td>Adv</td>
<td>D—</td>
<td>zvaný</td>
<td>Head</td>
<td>AI1A</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>uzavřít</td>
<td>Head</td>
<td>V—</td>
<td>dohoda</td>
<td>Obj</td>
<td>NF-A</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>uzavřít</td>
<td>Head</td>
<td>V—</td>
<td>dohoda</td>
<td>Sb</td>
<td>NF-A</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>velký</td>
<td>Atr</td>
<td>AF1A</td>
<td>společnost</td>
<td>Head</td>
<td>NF-A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>velký</td>
<td>Atr</td>
<td>AF3A</td>
<td>společnost</td>
<td>Head</td>
<td>NF-A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>vyspělý</td>
<td>Atr</td>
<td>AF1A</td>
<td>země</td>
<td>Head</td>
<td>NF-A</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>vyspělý</td>
<td>Atr</td>
<td>AF3A</td>
<td>země</td>
<td>Head</td>
<td>NF-A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

context as a semantic collocate. The question whether this is linguistically plausible or rather result of the annotation scheme (see [Pec09] for the details) should be left to linguists. However, it seems reasonable to use the word pair as the primary key for the classification of new instances. By this I mean the following strategy: when faced with a new instance, first check whether the same word pair has appeared in one of the training candidates. If so, and if it is not one of the 7 “undecidable” cases, assign to it the same value of the tp feature as seen in the training data. Only if the word pair has not been seen in the training data, use your favourite model for the prediction.

2.4 Development and test data

I divided the data into two parts, the development part consisting of 8260 instances and the "publication" part intended for final evaluation of the selected methods consisting of 972 instances. The development part was further divided into 7

8Note that the annotators were instructed to judge any candidate which could eventually appear in a context where it has character of collocation as true collocation [Pec09, p. 56]. This includes the possibility that the same candidate (with given grammatical structure) sometimes appears as a semantic collocate and sometimes in its literal meaning. However, a difference may arise when the same word pair appears with different grammatical structure. This is the case for seven word pairs in Table 3.
subparts with 1180 instances each which I used for cross-validation during the parameters optimization.

3 Theoretical aspects of methods (models)

3.1 \(k \)-Nearest Neighbours

In this method, a new instance is assigned the classification which is most common among \(k \) training instances which are nearest to it. If there is no clear winner, the algorithm selects at random. Clearly, the concept of "nearest" neighbours depends on the metric that is used; the most common option is the Euclidean metric, in which case it is impossible to use categorial features. However, categorial features may be converted to numerical ones for example by creating a new numerical feature for each possible value of the categorial feature:

\[
f(x) \in I \quad \longrightarrow \quad \forall i \in I \quad f_i(x) = 1 \text{ iff } f(x) = i.
\]

Scaling and weighing is especially important for the \(k \)-NN algorithm because it strongly influences the distances between the points. Figure 3 demonstrates this. In this toy example, I used six training points: "s-1 funkce", "všechen firma", "z-1 území", "židovský stát-1", "živnostenský úřad", "životní podmínka"; the last three are semantic collocations. The new instance "zájemce muset" is then classified

![Diagram](image)

Figure 3: The effect of scaling on the choice of nearest neighbours
using 3 nearest neighbours and feature space consisting of features \(x_{11} \) and \(x_{23} \); before scaling\(^9\) it is classified as ordinary collocation but after scaling it is classified as semantic collocation. We see that before scaling, feature \(x_{23} \) has a larger impact on the classification because the values of the feature \(x_{11} \) almost do not differ; however, during the scaling, \(x_{11} \) was multiplied by about 118, whilst \(x_{23} \) was only multiplied by roughly 5. This means that the distances on the \(x_{11} \) axis have increased much more than the distances on the \(x_{23} \) axis, or in yet another words, \(x_{11} \) was given a larger weight.

3.2 Decision trees and boosting

As the second method, I selected decision trees with boosting.

Decision trees as such use a very intuitive approach: as we have already mentioned, a simple look at the plots of some features shows that there is an interval \(I \) such that if the value of the feature falls into this interval, the predicted function is known. (See Figure 1.) If we were to classify some new instances manually, we would definitely start with something like this:

Look at the dependency relations \(a_1 \) and \(a_2 \); one of them is Head, look at the other one:

1. if it is Atv, Aux, Pnom, Pred or Apos, classify the candidate as ordinary collocation;
2. else look at feature \(x_{18} \):

 (a) \(x_{18} < 0.985 \), classify the candidate as ordinary collocation;

 (b) else . . .

After a while we would arrive at a set of training instances which cannot be clearly cut with the help of any feature, i.e. for each feature \(f \) and each \(x \in \mathbb{R} \), neither \(f(i) < x \) nor \(f(i) > x \) implies a definite classification of the instance \(i \). In the decision tree approach, this is not considered a serious obstacle. Some feature and some subset of its values are selected so that the division of instances into two subsets according to \(f(i) \) creates subsets which are less mixed with respect to the predicted function. The subsets are then divided with the help of further features; the process goes on recursively. Only when such recursively constructed subset becomes smaller than a certain preset number, the most common class is assigned.

\(^9\)I scaled the features to have mean 0 and variance 1 on the whole data, with no respect to the instances selected for this example. The mean value is not important for the \(k \)-NN algorithm, it is just a side effect of the `scale` function in R, which first centralizes each column and then scales it.
to all instances in the subset, creating some small error, but avoiding overfitting to the training data.

More exact discussion of decision trees may be found on [Wikipedia] in articles "Decision tree learning", "ID3 algorithm", "C4.5 algorithm" and "Decision tree pruning", or [Hla10, Decision trees].

Boosting is a general method for developing classifiers with high accuracy on the training data. The main idea of the algorithm is to iteratively train models on the same data, giving higher weight to the training instances that were classified incorrectly in the previous iteration step. Finally, all models are combined into a single one using weighted voting. Because the instances that were classified incorrectly in one iteration are given higher weight in the next iterations, boosting leads to improved accuracy on the training data. See [Fre99] for more details.

3.3 Naive Bayes classifier

As the third method, I selected the Naive Bayes classifier. It is a direct implementation of the Bayes’ rule for prediction based on several pairwise independent features:

$$t_p = \arg\max_{t_p \in \{0, 1\}} P(t_p) \prod_{i=1}^{96} P(a_i | t_p),$$

where \(a_i, i \in \{1, \ldots, 96\}\) are the values of the features for the given instance. Besides the assumption that the features are independent (which is made for any Naive Bayes classifier), the implementation in R also assumes that the continuous features have Gaussian distribution given the target class. As we have seen in the discussion of features in Section 2.2, neither of these two assumptions holds for this data. And indeed, of the three kinds of models that I have experimented with, the Naive Bayes classifier gave the poorest results.

4 Implementation of the selected methods

My best classifier can be quickly obtained by running the script

```R
Lauschmannova.best.model.R;
```

it is also in the file

```R
Lauschmannova.RData
```

as the object `LAUSCHMANNNOVA_BEST_MODEL`.
4.1 *k*-Nearest Neighbours

The *k*-Nearest Neighbours algorithm is implemented in the R system in several different ways. Below I list them with the most commonly used parameters and their short explanations (not the default values).

- **library class** for basic prediction and cross-validation:

  ```r
  prediction <- knn(train = train_data, test = test_data,
                   cl = train_classes,
                   k = num_of_nearest_neighbours,
                   l = minimum_num_of_votes_otherwise_doubt,
                   prob = return_proportion_of_votes?,
                   use.all = use_all_inst_of_same_distance?)
  prediction <- knn.cv(train, cl, k, l, prob, use.all)
  ``

  The latter has the advantage that the data does not need to be divided into training and test part, but the cross-validation is performed by the *take-one-out* method on the whole training data; this is equivalent to size-of-the-data-fold crossvalidation.

- **library kknn** for weighed *k*-NN:

  ```r
 kknn(class ~ ., train = train_data, test = test_data,
 k = num_of_nearest_neighbours,
 distance = parameter_of_Minkowski_distance,
 kernel = "rectangular"_Euklidean___"triangular"___
 _"inv"_1/distance___"gaussian"___others)
 train.kknn(class ~ ., data, distance, kernel,
 kmax = try_all_k_in_1:kmax)
 ``

 Both of these functions return a complex object with many components. One of them is the list of the fitted values (in `train.kknn` for every combination of *k* and kernel). The former of these two functions also returns classes, weights and distances of the *k* nearest neighbours. The latter allows for automatic evaluation of misclassification errors and best parameters; and – most importantly – it already employs the leave-one-out cross-validation.

- **library knnflex** for adjusting the way the distance is calculated:

  ```r
  distances <- knn.dist(train_and_test_data,
                        dist.meth = any_of_euclidean_maximum_manhattan_
canberra_binary_minkowski,
p = power_of_minkowski_distance)
knn.predict(train = train_rows_of_data,
    test = test_rows_of_data,
    dist.matrix = distances_from_knn.dist,
    k = num_nearest_neighbours,
    ties.meth = "min"_use_all___"max"_use_none___
        "random"___"first"_in_data)
knn.probability(train, test, dist.matrix, k, ties.meth)

• library RWeka

classifier <- IBk(class ~ .,
    data,
    subset, na.action,
    control = Weka_control(
        I = weight_by_1/distance?,
        F = weight_by_1-distance?,
        K = num_nearest_neighbours,
        X = take_one_out_cv_for_k_in_1:K
    )
)

summary(classifier)
evaluate_Weka_classifier(classifier,
    numFolds = num_of_folds_for_crossvalidation,
    newdata = for_evaluation_on_test_set)
predict(classifier, test_data_set)

For the selection of the parameters, I decided to use train.kknn, because it uses the leave-one-out cross-validation and it outputs the best combination of parameters. As far as I could tell, IBk was somewhat quicker, but I came across a problem with the interpretation of the evaluation on previously unseen data which I could not solve, so I rather used train.kknn.\textsuperscript{10}

\textsuperscript{10}The problem was the following: when I used the function evaluate_Weka_classifier with the parameter newdata, the confusion matrix looked differently than when I constructed the confusion matrix with table(newdata[,"tp"], predict(classifier, newdata)). Because I could not explain this difference, I was not sure about the right interpretation of the output of RWeka functions and decided not to use them.
4.2 Decision trees and boosting

I used the ada function from the package of the same name. The following piece of code stores the accuracies on the train and test part of the development data and can be used for later decision which combination of parameters works best and how many iterations of the boosting algorithm should be performed:

```r
control <- rpart.control(method="class", minsplit=min, cp=cpcko,
 maxdepth=max, maxsurrogate=0, xval=7)
dec_tree <- ada(tp~., data=data_train[,c(-1, -4)],
 test.x=data_test[,c(-1, -4, -97)],
 test.y=data_test[,97],
 type = "gentle", control=control, iter=30)
dec_tree_accuracies[[paste("minsplit=",min, ", cp=", cpcko,
 ", maxdepth="", max, sep=" ")]] <-
 dec_tree$model$err
```

Note that in the decision tree approach, it is necessary to exclude the two features containing the lemmas, because otherwise the algorithm would tend to build a decision tree based on them.

The rpart function already contains some cross-validation, so I decided not to use cross-validation for every possible combination of parameters, as this would be too time consuming: the boosting algorithm constructs a large number of decision trees and if the boosting itself should be performed several times in order to cross-validate, it would take too long. After going through a larger set of possible combinations of the parameters minsplit, cp and maxdepth, I selected three of them by their accuracy on one, fixed portion of the development data (called data_test in the above code). Only for these three combinations I performed cross-validation, dividing the development data into data_test and data_train in seven different ways and selecting the combination that gave the best mean accuracy on data_test. However, I am aware that the confidence intervals for some of these mean accuracies overlap.

4.3 Naive Bayes classifier

Again, this is a method which is sensitive to the choice of particular features. I experimented with the ordering of the features that can be obtained by the package FSelector. With the help of the functions in this package, it is easy to order the features according to the information.gain, gain.ratio, chi.squared coefficient or symmetrical.uncertainty relative to feature tp. However, the functions in FSelector assume that the features are discrete, so applying them to continuous features might be extremely misleading. In selecting the parameters for
the Naive Bayes algorithm, I decided to use the following strategy: going through the features starting with those marked by FSelector as most relevant, and for each feature, adding it to the feature set if this leads to improved accuracy of the classifier. I experimented with allowing the same feature to be added several times, although this violates the independence assumption present in the Naive Bayes classifier model.

After some experiments, the best accuracy still was only 83.3% (with features $x4+x4+x4+x4+x37+x50+fA$); as this is still much less than what I could obtain with decision trees or the $k$-NN algorithm, so I did not try to further optimize the parameters for the Naive Bayes classifier.

5 Project analysis

After choosing one combination of parameters for each of the three methods, I performed seven-fold cross-validation and a test on the "publication" data for the three models. For the test on the "publication" data I used the whole development set as the training set. The confidence intervals are computed for the 95% confidence level. A comparison of the results may be found in Table 4.\textsuperscript{12}

A few things need to be said about the table:

The performance of the best classifier on the unseen data is even higher than the upper bound of the confidence interval. This may be pure chance or it may be because the last classifier was trained on a larger training set. An argument in favour of the latter explanation would be that also the accuracy of the $k$-NN algorithm on the publication data is at the upper end of the confidence interval. However, it may simply be the case that by chance the publication set is such that it is easy to predict it from the development set and some other division would behave differently.

The confidence intervals do not overlap at all. Thus we may confidently say that of these three classifier, the boosted model is the best and the Naive Bayes classifier is only slightly better than the baseline. And indeed, we know from the

\textsuperscript{11}In this final evaluation, I performed crossvalidation with the same division of the data into folds for all three classifiers; during development, I used crossvalidation methods specific to the models, i.e. the "leave-one-out" cross-validation for $k$-Nearest Neighbours, the built-in cross-validation of the function ada and the usual cross-validation with the Naive Bayes classifier. Each one of these is suitable for choosing the best combination of parameters for a given method; however, their results cannot really be compared.

\textsuperscript{12}Just for fun, let me note that if the models are trained on the (unseen) publication data and evaluated on the development data (on which they were tuned), their respective accuracies are 86.5\%, 89.1\% and 82.1\%. These numbers are smaller than the accuracy on unseen data in the table, probably because they are obtained from training on a much smaller set.
Table 4: Chosen parameters and resulting accuracies

<table>
<thead>
<tr>
<th>method</th>
<th>parameters</th>
<th>mean accuracy</th>
<th>conf. interval (lower, upper)</th>
<th>accuracy on unseen data</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-Nearest Neighbours</td>
<td>kernel: “inv”</td>
<td>87.6</td>
<td>86.9, 88.3</td>
<td>88.3</td>
</tr>
<tr>
<td></td>
<td>k: 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44 features:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x2+x3+x5+x7+x10+x12+x13+x14+x20+x21+x22+x23+x24+x27+x29+x30+x33+x34+x37+x38+x39+x41+x45+x47+x48+x51+x53+x55+x57+x59+x60+x61+x63+x64+x65+x69+x70+x74+x77+x80+x81+fA+fC+b3+b4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decision trees</td>
<td>minsplit: 5</td>
<td>89.9</td>
<td>89.4, 90.4</td>
<td>90.5</td>
</tr>
<tr>
<td>with boosting</td>
<td>cp: -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maxdepth: 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iter: 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>features:</td>
<td>82.1</td>
<td>81.4, 82.8</td>
<td>82.0</td>
</tr>
<tr>
<td></td>
<td>x4+x4+x4+x4+x4+x37+x50+fA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>laplace: 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

theory that boosting yields increased performance already after a small number of iterations.

However, the poor performance of the Bayes classifier is probably caused by poor parameter tuning, not by insufficiency of the method itself.

6 What else to learn

Here, I would like to mention a few topics that I believe I need to consider seriously in my future attempts to use machine learning methods.

6.1 Feature selection

One of the major issues in tuning both k-NN and Naive Bayes classifier is the selection of features. I need to learn more about measures of feature relevancy to
the predicted function, and about the R functions that can be used to determine such measures. In particular, I did not find any suitable package for working with continuous features predicting a discrete function and I suspect that the functions `chi.squared`, `info.gain`, `gain.ratio` and `symmetrical.uncertainty` from the `FSelector` package give misleading predictions by assuming that the features are discrete. On the other hand, `linear.correlation` did not seem relevant for a two-class problem.

I also assume that different measures would be relevant for different models: for the $k$-NN algorithm, a measure of feature relevance should have something to do with distances between points; for the Bayesian approach, such a measure will likely be based on some statistical theory.

Also, it has been suggested in the literature that simpler machine learning algorithms may be used for selection of features which are later used in more complex algorithms: for example, we might first evaluate misclassification error of the $k$-NN algorithm with each feature separately (for some fixed $k$) and then select features with smallest error; or we might decide to work only with those features that are actually used in a decision tree built from the whole data. Both of these methods are also implemented in the `FSelector` package, however, they are rather time consuming.

### 6.2 Optimization algorithms

I have also found out that I need to learn more about optimization strategies and algorithms. The only method really covered in the class was ”try many values from the parameter space and choose the best one”. However, the size of the parameter space is growing exponentially with increasing number of parameters and/or their possible values.
References


