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Lecture #4

Outline

• Linear regression
• Auto data set

• Logistic regression
• Auto data set
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Dataset Auto from the ISLR package

392 instances on the following 9 features

mpg Miles per gallon
cylinders Number of cylinders between 4 and 8
displacement Engine displacement (cu. inches)
horsepower Engine horsepower
weight Vehicle weight (lbs.)
acceleration Time to accelerate from 0 to 60 mph (sec.)
year Model year (modulo 100)
origin Origin of car (1. American, 2. European, 3. Japanese)
name Vehicle name
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Dataset Auto from the ISLR package

mpg
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Linear regression
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Linear regression

Linear regression is a class of regression algorithms assuming that there is at
least a linear dependence between a target attribute and features.

A target hypothesis f has a form of linear function

f (x; Θ) = θ0 + θ1x1 + · · ·+ θmxm (1)

– θ0, . . . , θm are regression parameters

– we think of them as weights that determine how each feature affects the
prediction

– simple linear regression if m = 1
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Linear regression

Notation

y =

 y1
. . .
yn

, Θ> =

θ0
. . .
θm

, X =


1 x11 . . . x1m
1 x21 . . . x2m
. . . . . . . . . . . .
1 xn1 . . . xnm



Now we can write y = XΘ>, f (x) = Θ>x
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Parameter interpretation

Numerical feature

θi is the average change in y for a unit change in Ai holding all other features fixed

NPFL054, 2019 Hladká & Holub Lecture 4, page 8/50



Parameter interpretation

Categorical feature with k values
• replace it with k − 1 dummy variables DA1, DA2, . . . , DAk−1

Example: run simple linear regression mpg ∼ origin
DA1 DA2

American 0 0
European 1 0
Japanase 0 1

• y = θ0 + θ1DA1 + θ2DA1

• y = θ0 + θ1 if the car is European
• y = θ0 + θ2 if the car is Japanese
• y = θ0 if the car is American
• θ0 as the average mpg for American cars
• θ1 as the average difference in mpg between European and American cars
• θ2 as the average difference in mpg between Japanese and American cars
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Parameter estimates
Least Square Method

• residual yi − ŷ i , where ŷ i = f̂ (xi ) = Θ̂>xi

• Loss function Residual Sum of Squares RSS(Θ̂) =
∑n

i=1(yi − ŷ i )2
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Parameter estimates
Least Square Method

Optimization problem

Θ? = argminΘRSS(Θ)

The argmin operator will give Θ for which RSS(Θ) is minimal.
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Parameter estimates
Least Square Method

Solving the optimization problem analytically

Normal Equations Calculus

Theorem
Θ? is a least square solution to y = XΘ> ⇔ Θ? is a solution to the Normal
equation X>XΘ = X>y.

Θ? = (X>X)−1XTy

Computational complexity of a (m + 1)× (m + 1) matrix inversion is O(m + 1)3 :-(
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Parameter estimates
Least Square Method

Solving the optimization problem numerically

Gradient Descent Algorithm
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Gradient Descent Algorithm

Assume: simple regression, θ0 = 0, θ1 6= 0
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Gradient Descent Algorithm

Assume: simple regression, θ0 6= 0, θ1 6= 0
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Gradient Descent Algorithm

Gradient descent algorithm is an optimization algorithm to find a local minimum
of a function f .
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Gradient Descent Algorithm

1. Start with some x0.
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Gradient Descent Algorithm

2. Keep changing xi to reduce f (xi )
Which direction to go? How big step to do?
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Gradient Descent Algorithm

Credits: Andrew Ng
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Gradient Descent Algorithm

• We are seeking the solution to the minimum of a function f (x). Given some
initial value x0, we can change its value in many directions.

• What is the best direction to minimize f ? We take the gradient ∇f of f

∇f (x1, x2, . . . , xm) = 〈∂f (x1, x2, . . . , xm)
∂x1

, . . . ,
∂f (x1, x2, . . . , xm)

∂xm
〉

• Intuitively, the gradient of f at any point tells which direction is the steepest
from that point and how steep it is. So we change x in the opposite direction
to lower the function value.
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Gradient Descent Algorithm

Choice of the step: assume constant value

If the step is too small, GDA can be slow.
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Gradient Descent Algorithm

Choice of the step

If the step is too large, GDA can overshoot the minimum.
It may fail to converge, or even diverge.
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Gradient Descent Algorithm

repeat until convergence {

ΘK+1 := ΘK − α∇f (ΘK )

}

– α is a positive step-size hyperparameter

I.e. simultaneously update θj , j = 1, . . . ,m
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Linear regression
Gradient Descent Algorithm

For linear regression f = RSS

θK+1
j := θK

j − α
1
n

n∑
i=1

(f (xi ; ΘK )− yi )xij

RSS is a convex function, so there is no local optimum, just global minimum.
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Polynomial regression

Polynomial regression is an extension of linear regression where the relationship
between features and target value is modelled as a d-th order polynomial.

Simple regression
y = Θ0 + Θ1x1

Polynomial regression
y = Θ0 + Θ1x1 + Θ2x2

1 + . . .Θdxd
1

It is still a linear model with features
A1,A2

1, . . . ,Ad
1 .

The linear in linear model refers to the hypothesis parameters, not to the features.
Thus, the parameters Θ0,Θ1, . . . ,Θd can be easily estimated using least squares
linear regression.
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Polynomial regression
Auto data set
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Assessing the accuracy of the model

• Coefficient of determination R2 measures the proportion of variance in a
target value that is reduced by taking into account x

R2 = TSS− RSS
TSS = 1− RSS

TSS

where Total Sum of Squares TSS =
∑n

i=1(yi − y)2; R2 ∈ (0, 1)

• Mean Squared Error MSE

MSE = 1
n · RSS
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Binary classification
Decision boundary

Y = {0, 1}

Decision boundary takes a form of function f and partitions a feature space into
two sets, one for each class.
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Binary classification
Hyperplane
Hyperplane is a linear decision boundary of the form

Θ>x = 0
where direction of 〈θ1, θ2, . . . , θm〉 is perpendicular to the hyperplane and θ0
determines position of the hyperplane with respect to the origin
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Binary classification
Hyperplane

• point if m = 1, line if m = 2, plane if m = 3, . . .
• we can use hyperplane for classification so that

f (x) =
{

1 if θ0 + θ1x1 + · · ·+ θmxm ≥ 0
0 if θ0 + θ1x1 + · · ·+ θmxm < 0

• linear classifiers classify examples using hyperplane
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Binary classification
Can we use linear regression?

We are heading logistic regresession.
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Binary classification
Can we use linear regression?

Fit the data with a linear function f
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Binary classification
Can we use linear regression?

Classify
• if f (x) ≥ 0.5, predict 1
• if f (x) < 0.5, predict 0
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Binary classification
Can we use linear regression?

Add one more training instance

What to do if f (x) > 1 or f (x) < 0?
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Logistic regression
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Logistic regression

Logistic regression is a classification algorithm.

Its target hypothesis f for a binary classification has a form of sigmoid function

f (x; Θ) = 1
1 + e−Θ>x = eΘ>x

1 + eΘ>x

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid function

z

g(
z)

• f (z) = g(z) = 1
1+e−z

• limz→+∞ g(z) = 1

• limz→−∞ g(z) = 0
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Classification rule

Predict a target value using f̂ (x; Θ̂) so that

• if f̂ (x; Θ̂) ≥ 0.5, i.e. Θ̂>x ≥ 0, predict 1

• if f̂ (x; Θ̂) < 0.5, i.e. Θ̂>x < 0, predict 0
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Modeling conditional probabilities

Logistic regression models the conditional probability Pr(y = 1|x; Θ)

f (x; Θ) = Pr(y = 1|x; Θ) = 1
1 + e−Θ>x

Algebraic manipulation results in

Pr(y = 1|x; Θ)
1− Pr(y = 1|x; Θ) = eΘ>x ∈ (0,+∞)

Take logarithm

ln f (x; Θ)
1− f (x; Θ) = Θ>x ∈ (−∞,+∞)
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Modeling conditional probabilities

• odds = Pr(y = 1|x; Θ)/Pr(y = 0|x; Θ)

• log-odds = logit

• logit(p) = ln p
1−p

• logit is linear in x
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Parameter interpretation
Numerical features

θi gives an average change in logit(f (x)) with one-unit change in Ai holding all
other features fixed
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Parameter interpretation
Binary features

Example:
disease female

0 (male) 1 (female) Total
no 74 77 151
yes 17 32 49
Total 91 109 200

• the odds of having the disease for male:
Pr(disease = yes|female = 0)/Pr(disease = no|female = 0) = 17/91

74/91 = 0.23
• the odds of having the disease for female:

Pr(disease = yes|female = 1)/Pr(disease = no|female = 1) = 32/109
77/109 = 0.42

• the ratio of the odds for female to the odds for male 0.42/0.23 = 1.81, i.e.
the odds for female are about 81% higher than the odds for males
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Parameter interpretation
Binary features

ln p
1−p = θ0 + θ1 ∗ female

If female == 0
• p = p1 → p1

1−p1
= eθ0

• the intercept θ0 is the log odds for men
If female == 1
• p = p2 → p2

1−p2
= eθ0+θ1

• odds ratio = p2
1−p2

/ p1
1−p1

= eθ1

• the parameter eθ1 is the of odds ratio between women and men

Assume the output of logistic regression θ0 = −1.471, θ1 = 0.593. Then relate the
odds for males and females and the parameters: −1.471 = ln 0.23, 0.593 = ln 1.81
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Parameter estimates

• Loss function

L(Θ) = −
n∑

i=1
yi logP(yi |xi; Θ) + (1− yi ) log(1− P(yi |xi; Θ))

See Maximum Likelihood Principle for derivation of this loss function.
• Optimization problem

Θ? = argminΘL(Θ)
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Parameter estimates
Gradient Descent Algorithm

repeat until convergence {

ΘK+1 := ΘK − α∇f (ΘK )

}

– α is a positive step-size hyperparameter

I.e. simultaneously update θj , j = 1, . . .m

θK+1
j := θK

j − α
1
n

n∑
i=1

(f (xi ; ΘK )− yi )xij
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Non-linear decision boundary

• Let f (x) = g(θ0 + θ1x1 + θ2x2 + θ3x2
1 + θ4x2

2 ) (a higher degree polynomial)
• Assume θ0 = −1, θ1 = 0, θ2 = 0, θ3 = 1, θ4 = 1
• Predict y = 1 if −1 + x2

1 + x2
2 ≥ 0, i.e. x2

1 + x2
2 ≥ 1
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Non-linear decision boundary
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Logistic regression
Summary

Classification of x by f̂ ?

1 Project x onto Θ̂? to convert it into a real number z in the range 〈−∞,+∞〉
• i.e. z = Θ̂?>x

2 Map z to the range 〈0, 1〉 using the sigmoid function g(z) = 1/(1 + e−z )

3 Classify x using a classification rule
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Multi-class classification

|Y | = N, N ≥ 3
• One-to-all
– train N predictors fk for the pair k-th class and {1, · · · ,N} \ {k} classes
– classify x into the class k? = argmaxk fk(x)

• One-to-one
– train

(N
2
)
classifiers fi

– classify x into the class k? = maxk=1,...,N
∑(N

2)
i=1 δ(fi (x) = k)
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Logistic regression
Multi-class classification

One-to-all
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Summary of Examination Requirements

• Linear regression, simple linear regression, polynomial regression
• Parameter interpretation
• Least Square Method
• Gradient Descent Algorithm
• Coefficient of Determination, Mean Squared Error
• Decision boundary, classification rule
• Logistic regression, sigmoid function, probabilistic formulation
• Parameter interpretation
• Multi-class classification
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