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Introduction to Machine Learning History

https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
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Curse of Dimensionality

Figure 5.9, page 156 of Deep Learning Book, http://deeplearningbook.org.
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Machine and Representation Learning

4/57NPFL054, 10 Jan 2019 DL History RNN Reinforcement Learning
Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.

Neural Networks NN Training Deep Neural Networks CNN



ILSVRC Image Recognition Error Rates
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ILSVRC Image Recognition Error Rates
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Figure 5 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.



Neural Network Architecture of the '80s
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Neural Network Architecture
There is a weight on each edge, and an activation function  is performed on the hidden
layers, and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write:

f

h =i f w x(
j

∑ i,j j)

h = f W x( )

8/57NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN Reinforcement Learning



Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)
 (sigmoid; logistic regression if there are no hidden layers)

 (maximum entropy model if there are no hidden layers)

σ

σ(x) =def
1 + e−x

1

softmax

softmax(x) ∝ ex

softmax(x)i =
def

e∑j
xj

exi
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Neural Network Activation Functions

Hidden Layers
none (does not help, composition of linear mapping is a linear mapping)
 (but works badly – nonsymmetrical, )

result of making  symmetrical and making derivation in zero 1

ReLU

σ (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Universal Approximation Theorem '89
Let  be a nonconstant, bounded and monotonically-increasing continuous function.
Then for any  and any continuous function  on  there exists an 

 and , such that if we denote

then for all 

φ(x)

ε > 0 f [0, 1]m N ∈ N, v ∈i

R, b ∈i R w ∈i Rm

F (x) = v φ(w x +
i=1

∑
N

i i
T b )i

x ∈ [0, 1]m

∣F (x) − f(x)∣ < ε.
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Evolving ReLU Approximation
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Evolving ReLU Approximation
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Loss Function
A model is usually trained in order to minimize the loss on the training data.
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Loss Function
A model is usually trained in order to minimize the loss on the training data.
Assuming that a model computes  using parameters , the mean square error is
computed as

f(x;θ) θ

f(x ;θ) − y .
i

∑ ( (i) (i))2
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Loss Function
A model is usually trained in order to minimize the loss on the training data.
Assuming that a model computes  using parameters , the mean square error is
computed as

A common principle used to design loss functions is the maximum likelihood principle.

f(x;θ) θ

f(x ;θ) − y .
i

∑ ( (i) (i))2
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Maximum Likelihood Estimation
Let  be training data drawn independently from the data-
generating distribution . We denote the empirical data distribution as . Let

 be a family of distributions. The maximum likelihood estimation of parameters 
is:

X = {x ,x ,…,x }(1) (2) (m)

pdata p̂data
p (x;θ)model θ

θML = p (X;θ)
θ

argmax model

= p (x ;θ)
θ

argmax∏
i=1

m

model
(i)

= −log p (x ;θ)
θ

argmin∑
i=1

m

model
(i)

= E [− log p (x;θ)]
θ

argmin x∼p̂data model

= H( , p (x;θ))
θ

argmin p̂data model

= D ( ∣∣p (x;θ)) + H( )
θ

argmin KL p̂data model p̂data
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Maximum Likelihood Estimation
Easily generalized to situations where our goal is predict  given .

The resulting loss function is called negative log likelihood, or cross-entropy or Kullback-Leibler
divegence.

y x

θML = p (Y∣X;θ)
θ

argmax model

= p (y ∣x ;θ)
θ

argmax∏
i=1

m

model
(i) (i)

= −log p (y ∣x ;θ)
θ

argmin∑
i=1

m

model
(i) (i)
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Gradient Descent
Let a model compute  using parameters . In order to compute

we may use gradient descent:

f(x;θ) θ

J(θ) =def E L(f(x;θ), y),
θ

argmin (x,y)∼p̂data

θ ← θ − α∇ J(θ)θ
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Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org



Gradient Descent

Gradient Descent
We use all training data to compute .

Online (or Stochastic) Gradient Descent
We estimate the expectation in  using a single randomly sampled example from the
training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD
The minibatch SGD is a trade-off between gradient descent and SGD – the expectation in

 is estimated using  random independent examples from the training data.

J(θ)

J(θ)

J(θ) m
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Gradient Descent

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Backpropagation
Assume we want to compute partial derivatives of a given loss function  and let  be
known.

J ∂z
∂J

= =
∂yi

∂J

∂z

∂J

∂yi

∂z

∂z

∂J

∂yi

∂g(y)

= =
∂xi

∂J

∂z

∂J

∂yi

∂z

∂xi

∂yi

∂z

∂J

∂yi

∂g(y)
∂xi

∂f(x )i
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Backpropagation Algorithm

Simple Variant of Backpropagation
Inputs: The network as in the Forward propagation algorithm.
Outputs: Partial derivatives  of  with respect to all .

Run forward propagation to compute all 

For :

Return 

In practice, we do not usually represent networks as collections of scalar nodes; instead we
represent them as collections of tensor functions – most usually functions . Then

 is a Jacobian. However, the backpropagation algorithm is analogous.

g =(i)
∂u(i)
∂u(n)

u(n) u(i)

u(i)

g =(n) 1
i = n − 1,…, 1
g ←(i) g∑j:i∈P (u )(j)

(j)
∂u(i)
∂u(j)

g

f : R →n Rm

∂x

∂f(x)
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) Algorithm
Inputs: NN computing function  with initial value of parameters .
Inputs: Learning rate .
Outputs: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

f(x;θ) θ

α

θ

m (x , y )(i) (i)

g ← ∇ L(f(x ;θ), y )
m
1

θ ∑i
(i) (i)

θ ← θ − αg
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Adaptive Optimizers Animations

http://2.bp.blogspot.com/-q6l20Vs4P_w/VPmIC7sEhnI/AAAAAAAACC4/g3UOUX2r_yA/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

http://2.bp.blogspot.com/-L98w-SBmF58/VPmICIjKEKI/AAAAAAAACCs/rrFz3VetYmM/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

http://3.bp.blogspot.com/-nrtJPrdBWuE/VPmIB46F2aI/AAAAAAAACCw/vaE_B0SVy5k/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

http://1.bp.blogspot.com/-K_X-yud8nj8/VPmIBxwGlsI/AAAAAAAACC0/JS-h1fa09EQ/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Neural Networks Demos

TensorFlow Playground
TensorFlow.js
Sketch RNN Demo
MetaCar
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High Level Overview

Classical ('90s) Deep Learning

Architecture    CNN, RNN, VAE, GAN, …

Activation func. , ReLU, PReLU, ELU, SELU, Swish, …

Output function none, none, , 

Loss function MSE NLL (or cross-entropy or KL-divergence)

Optimalization SGD, momentum SGD, RMSProp, Adam, …

Regularization L2, L1 L2, Dropout, BatchNorm, LayerNorm, …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

tanh,σ tanh

σ σ softmax
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Regularization – Dropout
How to design good universal features?

In reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.
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Regularization – Dropout
How to design good universal features?

In reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.

Idea of dropout by (Srivastava et al., 2014), in preprint since 2012.
When applying dropout to a layer, we drop each neuron independently with a probability of 
(usually called dropout rate). To the rest of the network, the dropped neurons have value of
zero.
Dropout is performed only when training, during inference no nodes are dropped. However, in
that case we need to scale the activations down by a factor of  to account for more
neurons than usual.
Alternatively, we might scale the activations up during training by a factor of .

p

1 − p

1/(1 − p)
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Dropout Effect
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Figure 7 of paper "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf



Convolutional Networks
Consider data with some structure (temporal data, speech, images, …).
Unlike densely connected layers, we might want:

Sparse (local) interactions
Parameter sharing (equal response everywhere)
Shift invariance

Image from https://i.stack.imgur.com/YDusp.png.
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High-level CNN Architecture
We repeatedly use the following block:

Convolution operation1. 
Non-linear activation (usually ReLU)2. 
Pooling3. 

Image from https://cdn-images-1.medium.com/max/1200/0*QyXSpqpm1wc_Dt6V. . 31/57NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN



AlexNet – 2012 (16.4% error)

Figure 2 of paper "ImageNet Classification with Deep Convolutional Neural Networks", https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf.
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Similarities in V1 and CNNs

The primary visual cortex recognizes Gabor functions.
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Figure 9.18, page 370 of Deep Learning Book, http://deeplearningbook.org



Similarities in V1 and CNNs

Similar functions are recognized in the first layer of a CNN.
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Figure 9.19, page 371 of Deep Learning Book, http://deeplearningbook.org



CNNs as Regularizers – Deep Prior

Figure 1 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers – Deep Prior

Figure 7 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers – Deep Prior

Figure 5 of supplementary materials of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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Inception (GoogLeNet) – 2014 (6.7% error)
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Figure 2 of paper "Going Deeper with Convolutions",
https://arxiv.org/abs/1409.4842.

     

Figure 3 of paper
"Going Deeper with

Deep Neural Networks CNN



ResNet – 2015 (3.6% error)
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Figure 3 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
DL History Neural Networks NN Training Deep Neural Networks CNN RNN



Beyond Image Classification
Object detection (including location)
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Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497



Beyond Image Classification
Object detection (including location)

Image segmentation
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Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

Figure 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.



Beyond Image Classification
Object detection (including location)

Image segmentation

Human pose estimation
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Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

Figure 2 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.

Figure 7 of paper "Mask R-CNN", https://arxiv.org/abs/1703.06870.



Recurrent Neural Networks

Single RNN cell
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Recurrent Neural Networks

Single RNN cell

Unrolled RNN cells
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Sequence-to-Sequence Architecture
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Figure 1 of paper "Sequence to Sequence Learning with Neural Networks", https://arxiv.org/abs/1409.0473.



Image Labeling
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Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...", https://arxiv.org/abs/1609.06647.



Visual Question Answering
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Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding", https://arxiv.org/abs/1606.01847.



Lip Reading
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Figure 3. Top: Original still images from the BBC lip reading dataset – News, Question Time, Breakfast, Newsnight (from left to right).

Bottom: The mouth motions for ‘afternoon’ from two different speakers. The network sees the areas inside the red squares.

Figure 3 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.



Lip Reading
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Figure 1 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.
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Figure 2 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.



Lip Reading

Table 5 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.
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Method SNR CER WER BLEU†

Lips only

Professional‡ - 58.7% 73.8% 23.8

WAS - 59.9% 76.5% 35.6

WAS+CL - 47.1% 61.1% 46.9

WAS+CL+SS - 42.4% 58.1% 50.0

WAS+CL+SS+BS - 39.5% 50.2% 54.9

Audio only

Google Speech API clean 17.6% 22.6% 78.4

Kaldi SGMM+MMI⋆ clean 9.7% 16.8% 83.6

LAS+CL+SS+BS clean 10.4% 17.7% 84.0

LAS+CL+SS+BS 10dB 26.2% 37.6% 66.4

LAS+CL+SS+BS 0dB 50.3% 62.9% 44.6

Audio and lips

WLAS+CL+SS+BS clean 7.9% 13.9% 87.4

WLAS+CL+SS+BS 10dB 17.6% 27.6% 75.3

WLAS+CL+SS+BS 0dB 29.8% 42.0% 63.1



Lip Reading
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GT IT WILL BE THE CONSUMERS

A IN WILL BE THE CONSUMERS

L IT WILL BE IN THE CONSUMERS

AV IT WILL BE THE CONSUMERS

GT CHILDREN IN EDINBURGH

A CHILDREN AND EDINBURGH

L CHILDREN AND HANDED BROKE

AV CHILDREN IN EDINBURGH

GT JUSTICE AND EVERYTHING ELSE

A JUST GETTING EVERYTHING ELSE

L CHINESES AND EVERYTHING ELSE

AV JUSTICE AND EVERYTHING ELSE

Table 7 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.



Lip Reading
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Figure 1 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.



Lip Reading

Table 2 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.

49/57NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN

STCNN + Spatial Pooling
(x3)

t frames

tim
e

Bi-GRU
(x2)

Linear CTC loss

Figure 1 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.

Unseen Speakers Overlapped Speakers
Method CER WER CER WER

Hearing-Impaired Person (avg) − 47.7% − −

Baseline-LSTM 38.4% 52.8% 15.2% 26.3%

Baseline-2D 16.2% 26.7% 4.3% 11.6%

Baseline-NoLM 6.7% 13.6% 2.0% 5.6%

LipNet 6.4% 11.4% 1.9% 4.8%



Deep Q Network

50/57NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN

Convolution Convolution Fully connected Fully connected

No input

Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.



Rainbow
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Agent no-ops human starts

DQN 79% 68%
DDQN (*) 117% 110%
Prioritized DDQN (*) 140% 128%
Dueling DDQN (*) 151% 117%
A3C (*) - 116%
Noisy DQN 118% 102%
Distributional DQN 164% 125%

Rainbow 223% 153%
Table 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by

Matteo Hessel et al.



AlphaZero
On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa – without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.
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Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations
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Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training
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Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Chess Shogi Go

Mini-batches 700k 700k 700k

Training Time 9h 12h 13d

Training Games 44 million 24 million 140 million

Thinking Time 800 sims 800 sims 800 sims

∼ 40 ms ∼ 80 ms ∼ 200 ms

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.



For the Win agent for Capture The Flag
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Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.



For the Win agent for Capture The Flag
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Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.



For the Win agent for Capture The Flag
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Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.


