Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká

Martin Holub

{Hladka | Holub}@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Support Vector MachinesNative Language Identification task

Native language identification task (NLI)

NLI

Identifying the native language (L1) of a writer based on a sample of their writing in a second language (L2)

Our data

- L1s: Arabic (ARA), Chinese (ZHO), French(FRA), German (DEU) Hindi (HIN), Italian (ITA), Japanese (JPN), Korean (KOR), Spanish (SPA), Telugu (TEL), Turkish (TUR)
- L2: English
- Real-world objects: For each L1, 1,000 texts in L2 from The ETS Corpus of Non-Native Written English (former TOEFL11), i.e. Train ∪ DevTest
- Target class: L1

More detailed info is available at the course website.

References

- Barbora Hladká, Martin Holub, Vincent Kríž. Feature Engineering in the NLI Shared Task 2013: Charles University Submission Report. 2013. [pdf]
- Pavel Ircing, Jan Švec, Zbyněk Zajíc, Barbora Hladká, Martin Holub.
 Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques. 2017. [pdf]

NLI Features used

96 numerical features = relative character frequencies

Example

"Finally having people with many academic broad know"

Support Vector Machines in R

Online demo

• Java applet at http://svm.dcs.rhbnc.ac.uk/

The implementation of SVMs in R

- library(e1071), but there are also other libraries (kernlab, shogun ...)
- training: function svm()
- prediction: function predict()
- svm() can work in both classification and regression mode
- if response variable is categorical (factor) the engine switches to classification

```
model = svm(formula, data=, kernel=, cost=, cross=, ...)
```

- ?svm
- kernel defines the kernel used in training and prediction. The options are: linear, polynomial, radial basis and sigmoid (default: radial)
- cost cost of constraint violation (default: 1)
- cross optional, with the value k the k-fold cross-validation is performed

Kernel name	Formula	Learning parameters and their default values
linear	$\mathbf{x}_i \cdot \mathbf{x}_j$	
polynomial	$(\gamma \mathbf{x}_i \cdot \mathbf{x}_j + c_0)^d$	γ , gamma=1/(data dimension) c_0 , coef0=0 d , degree=3
radial	$\exp(-\gamma(\mathbf{x}_i - \mathbf{x}_j ^2))$	γ , gamma $=1$
sigmoid	$\tanh(\gamma \mathbf{x}_i \cdot \mathbf{x}_j + c_0)$	γ , gamma=1/(data dimension) c_0 , coef0=0

NPFL054, 2019 Hladká & Holub Lab 10, page 9/14

SVM – kernel functions

Non-linear kernel functions

- polynomial kernel
 - smaller degree can generalize better
 - higher degree can fit (only) training data better
- radial basis
 - very robust
 - $\mbox{-}\mbox{-}\mbox{-}\mbox{you}$ should try and use it when polynomial kernel is weak to fit your data

SVM Parameter tuning with tune.svm

- SVM is a more complicated method in comparison with the previous and usually requires parameter tuning!
- parameter tuning can take a very long time on big data, use a reasonably smaller part is often recommended

```
> model.tune= tune.svm(class ~ ., data=train.small,
                       kernel = "radial".
                       gamma = c(0.001, 0.005, 0.01, 0.015, 0.02),
                       cost = c(0.5, 1, 5, 10)
> model.tune
Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
best parameters:
gamma cost
0.01 1
 best performance: 0.739
```

K-fold cross-validation

• parameter cross

Class weighting

 class.weights parameter
 In case of asymmetric class sizes you may want to avoid possibly overproportional influence of bigger classes. Weights may be specified in a vector with named components, like

 $m \leftarrow svm(x, y, class.weights = c(A = 0.3, B = 0.7))$

General hints on practical use of svm()

- Note that SVMs may be very sensible to the proper choice of parameters, so always check a range of parameter combinations, at least on a reasonable subset of your data.
- Be careful with large datasets as training times may increase rather fast.
- C-classification with the RBF kernel (default) can often be a good choice because of its good general performance and the few number of parameters (only two: cost and gamma).
- When you use C-classification with the RBF kernel: try small and large values for cost first, then decide which are better for the data by cross-validation, and finally try several gamma values for the better cost.