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Lecture #6

Outline

• Instance-based learning

• Naïve Bayes algorithm

• Bayesian networks

• Maximum likelihood estimation
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Instance-based learning

NPFL054, 2019 Hladká & Holub Lecture 6, page 3/47



Instance-based learning
Key idea

• IBL methods = supervised ML methods
• IBL methods initially store training data, we call them lazy methods
• For a new instance, prediction is based on local similarity,

i.e. a set of similar instances are retrieved and used for prediction
• IBL methods can construct a different approximation of a target function for

each distinct test instance
• Both classification and regression
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Instance-based learning
Key points

1 A distance metric
2 How many nearby neighbours look at?
3 A weighting function
4 How to fit with local points?
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Instance-based learning
Distance metric

Recall distance used as dissimilarity metrics for clustering. The most common ones

• Euclidean distance

d(xi, xj) =

√√√√ m∑
r=1

(xir − xjr )2

• Manhattan distance

d(xi, xj) =
m∑

r=1
|xir − xjr |
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Instance-based learning
k-Nearest Neighbour algorithm

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k training instances closest to x
3 A weighting function: unused
4 How to fit with local points?

• k-NN classification

f (x) = argmaxv∈Y

k∑
i=1

δ(v , yi ), (1)

where δ(a, b) = 1 if a = b, otherwise 0
• k-NN regression

f (x) =
k∑

i=1
yi/k (2)
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Instance-based learning
Distance-weighted k-NN algorithm

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k training instances closest to x
3 A weighting function: greater weight of closer neighbours, e.g.,

wi (x) ≡ 1
d(x, xi)2

4 How to fit with local points?

• Classification

f (x) = argmaxv∈Y

k∑
i=1

wi (x)δ(v , yi ) (3)

• Regression

f (x) =
k∑

i=1
wi (x)yi/

k∑
i=1

wi (x) (4)
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Instance-based learning
Distance-weighted k-NN algorithm

Shepard’s method

• Classification

f (x) = argmaxv∈Y

n∑
i=1

wi (x)δ(v , yi ) (5)

• Regression

f (x) =
n∑

i=1
wi (x)yi/

n∑
i=1

wi (x) (6)
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Instance-based learning
Locally weighted linear regression

1 A distance metric: Euclidian (most widely used)
2 How many nearby neighbours look at? k training instances closest to x
3 A weighting function: wi (x)
4 How to fit with local points?

Θ? = argminΘ

k∑
i=1

wi (x)(ΘTxi − yi )2 (7)
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Instance-based learning
Locally weighted linear regression
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Instance-based learning
LW linear regression vs. simple regression
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Naïve Bayes classifier
Bayes theorem

Probabilistic approach to classification Y = {y1,2 , . . . , yK}

ŷ? = argmaxyk∈Y Pr(yk |x1, . . . , xm) (8)

Bayes theorem

posterior probability = prior probability× likelihood
marginal likelihood (9)

Pr(Y |A1, . . . ,Am) = Pr(Y )× Pr(A1, . . . ,Am |Y )
Pr(A1, . . . ,Am)

Then

ŷ? = argmaxyk∈Y
Pr(yk)× Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm) (10)
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Naïve Bayes classifier
Conditional independence

Let X ,Y and Z be three descrete random variables. We say that X is
conditionally independent of Y given Z if

∀xi , yj , zk , xi ∈ Values(X ), yj ∈ Values(Y ), zk ∈ Values(Z ) :

Pr(X = xi |Y = yj ,Z = zk) = Pr(X = xi |Z = zk) (11)

I.e., P(X |Y ,Z ) = P(X |Z ).
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Naïve Bayes classifier
Conditional independence

Do we enjoy our favorite water sport on this day? (Credit: T. Mitchel, 1997)

Sky AirTemp Humidity Wind EnjoySport
sunny warm normal strong No
sunny warm high strong Yes
rainy cold high strong No
sunny warm high strong Yes

Conditional independence of features given EnjoySport: presence of one particular
feature value does not affect the other features’ values given EnjoySport, e.g., if
the temperature is hot, it does not necessarily mean that the humidity is high and
the features have an equal effect on the outcome
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Naïve Bayes classifier
Conditional independence

If we work with two features A1,A2 and we assume that they are conditionally
independent given the target class Y , then

Pr(A1,A2|Y ) product rule= Pr(A1|A2,Y )∗Pr(A2|Y ) c. i. assumption= Pr(A1|Y )∗Pr(A2|Y )

Note: Product rule (a.k.a. Chain rule)

Pr(Am, . . . ,A1) = Pr(Am|Am−1, . . . ,A1) · Pr(Am−1, . . . ,A1)
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Naïve Bayes classifier

ŷ? = argmaxyk∈Y Pr(yk |x1, . . . , xm) = argmaxyk∈Y
Pr(yk) Pr(x1, . . . , xm|yk)

Pr(x1, . . . , xm)
(12)

– Assume conditional independence of features A1, . . . ,Am given Y . Then

Pr(x1, x2, . . . , xm|yk) product rule=
∏m

j=1 Pr(xj |x1, x2, . . . , xj−1, yk) c. i. a.=

=
∏m

j=1 Pr(xj |yk)

– Pr(x1, . . . , xm) is constant. Then

ŷ? = argmaxyk∈Y Pr(yk)
m∏

j=1
Pr(xj |yk) (13)

# of parameters fo binary classification and binary features is
2 · (2m − 1)→ 2 ·m
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Naïve Bayes classifier
Discriminative vs. generative classifiers

Computing Pr(y |x)

• discriminative classifier does not care about how the data was generated.
It directly discriminates the value of y for any x.

• generative classifier models how the data was generated in order to classify
an example.
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Naïve Bayes classifier
Discriminative vs. generative classifiers

• Logistic regression classifier is a discriminative classifier

f (x; Θ) = p(y = 1|x,Θ)

• Naïve Bayes classifier is a generative classifier

1 Learn Pr(x|y) and Pr(y)

2 Apply Bayes rule to get

Pr(y |x) = Pr(x|y) Pr(y)
Pr(x) ∼ Pr(x|y) Pr(y)

3 Classify x
ŷ = argmaxy Pr(y |x) = argmaxy Pr(x|y) Pr(y)
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Naïve Bayes classifier

Naive assumption of feature conditional independence given a target
class is rarely true in real world applications. Nevertheless, Naïve
Bayes classifier surprisingly often shows good performance in classi-
fication.
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Naïve Bayes Classifier
is a linear classifier

NB classifier gives a method for predicting rather than for building an explicit
classifier.

Let us focus on binary classification Y = {0, 1} with binary features A1, . . . ,Am.

We predict 1 iff

Pr(y = 1)
∏m

j=1 Pr(xj |y = 1)
Pr(y = 0)

∏m
j=1 Pr(xj |y = 0)

> 1
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Naïve Bayes Classifier
is a linear classifier

Denote pj = Pr(xj = 1|y = 1), qj = Pr(xj = 1|y = 0)

Then

Pr(y = 1)
∏m

j=1 pxj
j (1− pj)1−xj

Pr(y = 0)
∏m

j=1 qxj
j (1− qj)1−xj

> 1

Pr(y = 1)
∏m

j=1(1− pj)( pj
1−pj

)xj

Pr(y = 0)
∏m

j=1(1− qj)( qj
1−qj

)xj
> 1

NPFL054, 2019 Hladká & Holub Lecture 6, page 22/47



Naïve Bayes Classifier
is a linear classifier

Take logarithm

log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1− pj
1− qj

+
m∑

j=1
(log pj

1− pj
− log qj

1− qj
)xj > 0

NB classifier as a linear classifier where

θ0 = log Pr(y = 1)
Pr(y = 0) +

m∑
j=1

log 1− pj
1− qj

θj = log pj
1− pj

− log qj
1− qj

, j = 1, . . . ,m
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Bayesian belief networks (BBN)

• Naïve Bayes classifier assumes that ALL features are conditionally
independent a target attribute.

• A Bayesian network is a probabilistic graphical model that encodes
probabilistic relationships among attributes of interest.

• BBNs allow stating conditional independence assumptions that apply to
subsets of the attributes.

• Dependencies are modeled as graph where nodes correspond to attributes
and edges to dependency between attributes.
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Bayesian belief networks
Settings

Consider an arbitrary set of random variables X1,X2, ...,Xm. Each variable Xi can
take on the set of possible values Values(Xi ).

We define the joint space of the variables X1,X2, ...,Xm to be the cross product
Values(X1)× Values(X2)× Values(X3)× ...× Values(Xm).

The probability distribution over the joint space is called the joint probability
distribution Pr(x1, x2, ..., xm) where
x1 ∈ Values(X1), x2 ∈ Values(X2), ..., xn ∈ Values(Xm).

BBN describes the joint probability distribution for a set of variables by specifying
a set of conditional independence assumptions together with sets of local
conditional probabilities.

NPFL054, 2019 Hladká & Holub Lecture 6, page 25/47



Bayesian belief networks

Representation
1 A directed acyclic graph G = (V ,E )

• nodes are random variables
• arcs between nodes represent probabilistic dependencies
• Y is a descendant of X if there is a directed path from X to Y

2 The network arcs represent the assertion that the variable X is conditionally
independent of its nondescendants given its immediate predecessors
Parents(X ); Pr(X |Parents(X ))

3 A set of tables for each node in the graph - a conditional probability table is
given for each variable; it describes the probability distribution for that
variable given the values of its immediate predecessors.
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Building a Bayes net

1. Choose the variables to be included in the net: A,B,C ,D,E
2. Add the links
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Building a Bayes net

3. Add a probability table for each root node Pr(X ) and nonroot node
Pr(X |Parents(X ))
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Once the net is built ...

The join probability of any assignment of values x1, x2, ..., xm to the tuple of
network variables X1,X2, ...,Xm can be computed by the formula

Pr(x1, x2, ..., xm) = Pr(X1 = x1∧X2 = x2∧· · ·∧Xm = xm) =
m∏

i=1
Pr(xi |Parents(Xi ))

(14)
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Bayesian belief networks

Two components
1 A function for evaluating a given network based on the data.
2 A method for searching through the space of possible networks.

Learning the network structure
• searching through the space of possible sets of edges
• estimating the conditional probability tables for each set
• computing the quality of the network
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Bayesian belief networks
Naïve Bayes Classifier
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K2 algorithm

This ’search and score’ algorithm heuristically searches for the most probable
belief-network structure given a training data.

It starts by assuming that a node has no parents, after which, in every step it adds
incrementally the parent whose addition mostly increase the probability of the
resulting structure. K2 stops adding parents to the nodes when the addition of a
single parent cannot increase the probability of the network given the data.
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Maximum likelihood estimation
Motivation

The binomial distribution is the discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p, X ∼ Bin(n, p).

Probabilistic mass function Pr(X = k) = f (k; n, p) = n!
k!(n−k)! p

k(1− p)(n−k)

Coin tossing
Let n = 10, x represents the number of heads in 10 trials and probability of head
on one trial is p = 0.2. Then

f (x ; 10, 0.2) = 10!
x !(10− x)!0.2

x (0.8)(10−x)
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Maximum likelihood estimation
Motivation

p = 0.2 p = 0.7
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Maximum likelihood estimation

• data X = {x1, . . . , xn}

Assumption: x1, . . . , xn are independent and identically distributed with an
unknown probability density function f (X; Θ)

• Θ is a vector of parameters of the probability distribution Θ = 〈θ1, . . . , θm〉
• joint density function f (x1, . . . , xn; Θ) i.i.d.=

∏n
i=1 f (xi ; Θ)

We determine what value of Θ would make the data X most likely.
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Maximum likelihood estimation

MLE is a method for estimating parameters from data.

Goal: identify the population that is most likely to have generated the sample.

Likelihood function

L(Θ|x1, . . . , xn) df=
n∏

i=1
f (xi ; Θ) (15)

Log-likelihood function

logL(Θ|x1, . . . , xn) =
n∑

i=1
log f (xi ; Θ) (16)

Maximum likelihood estimate of Θ

Θ?
MLE = argmaxΘ logL(Θ|x1, . . . , xn) (17)
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Maximum likelihood estimation

MLE analytically

• Likelihood equation: ∂ logL(Θ|X)
∂θi

= 0 at θi for all i = 1, . . . ,m

• Maximum, not minimum: ∂2L(Θ|x)
∂θ2

i
< 0

Numerically

• Use an optimization algorithm (for ex. Gradient Descent)
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Maximum likelihood estimation
Binomial distribution

Estimate the probability p that a coin lands head using the result of n coin tosses,
k of which resulted in heads. Θ = 〈p〉

• f (k; n, p) = n!
k!(n−k)! p

k(1− p)n−k

• L(p|n, k) = n!
k!(n−k)! p

k(1− p)n−k

• logL(p|n, k) = log n!
k!(n−k)! + k log p + (n − k)log(1− p)

• ∂ logL(p|n,k)
∂p = k

p −
n−k
1−p = 0

• p̂MLE = k
n
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Maximum likelihood estimation
Least squares

Linear regression y = Θ>x

Learn Θ̂? from Data = {〈xi , yi〉, yi ∈ R, i = 1, ..., n} and use MLE.

Assumption: At each value of A1, the
output value y is subject to random error
ε that is normally distributed N(0, σ2)

yi = Θ>xi + εi
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Maximum likelihood estimation
Least squares

• probability density function of the Normal distribution

f (x ;µ, σ) = 1
σ
√
2π

e−
(x−µ)2

2σ2

• εi = yi −Θ>xi ∼ N(0, σ2)

L(µ, σ|ε) =
n∏

i=1

1√
2πσ2

e
(εi−µ)2

2σ2

L(Θ, σ|X, y) =
n∏

i=1

1√
2πσ2

e
(yi−Θ>xi )2

2σ2
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Maximum likelihood estimation
Least squares

logL(Θ, σ|X, y) =
n∑

i=1
log 1√

2πσ2
− (yi −Θ>xi )2

2σ2

argmaxΘ logL(Θ, σ|X, y) = argmaxΘ

n∑
i=1
− 1
2σ2 (yi −Θ>xi )2

argminΘ logL(Θ, σ|X, y) = argminΘ

n∑
i=1

(yi −Θ>xi )2

The maximum least square estimates are equivalent to the maximum likelihood
estimates under the assumption that Y is generated by adding random noise to
the true target values characterized by the Normal distribution N(0, σ2).
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Maximum likelihood estimation
Logistic regression

Logistic regression models conditional probability using sigmoid function.

f (x) = 1
1 + e−ΘT x = Pr(y = 1|x)

Learn Θ̂? from Data = {〈xi , yi〉, yi ∈ {0, 1}, i = 1, ..., n} and use MLE.
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Maximum likelihood estimation
Logistic regression

f (x; Θ) = Pr(y = 1|x)

n∏
i=1

Pr(y = yi |xi ) =
n∏

i=1
f (xi ; Θ)yi (1− f (xi ; Θ))1−yi

L(Θ|X, y) =
n∏

i=1
f (xi ; Θ)yi (1− f (xi ; Θ))1−yi

logL(Θ|X, y) =
n∑

i=1
yi log f (xi ; Θ) + (1− yi ) log(1− f (xi ; Θ))

Θ̂MLE = argmaxΘ

n∑
i=1

yi log f (xi ; Θ) + (1− yi ) log(1− f (xi ; Θ))
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Maximum likelihood estimation
Naïve Bayes classifier

ŷ? = argmaxyk∈Y Pr(yk)
m∏

j=1
Pr(xj |yk)
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Maximum likelihood estimation
Naïve Bayes classifier

Categorical feature Aj

Theorem
The Maximum likelihood estimates for NB take the form

• Pr(y) = cy
n where cy =

∑n
i=1 δ(yi , y)

• Pr(x |y) =
cjx|y
cy

where cjx|y =
∑n

i=1 δ(yi , y)δ(xij , x)
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Maximum likelihood estimation
Naïve Bayes classifier

Continuous feature Aj

Typical assumption, each continuous feature has a Gaussian distribution.

Theorem
The ML estimates for NB take the form

• µk =
∑n

i=1
x j

i δ(yi =yk )∑n
j=1
δ(Y j =yk )

• σk
2 =

∑j
i=1

(x j
i−µk )2δ(yi =yk )∑
j
δ(Y j =yk )

Pr(x |yk) = 1√
2πσk

2
e
−(x−µk )2

2σk 2
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Summary of Examination Requirements

• Instance-based learning
• (weighted) k-NN algorithm
• Locally weighted linear regression
• Discriminative and generative classifiers
• Naïve Bayes Classifier – conditional independence, linear decision boundary
• Bayesian networks – structure, conditional probabilities
• Maximum likelihood estimations – likelihood function, loss function for

logistic regression, MLE and least square method
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