Changing your habits is not an easy thing, but one is urged to do it for a number of reasons. A successful teacher should renew his lectures so as to keep his students interested.

Also, you might think of changing your view, clothes or even your haircut. When I change my glasses color, for example, this would be attractive for my students and colleagues and amaze me feel better.

Lastly, change is a difficult decision in the human life, but it is important for many good reasons, and gets back on the human with good benefits.

In contrast, many people believe that changing is really important in people’s lives.
Identifying the native language (L1) of a writer based on a sample of their writing in a second language (L2)

Our data

- **L1s**: Arabic (ARA), Chinese (ZHO), French (FRA), German (DEU) Hindi (HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), Turkish (TUR)
- **L2**: English
- **Real-world objects**: For each L1, 1,000 texts in L2 from The ETS Corpus of Non-Native Written English (former TOEFL11), i.e. $Train \cup DevTest$
- **Target class**: L1

More detailed info is available at the course website.
References

96 numerical features = relative character frequencies

Example

"Finally having people with many academic broad know"

| <SPACE> | a | b | c | d | e | m | n | o | F | g | h | i | k | l | p | r | t | v | w | y |
|---------|
| 0.17073171 | 0.14634146 | 0.02439024 | 0.04878049 | 0.04878049 | 0.07317073 | 0.04878049 | 0.09756098 | 0.07317073 | 0.02439024 | 0.02439024 | 0.04878049 | 0.09756098 | 0.02439024 | 0.07317073 | 0.04878049 | 0.02439024 | 0.02439024 | 0.02439024 | 0.04878049 | 0.04878049 |
Support Vector Machines in R

Online demo
- Java applet at http://svm.dcs.rhbnc.ac.uk/

The implementation of SVMs in R
- library(e1071), but there are also other libraries (kernlab, shogun ...)
- training: function svm()
- prediction: function predict()
- svm() can work in both classification and regression mode
- if response variable is categorical (factor) the engine switches to classification
model = svm(formula, data=, kernel=, cost=, cross=, ...)

- ?svm
- kernel defines the kernel used in training and prediction. The options are: linear, polynomial, radial basis and sigmoid (default: radial)
- cost – cost of constraint violation (default: 1)
- cross – optional, with the value k the k-fold cross-validation is performed
SVM kernels in e1071

<table>
<thead>
<tr>
<th>Kernel name</th>
<th>Formula</th>
<th>Learning parameters and their default values</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>$x_i \cdot x_j$</td>
<td></td>
</tr>
</tbody>
</table>
| polynomial | $(\gamma x_i \cdot x_j + c_0)^d$ | γ, gamma=1/(data dimension)
c_0, coef0=0
d, degree=3 |
| radial | $\exp(-\gamma(\|x_i - x_j\|^2))$ | γ, gamma=1 |
| sigmoid | $\tanh(\gamma x_i \cdot x_j + c_0)$ | γ, gamma=1/(data dimension)
c_0, coef0=0 |
Non-linear kernel functions

- polynomial kernel
 - smaller degree can generalize better
 - higher degree can fit (only) training data better
- radial basis
 - very robust
 - you should try and use it when polynomial kernel is weak to fit your data
SVM Parameter tuning with tune.svm

- SVM is a more complicated method in comparison with the previous and usually requires parameter tuning!
- parameter tuning can take a very long time on big data, use a reasonably smaller part is often recommended

```r
> model.tune= tune.svm(class ~ ., data=train.small,
    
    kernel = "radial",
    
    gamma = c(0.001, 0.005, 0.01, 0.015, 0.02),
    
    cost = c(0.5, 1, 5, 10))

> model.tune
Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:
  gamma  cost
  0.01    1

- best performance: 0.739
```
K-fold cross-validation

- Parameter cross

```r
> model.best <- svm(class ~ ., train.small,
>                   kernel = "radial",
>                   gamma = 0.01,
>                   cost = 1,
>                   cross = 10)

> model.best$accuracies
[1] 33.0 27.5 31.0 33.5 28.0 29.0 29.0 33.5 33.0 34.5

> model.best$tot.accuracy
# [1] 31.2

> prediction.best <- predict(model.best, test, type="class")

> mean(prediction.best==test$class)
[1] 0.3472727
```
Class weighting

- `class.weights` parameter
 In case of asymmetric class sizes you may want to avoid possibly overproportional influence of bigger classes. Weights may be specified in a vector with named components, like

m <- svm(x, y, class.weights = c(A = 0.3, B = 0.7))
General hints on practical use of `svm()`

- Note that SVMs may be very sensible to the proper choice of parameters, so always check a range of parameter combinations, at least on a reasonable subset of your data.
- Be careful with large datasets as training times may increase rather fast.
- C-classification with the RBF kernel (default) can often be a good choice because of its good general performance and the few number of parameters (only two: cost and gamma).
- When you use C-classification with the RBF kernel: try small and large values for cost first, then decide which are better for the data by cross-validation, and finally try several gamma values for the better cost.