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Lecture #9

Outline
• Evaluation of binary classification (cntnd) – ROC curve
• Model complexity, overfitting, bias and variance
• Regularization – Ridge regression, Lasso
• Linear regression
• Logistic regression
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Evaluation of binary classifiers
Sensitivity vs. specificity

Confusion matrix

Predicted class
Positive Negative

True class Positive True Positive (TP) False Negative (FN) P
Negative False Positive (FP) True Negative (TN) N

Measure Formula
Precision TP/(TP+FP)

Recall/Sensitivity/TPR TP/(TP+FN) = TP/P
Specificity TN/(TN+FP)

1-Specificity/FPR FP/(TN+FP) =FP/N
Accuracy (TP+TN)/(TP+FP+TN+FN)
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Evaluation of binary classifiers
Sensitivity vs. specificity

Seven training examples

Classifier’s output – examples in black circle are positives, other examples are
negatives

Perfect classifier – no error
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Evaluation of binary classifiers
Sensitivity vs. specificity

Reality – e.g. 2 miclassified examples
sensitivity = 2/3, specificity = 3/4
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Evaluation of binary classifiers
Sensitivity vs. specificity

Reality – e.g. 2 miclassified examples
sensitivity = 1, specificity = 1/2
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Evaluation of binary classifiers
Sensitivity vs. specificity

Reality – e.g. 1 miclassified example
sensitivity = 2/3, specificity = 1
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Evaluation of binary classifiers
Sensitivity vs. specificity

Sensitivity (TPR) vs. specificity (TNR)
– as the sensitivity increases, the specificity decreases and vice versa
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Evaluation of binary classifiers
ROC curve
An ROC curve plots True Positive Rate vs. False Positive Rate at different
classification thresholds where FPR = 1 - TNR = FP/N = FP/(FP+TN)
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Evaluation of binary classifiers
AUC measure
Area Under ROC (= AUC)
is a measure of how good is a distinguishing property of classifier
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Evaluation of binary classifiers
ROC & AUC

Curves closer to the top-left corner indicate a better performance.
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Model complexity

No universal definition

Heading for the regularization . . .model complexity is the number of hypothesis
parameters

Θ = 〈θ0, . . . , θm〉
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Model complexity

Finding a model that minimizes generalization error
. . . is one of central goals of the machine learning process
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Model complexity

Complexity of decision boundary for classification
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Bias and variance

1 Select a machine learning algorithm
2 Get k different training sets
3 Get k predictors

• Bias measures error that originates from the learning algorithm
– how far off in general the predictions by k predictors are from the true
output value

• Variance measures error that originates from the training data
– how much the predictions for a test instance vary between k predictors
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Bias and variance
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Bias and variance

Generalization error errorD(f̂ ) measures how well a hypothesis f̂ (f is a true
target function) generalizes beyond the used training data set, to unseen data
with distribution D. Usually it is defined as follows

• for regression: errorD(f̂ ) = E [ŷi − yi ]2

• for classification: errorD(f̂ ) = Pr (ŷi 6= yi )

Decomposition of errorD(f̂ )

errorD(f̂ ) = Bias2 + Variance

i.e.,
(E [f̂ (x)]− f (x))2 + E [f̂ (x)− E [f̂ (x)]]2

where f̂ (x) is a predicted value, E [f̂ (x)] is average predicted value
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Bias and variance
• underfitting = high bias

• overfitting = high variance
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Bias and variance

overfitting

high variance

underfitting
high bias

good 
balance

low variance,
low bias
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Bias and variance
k-Nearest Neighbor

• ↑ k → smoother decision boundary → ↓ variance and ↑ bias
• ↓ k →↑ variance and ↓ bias

1−nearest neighbour
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5−nearest neighbour
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Bias and variance
k-Nearest Neighbor

5−nearest neighbour
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Prevent overfitting

We want a model in between which is
• powerful enough to model the underlying structure of data
• not so powerful to model the structure of the training data

Let’s prevent overfitting by complexity regularization,
a technique that regularizes the parameter estimates, or equivalently, shrinks the
parameter estimates towards zero.
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Regularization

A machine learning algorithm
estimates hypothesis parameters Θ = 〈θ0, θ1, . . . , θm〉
using Θ? that minimizes loss function L
for training data Data = {〈xi , yi〉, xi = 〈x1i , . . . , xmi〉, yi ∈ Y }

Θ? = argminΘL(Θ)

Regularization

Θ?
R = argminΘL(Θ) + λ · penalty(Θ), where λ ≥ 0 is a tuning parameter

Infact, the penalty is applied to θ1, . . . , θm, but not to θ0 since the goal is to
regularize the estimated association between each feature and the target value.
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Regularization
Motivation

training examples
test examples

unit change

regularize 
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Regularization
Ridge regression

penalty(Θ) = θ2
1 + · · ·+ θ2

m = `2 norm2

• Let θ?λ1
, . . . , θ?λm

be ridge regression parameter estimates for a particular value
of λ

• Let θ?1 , . . . , θ?m be unregularized parameter estimates

• 0 ≤ θ?
2
λ1

+···+θ?
2
λm

θ?
2

1 +···+θ?m2 ≤ 1

• When λ = 0, then θ?λi
= θ?i for i = 1, . . . ,m

• When λ is extremely large, then θ?λi
is very small for i = 1, . . . ,m

• When λ between, we are fitting a model and skrinking the parameteres
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Ridge regression
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Regularization
Lasso

penalty(Θ) = |θ1| + · · ·+ |θm| = `1 norm

• Let θ?λ1
, . . . , θ?λm

be lasso regression parameter estimates

• Let θ?1 , . . . , θ?m be unregularized parameter estimates

• When λ = 0, then θ?λi
= θ?i for i = 1, . . . ,m

• When λ grows, then the impact of penalty grows

• When λ is extremely large, then θ?λi
= 0 for i = 1, . . . ,m
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Lasso
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Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso
can shrink some parameters to zero.
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Elastic net

Θ?
R = argminΘ[L(Θ) + λ1 · (|θ1| + · · ·+ |θm|) + λ2 · (θ2

1 + · · ·+ θ2
m)]

0 ≤ λ1, λ2 are tuning parameters

!!! In glmnet package

Θ?
R = argminΘL(Θ) + λ(α(|θ1| + · · ·+ |θm|) + (1− α)(θ2

1 + · · ·+ θ2
m))

0 ≤ α ≤ 1
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Regularized linear regression

f (x) = θ0 + θ1x1 + · · ·+ θmxm

L(Θ) = RSS =
n∑

i=1
(f (xi )− yi )2

Θ?
R = argminΘ[RSS + λ · penalty(Θ)]
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Ridge regression
Alternative formulation

Θ?
R = argmin

Θ

n∑
i=1

(f (xi )− yi )2

subject to θ2
1 + · · ·+ θ2

m ≤ s

• the gray circle represents the
feasible region for Ridge regression

• the contours represent different RSS
values for the unregularized model

NPFL054, 2019 Hladká & Holub Lecture 9, page 32/38



Ridge regression
Alternative formulation

• If s is large enough, i.e. λ = 0, so
that the minimum RSS value falls
into the region of ridge regression
parameter estimates then the
alternative formulation yields the
least square estimates.
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Lasso
Alternative formulation

Θ?
R = argmin

Θ

n∑
i=1

(f (xi )− yi )2

subject to |θ1|+ · · ·+ |θm| ≤ s

• the grey square represents the
feasible region of the Lasso

• the contours represent different
RSS values for the unregularized
model
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Lasso
Alternative formulation

• If s is large enough, i.e. λ = 0, so
that the minimum RSS value falls
into the region of loss parameter
estimates then the alternative
formulation yields the primary
solution.
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Elastic net
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Regularized logistic regression

f (x) = 1
1 + e−Θ>x

L(Θ) = −
n∑

i=1
yi logP(yi |xi; Θ) + (1− yi ) log(1− P(yi |xi; Θ))

Θ?
R = argminΘ[L(Θ) + λ · penalty(Θ)]
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Summary of Examination Requirements

• Binary classifier using ROC curve (True Positive Rate vs. False Positive Rate)
• Model complexity, generalization error, Bias and variance
• Lasso and Ridge regularization for linear and logistic regression
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