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Abstract

Human linguistic annotation is crucial for
many natural language processing tasks but
can be expensive and time-consuming. We ex-
plore the use of Amazon’s Mechanical Turk
system, a significantly cheaper and faster
method for collecting annotations from a
broad base of paid non-expert contributors
over the Web. We investigate five tasks: rec-
ognizing textual entailment, affect recogni-
tion, word similarity, event temporal order-
ing, and word sense disambiguation. For all
five, we show high agreement between Me-
chanical Turk non-expert annotations and ex-
isting gold standard labels provided by expert
labelers. For the task of affect recognition,
we also show that using non-expert labels for
training machine learning algorithms can be
as effective as using gold standard annotations
from experts. We propose a technique for bias
correction that significantly improves annota-
tion quality on two tasks. We conclude that
many large labeling tasks can be effectively
designed and carried out in this method at a
fraction of the usual expense.

1 Introduction

Large scale annotation projects such as TreeBank
(Marcus et al., 1993), PropBank (Palmer et
al., 2005), TimeBank (Pustejovsky et al., 2003),
FrameNet (Baker et al., 1998), SemCor (Miller et
al., 1993), and others play an important role in nat-
ural language processing, encouraging the develop-
ment of novel ideas, tasks, and algorithms. The con-
struction of these datasets, however, is extremely ex-
pensive in annotator-hours as well as money. Since

the performance of many natural language process-
ing tasks is limited by the amount and quality of data
available to them (Banko and Brill, 2001), a promis-
ing alternative, at least for some tasks, is collecting
annotations from non-expert volunteers.

In this work we explore such a system, Amazon
Mechanical Turk! (AMT), to study whether non-
expert volunteers on the web can provide reliable
natural language annotations. We chose five natu-
ral language understanding tasks that we felt would
be sufficiently natural and learnable for non-experts,
and for which we had gold standard labels from ex-
pert labelers, as well as (in some cases) human la-
beler agreement information. The tasks are: affect
recognition, word similarity, recognizing textual en-
tailment, event temporal ordering, and word sense
disambiguation. For each task, we used AMT to an-
notate data and measured the quality of the annota-
tions by comparing them with the gold standard (ex-
pert) labels on the same data, and by using the AMT
annotations to train machine learning classifiers.

In the next sections of the paper we introduce
the five tasks and the evaluation metrics, and offer
methodological insights, including a new technique
for bias correction that improves annotation quality.

2 Related Work

The idea of collecting annotations from volunteer
contributors has been used for a variety of tasks.
Luis von Ahn pioneered the collection of data via

'Amazon Mechanical Turk may be found online at
http://mturk.com.



online annotation tasks in the form of games, includ-
ing the ESPGame for labeling images (von Ahn and
Dabbish, 2004) and Verbosity for annotating word
relations (von Ahn et al., 2006). The Open Mind
Initiative (Stork, 1999) has taken a similar approach,
attempting to make such tasks as annotating word
sense (Chklovski and Mihalcea, 2002) and common-
sense word relations (Singh, 2002) sufficiently “easy
and fun” to entice users into freely labeling data.

There have been an increasing number of experi-
ments using Mechanical Turk for annotation. In (Su
et al., 2007) workers provided annotations for the
tasks of hotel name entity resolution and attribute
extraction of age, product brand, and product model,
and were found to have high accuracy compared to
gold-standard labels. In (Nakov, 2008) workers gen-
erated paraphrases of 250 noun-noun compounds
which were then used as the gold standard dataset
for evaluating an automatic method of noun com-
pound paraphrasing (though no external gold stan-
dard was compared). Kaisser and Lowe (2008) use
AMT to help build a dataset for question answer-
ing, annotating the answers to 8107 questions with
the sentence containing the answer. Kaisser et al.
(2008) examines the task of customizing the sum-
mary length of QA output; non-experts from AMT
chose a summary length that suited their informa-
tion needs for varying query types. Zaenen (2008)
studied the agreement of annotators on the problem
of recognizing textual entailment (a similar task and
dataset is explained in more detail in Section 4).

3  Task Design

In this section we describe Amazon Mechanical
Turk and the general design of our experiments.

3.1 Amazon Mechanical Turk

We employ the Amazon Mechanical Turk system
in order to elicit annotations from non-expert label-
ers. AMT is an online labor market where workers
are paid small amounts of money to complete small
tasks. The design of the system is as follows: one is
required to have an Amazon account to either sub-
mit tasks for annotations or to annotate submitted
tasks. These Amazon accounts are anonymous, but
are referenced by a unique Amazon ID. A Requester
can create a group of Human Intelligence Tasks (or

HITs), each of which is a form composed of an arbi-
trary number of questions. The user requesting an-
notations for the group of HIT's can specify the num-
ber of unique annotations per HIT they are willing
to pay for, as well as the reward payment for each
individual HIT. While this does not guarantee that
unique people will annotate the task (since a single
person could conceivably annotate tasks using mul-
tiple accounts, in violation of the user agreement),
this does guarantee that annotations will be collected
from unique accounts. AMT also allows a requester
to restrict which workers are allowed to annotate a
task by requiring that all workers have a particular
set of qualifications, such as sufficient accuracy on
a small test set or a minimum percentage of previ-
ously accepted submissions. Annotators (variously
referred to as Workers or Turkers) may then annotate
the tasks of their choosing. Finally, after each HIT
has been annotated, the Requester has the option of
approving the work and optionally giving a bonus
to individual workers. There is a two-way commu-
nication channel between the task designer and the
workers mediated by Amazon, and Amazon handles
all financial transactions.

3.2 Task Design

In general we follow a few simple design principles:
we attempt to keep our task descriptions as succinct
as possible, and we attempt to give demonstrative
examples for each class wherever possible. We do
not include our task instructions here for lack of
space; we have published our full experimental de-
sign and the data we have collected online?. We have
restricted our study to tasks where we require only
a multiple-choice response or numeric input within
a fixed range. For every task we collect ten inde-
pendent annotations for each unique item; this re-
dundancy allows us to perform an in-depth study of
how data quality improves with the number of inde-
pendent annotations.

4 Annotation Tasks

We analyze the quality of non-expert annotations on
five tasks: affect recognition, word similarity, rec-
ognizing textual entailment, temporal event recogni-
tion, and word sense disambiguation. In this section

2All tasks and collected data are available at

http://ai.stanford.edu/~rion/annotations/.



we define each annotation task and the parameters
of the annotations we request using AMT. Addition-
ally we give an initial analysis of the task results,
and summarize the cost of the experiments.

4.1 Affective Text Analysis

This experiment is based on the affective text an-
notation task proposed in Strapparava and Mihalcea
(2007), wherein each annotator is presented with a
list of short headlines, and is asked to give numeric
judgments in the interval [0,100] rating the headline
for six emotions: anger, disgust, fear, joy, sadness,
and surprise, and a single numeric rating in the inter-
val [-100,100] to denote the overall positive or nega-
tive valence of the emotional content of the headline,
as in this sample headline-annotation pair:

Outcry at N Korea ‘nuclear test’

(Anger, 30), (Disgust,30), (Fear,30), (Joy,0),
(Sadness,20), (Surprise,40), (Valence,-50).

For our experiment we select a 100-headline sample
from the original Semeval test set, and collect 10 af-
fect annotations for each of the seven label types, for
a total of 7000 affect labels.

We then performed two comparisons to evaluate
the quality of the AMT annotations. First, we asked
how well the non-experts agreed with the experts.
We did this by comparing the interannotator agree-
ment (ITA) of individual expert annotations to that
of single non-expert and averaged non-expert anno-
tations. In the original experiment ITA is measured
by calculating the Pearson correlation of one anno-
tator’s labels with the average of the labels of the
other five annotators. For each expert labeler, we
computed this ITA score of the expert against the
other five; we then average these ITA scores across
all expert annotators to compute the average expert
ITA (reported in Table 1 as “E vs. E”. We then do the
same for individual non-expert annotations, averag-
ing Pearson correlation across all sets of the five ex-
pert labelers (“NE vs. E”). We then calculate the ITA
for each expert vs. the averaged labels from all other
experts and non-experts (marked as “E vs. All”) and
for each non-expert vs. the pool of other non-experts
and all experts (“NE vs. All”). We compute these
ITA scores for each emotion task separately, aver-
aging the six emotion tasks as “Avg. Emo” and the
average of all tasks as “Avg. All”.

Emotion Evs.E | Evs. All || NEvs. E | NE vs. All
Anger 0.459 0.503 0.444 0.573
Disgust 0.583 0.594 0.537 0.647
Fear 0.711 0.683 0418 0.498
Joy 0.596 0.585 0.340 0.421
Sadness 0.645 0.650 0.563 0.651
Surprise 0.464 0.463 0.201 0.225
Valence 0.759 0.767 0.530 0.554
Avg. Emo 0.576 0.603 0417 0.503
Avg. All 0.580 0.607 0.433 0.510

Table 1: Average expert and non-expert ITA on test-set

The results in Table 1 conform to the expectation
that experts are better labelers: experts agree with
experts more than non-experts agree with experts,
although the ITAs are in many cases quite close. But
we also found that adding non-experts to the gold
standard (“E vs. All”) improves agreement, suggest-
ing that non-expert annotations are good enough to
increase the overall quality of the gold labels. Our
first comparison showed that individual experts were
better than individual non-experts. In our next com-
parison we ask how many averaged non-experts it
would take to rival the performance of a single ex-
pert. We did this by averaging the labels of each pos-
sible subset of n non-expert annotations, for value
of nin {1,2,...,10}. We then treat this average as
though it is the output of a single ‘meta-labeler’, and
compute the ITA with respect to each subset of five
of the six expert annotators. We then average the
results of these studies across each subset size; the
results of this experiment are given in Table 2 and in
figure 1. In addition to the single meta-labeler, we
ask: what is the minimum number of non-expert an-
notations k from which we can create a meta-labeler
that has equal or better ITA than an expert annotator?
In Table 2 we give the minimum k for each emotion,
and the averaged ITA for that meta-labeler consist-
ing of k£ non-experts (marked “k-NE”). In Figure 1
we plot the expert ITA correlation as the horizontal
dashed line.

These results show that for all tasks except “Fear”
we are able to achieve expert-level ITA with the
held-out set of experts within 9 labelers, and fre-
quently within only 2 labelers. On average it re-
quires only 4 non-expert annotations per example to
achieve the equivalent ITA as a single expert anno-
tator. Thus, given that we paid US$2.00 in order to



Emotion 1-Expert | 10-NE | k£ | k-NE
Anger 0.459 0.675 | 2 | 0.536
Disgust 0.583 0.746 | 2 | 0.627
Fear 0.711 0.689 | — -
Joy 0.596 0.632 | 7 | 0.600
Sadness 0.645 0.776 | 2 | 0.656
Surprise 0.464 0496 | 9 | 0481
Valence 0.759 0.844 | 5| 0.803
Avg. Emo. 0.576 0.669 | 4 | 0.589
Avg. All 0.603 0694 | 4 | 0.613

Table 2: Average expert and averaged correlation over
10 non-experts on test-set. k is the minimum number of
non-experts needed to beat an average expert.

collect the 7000 non-expert annotations, we may in-
terpret our rate of 3500 non-expert labels per USD
on this task as at least 875 expert-equivalent labels

per USD.
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Figure 1: Non-expert correlation for affect recognition

4.2 Word Similarity

This task replicates the word similarity task used in
(Miller and Charles, 1991), following a previous
task initially proposed by (Rubenstein and Good-
enough, 1965). Specifically, we ask for numeric
judgments of word similarity for 30 word pairs on a

scale of [0,10], allowing fractional responses3. Nu-
merous expert and non-expert studies have shown
that this is task tends to yield very high interanno-
tator agreement as measured by Pearson correlation;
(Miller and Charles, 1991) found a 0.97 correla-
tion of the annotations of 38 subjects with the an-
notations given by 51 subjects in (Rubenstein and
Goodenough, 1965), and a following study (Resnik,
1999) with 10 subjects found a 0.958 correlation
with (Miller and Charles, 1991).

In our experiment we ask for 10 annotations each
of the full 30 word pairs, at an offered price of $0.02
for each set of 30 annotations (or, equivalently, at
the rate of 1500 annotations per USD). The most
surprising aspect of this study was the speed with
which it was completed; the task of 300 annotations
was completed by 10 annotators in less than 11 min-
utes from the time of submission of our task to AMT,
at the rate of 1724 annotations / hour.

As in the previous task we evaluate our non-
expert annotations by averaging the numeric re-
sponses from each possible subset of n annotators
and computing the interannotator agreement with
respect to the gold scores reported in (Miller and
Charles, 1991). Our results are displayed in Figure
2, with Resnik’s 0.958 correlation plotted as the hor-
izontal line; we find that at 10 annotators we achieve
a correlation of 0.952, well within the range of other
studies of expert and non-expert annotations.

Word Similarity ITA
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Figure 2: ITA for word similarity experiment

3(Miller and Charles, 1991) and others originally used a
numerical score of [0,4].



4.3 Recognizing Textual Entailment

This task replicates the recognizing textual entail-
ment task originally proposed in the PASCAL Rec-
ognizing Textual Entailment task (Dagan et al.,
2006); here for each question the annotator is pre-
sented with two sentences and asked whether the
second sentence can be inferred from the first. We
gather 10 annotations each for all 800 sentence pairs
in the PASCAL RTE-1 dataset. For this dataset ex-
pert interannotator agreement studies have been re-
ported as achieving 91% and 96% agreement over
various subsections of the corpus. For greater than 1
annotation we employ a simple voting mechanism;
further, we break ties randomly and average our per-
formance over all possible ways to break ties. We
collect 10 annotations for each of 100 RTE sentence
pairs; as displayed in Figure 3, we achieve a maxi-
mum accuracy of 89.7%, averaging over the annota-
tions of 10 workers.
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Figure 3: Inter-annotator agreement for RTE experiment

44 Event Annotation

This task is inspired by the TimeBank corpus (Puste-
jovsky et al., 2003), which includes among its anno-
tations a label for event-pairs that represents the tem-
poral relation between them, from a set of fourteen
relations (before, after, during, includes, etc.).

We implement temporal ordering as a simplified
version of the TimeBank event temporal annotation
task: rather than annotating all fourteen event types,
we restrict our consideration to the two simplest la-
bels: “strictly before” and “strictly after”. Further-
more, rather than marking both nouns and verbs in

the text as possible events, we only consider possi-
ble verb events. We extract the 462 verb event pairs
labeled as “strictly before” or “strictly after” in the
TimeBank corpus, and we present these pairs to an-
notators with a forced binary choice on whether the
first verb event in the pair occurs before or after one
another. The results of this task are presented in Fig-
ure 4. We achieve high agreement for this task, at a
rate of 0.94 with simple voting over 10 annotators
(4620 total annotations). While an expert ITA of
0.77 was reported for the more general task involv-
ing all fourteen labels on both noun and verb events,
no expert ITA numbers have been reported for this
simplified temporal ordering task.

Temp. Ordering ITA
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Figure 4: ITA for temporal ordering experiment

4.5 Word Sense Disambiguation

In this task we consider a very easy problem
on which machine learning algorithms have been
shown to produce extremely good results; here
we annotate part of the Semeval Word Sense Dis-
ambiguation Lexical Sample task (Pradhan et al.,
2007); specifically, we collect 10 annotations for
each of 177 examples of the noun “president” for
the three senses given in Semeval. As shown in Fig-
ure 5, performing simple voting over annotators re-
sults in a rapid accuracy plateau at a very high rate
of 0.994 accuracy. In fact, further analysis reveals
that there was only a single disagreement between
the averaged nonexpert-annotator vote and the gold
standard; on inspection it was observed that the an-
notators voted strongly against the original gold la-
bel (9-to-1 against), and that it was in fact revealed to



be an error in the original gold standard annotation*
After correcting this error, the non-expert accuracy
rate is 100% on the 177 examples in this task. This
is a specific example where non-expert annotations
can be used to correct expert annotations.

Since expert ITA was not reported per word on
this dataset, we compare instead to the performance
of the best automatic system performance for dis-
ambiguating “president” in Semeval 17 (Cai et al.,
2007), with an accuracy of 0.98.

WSD ITA
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Figure 5: Inter-annotator agreement for WSD experiment

4.6 Summary

Cost Time Labels Labels

Task Labels | (USD) | (hrs) | per USD | per hr

Affect 7000 $2.00 5.93 3500 1180.4
WSim 300 $0.20 | 0.174 1500 1724.1
RTE 8000 $8.00 89.3 1000 89.59

Event 4620 $13.86 | 39.9 3333 115.85
WSD 1770 $1.76 8.59 1005.7 206.1
Total 21690 25.82 143.9 840.0 150.7

Table 3: Summary of costs for non-expert labels

In Table 3 we give a summary of the costs asso-
ciated with obtaining the non-expert annotations for
each of our 5 tasks. Here Time is given as the to-
tal amount of time in hours elapsed from submitting
the group of HITs to AMT until the last assignment
is submitted by the last worker.

*The example sentence began “The Egyptian president said
he would visit Libya today...” and was mistakenly marked as
the “head of a company” sense in the gold annotation (example
id 24:0@24@wsj/23/wsj_2381 @wsj@en@on).
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Figure 6: Worker accuracies on RTE task. Each point is
one worker. Vertical jitter has been added to points on
the left to show the large number of workers who did the
minimum amount of work (20 examples).

S Bias correction for non-expert
annotators

The reliability of individual workers varies. Some
are very accurate, while others are more careless and
make mistakes; and a small few give very noisy re-
sponses. Furthermore, for most AMT data collec-
tion experiments, a relatively small number of work-
ers do a large portion of the task, since workers may
do as much or as little as they please. Figure 6 shows
accuracy rates for individual workers on one task.
Both the overall variability, as well as the prospect
of identifying high-volume but low-quality workers,
suggest that for controlling individual worker qual-
ity could yield higher quality overall judgments.

In general, there are at least three ways to enhance
quality in the face of worker error. More work-
ers can be used, as described in previous sections.
Another method is to use Amazon’s compensation
mechanisms to give monetary bonuses to highly-
performing workers and deny payments to unreli-
able ones; this is useful, but beyond the scope of
this paper. In this section we explore a third alter-
native, to model the reliability of individual workers
and correct for their biases.

A wide number of methods have been explored to
correct for the bias of annotators. Dawid and Skene
(1979) consider the case of having multiple annota-
tors per example but unknown true labels. They in-



troduce an EM algorithm to simultaneously estimate
annotator biases and latent label classes. Wiebe et al.
(1999) analyze annotator agreement statistics to find
bias, and use a similar model to correct labels.

Here we consider the slightly different problem
of using a small amount of expert-labeled training
data in order to correct for the individual biases of
different non-expert annotators. The idea is to re-
calibrate worker’s responses to more closely match
expert behavior. We restrict our attention to categor-
ical examples, though in principle a similar method
could be used with numeric data.

5.1 Bias correction in categorical data

Following Dawid and Skeene, we model labels and
workers with a multinomial model similar to Naive
Bayes. Every example ¢ has a true label x;. For sim-
plicity, assume two labels {Y, N}. Several differ-
ent workers give labels y;1, yio, . . . ;. A worker’s
conditional probability of response is modeled as
multinomial. Each worker’s judgment is condition-
ally independent of other workers given the true la-
bel z;,1.e.

P(yil;---

YW, Ti) = (H P(?Jz‘w!%’)) p(z;)

To infer the posterior probability of the true label
for a new example, worker judgments are integrated
via Bayes rule, yielding the posterior log-odds:

= log ————= 4+ log ——=
zw: % Plyilz; = N) e P(;

log

The worker response likelihoods P(y,|z = Y)
and P(y,|r = N) can be directly estimated from
frequencies of worker performance on gold standard
examples. (If we used maximum likelihood esti-
mation with no Laplace smoothing, then each y,,|x
is just the worker’s empirical confusion matrix.)
For MAP label estimation, the above equation de-
scribes a weighted voting rule: each worker’s vote is
weighted by their log likelihood ratio for their given
response. Intuitively, workers who are more than
50% accurate have positive votes; workers whose

judgments are pure noise have zero votes; and an-

ticorrelated workers have negative votes. (A simpler

form of the model only considers accuracy rates,
. . aCCqw

thus weighting worke'r votes b}f log Tacew But we

use the full unconstrained multinomial model here.)

5.1.1 Example tasks: RTE-1 and event

annotation

We used this model to improve accuracy on the
RTE-1 and event annotation tasks. (The other cate-
gorical task, word sense disambiguation, could not
be improved because it already had maximum accu-
racy.) First we took a sample of annotations giving
k responses per example. Within this sample, we
trained and tested via 20-fold cross-validation across
examples. Worker models were fit using Laplace
smoothing of 1 pseudocount; label priors were uni-
form, which was reasonably similar to the empirical
distribution for both tasks.
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Figure 7: Gold-calibrated labels versus raw labels

Figure 7 shows improved accuracy at different
numbers of annotators. The lowest line is for the
naive 50% majority voting rule. (This is equivalent
to the model under uniform priors and equal accu-
racies across workers and labels.) Each point is the
data set’s accuracy against the gold labels, averaged
across resamplings each of which obtains k£ annota-
tions per example. RTE has an average +4.0% ac-
curacy increase, averaged across 2 through 10 anno-
tators. We find a +3.4% gain on event annotation.
Finally, we experimented with a similar calibration
method for numeric data, using a Gaussian noise
model for each worker: y, |z ~ N(z + pw, o).
On the affect task, this yielded a small but consis-
tent increases in Pearson correlation at all numbers
of annotators, averaging a +0.6% gain.



6 Training a system with non-expert
annotations

In this section we train a supervised affect recogni-
tion system with expert vs. non-expert annotations.

6.1 Experimental Design

For the purpose of this experiment we create a sim-
ple bag-of-words unigram model for predicting af-
fect and valence, similar to the SWAT system (Katz
et al., 2007), one of the top-performing systems on
the SemEval Affective Text task.> For each token
t in our training set, we assign t a weight for each
emotion e equal to the average emotion score ob-
served in each headline H that ¢ participates in. i.e.,
if H; is the set of headlines containing the token ¢,
then:

ZHth Score(e, H)
| HL |

Score(e,t) =

With these weights of the individual tokens we
may then compute the score for an emotion e of a
new headline H as the average score over the set of
tokens ¢t € H that we’ve observed in the training set
(ignoring those tokens not in the training set), i.e.:

Score(e,H) = Z Score(e,t)

ien

Where |H| is simply the number of tokens in
headline H, ignoring tokens not observed in the
training set.

6.2 Experiments

We use 100 headlines as a training set (examples
500-599 from the test set of Semeval Task 14), and
we use the 900 headlines as our test set. Since we
are fortunate to have the six separate expert annota-
tions in this task, we can perform an extended sys-
tematic comparison of the performance of the clas-
sifier trained with expert vs. non-expert data.

For this evaluation we compare the performance
of systems trained on expert and non-expert annota-
tions. For each expert annotator we train a system

SUnlike the SWAT system we perform no lemmatization,
synonym expansion, or any other preprocessing of the tokens;
we simply use whitespace-separated tokens within each head-
line.

Emotion 1-Expert | 10-NE | k£ | k-NE
Anger 0.084 0233 | 1| 0.172
Disgust 0.130 0231 | 1| 0.185
Fear 0.159 0247 | 1 | 0.176
Joy 0.130 0.125 | - -
Sadness 0.127 0174 | 1 | 0.141
Surprise 0.060 0.101 | 1 | 0.061
Valence 0.159 0229 | 2 | 0.146
Avg. Emo 0.116 0185 | 1 | 0.135
Avg. All 0.122 0.191 | 1| 0.137

Table 4: Performance of expert-trained and non-expert-
trained classifiers on test-set. k is the minimum number
of non-experts needed to beat an average expert.

using only the judgments provided by that annota-
tor, and then create a gold standard test set using the
average of the responses of the remaining five label-
ers on that set. In this way we create six indepen-
dent expert-trained systems and compute the aver-
age across their performance, calculated as Pearson
correlation to the gold standard; this is reported in
the “1-Expert” column of Table 4.

Next we train systems using non-expert labels;
for each possible subset of n annotators, for n &
{1,2,...,10} we train a system, and evaluate by
calculating Pearson correlation with the same set of
gold standard datasets used in the expert-trained sys-
tem evaluation. Averaging the results of these stud-
ies yields the results in Table 4.

As in Table 2 we calculate the minimum number
of non-expert annotations per example k required on
average to achieve similar performance to the ex-
pert annotations; surprisingly we find that for five
of the seven tasks, the average system trained with a
single set of non-expert annotations outperforms the
average system trained with the labels from a sin-
gle expert. One possible hypothesis for the cause
of this non-intuitive result is that individual labelers
(including experts) tend to have a strong bias, and
since multiple non-expert labelers may contribute to
a single set of non-expert annotations, the annotator
diversity within the single set of labels may have the
effect of reducing annotator bias and thus increasing
system performance.

7 Conclusion

We demonstrate the effectiveness of using Amazon
Mechanical Turk for a variety of natural language



annotation tasks. Our in-depth evaluation of labeler
data vs. expert annotations for five tasks found that
for many tasks only a small number of annotations
per item are necessary to equal the performance of
an expert annotator. In a detailed study of expert and
non-expert agreement for an affect recognition task
we find that we require an average of 4 non-expert
labels per item in order to emulate expert-level la-
bel quality. Finally, we demonstrate significant im-
provement by controlling for labeler bias.
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