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Curse of Dimensionality Ve

Figure 5.9, page 156 of Deep Learning Book, http://deeplearningbook.org.
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Machine and Representation Learning
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Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.
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ILSVRC Image Recognition Error Rates Vet
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ILSVRC Image Recognition Error Rates Vet
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ILSVRC Image Recognition Error Rates
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Figure 5 of paper "Learning Transferable Architectures for Scalable Image Recognition”, https://arxiv.org/abs/1707.07012.
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Neural Network Architecture Ve

There is a weight on each edge, and an activation function f is performed on the hidden
layers, and optionally also on the output layer.

R = £ | D wige;
j

If the network is composed of layers, we can use matrix notation and write:

h=f(Wa)
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Neural Network Activation Functions

Output Layers

® none (linear regression if there are no hidden layers)

® o (sigmoid; logistic regression if there are no hidden layers)

def 1
l1+e®

o(z)

® softmax (maximum entropy model if there are no hidden layers)

softmax(x) o e”

m.
def eF

Zj e’s

softmax(x);
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Hidden Layers
® none (does not help, composition of linear mapping is a linear mapping)

. do
® o (but works badly — nonsymmetrical, %2 (0) = 1/4)

® tanh
O result of making o symmetrical and making derivation in zero 1

O tanh(z) = 20(22) — 1

® RelU
O max(0, )
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Universal Approximation Theorem '89 UrzL

Let w(x) be a nonconstant, bounded and monotonically-increasing continuous function.

Then for any € > 0 and any continuous function f on [0, 1]™ there exists an N € N, v; €
R, b; € R and w; € R™, such that if we denote

N
F(z) =) vip(w"z+b)
i=1
then for all x € [0,1]™

[F(x) — f(z)| <e.

11/57
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Evolving ReLU Approximation V5%
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Evolving ReLU Approximation V5%
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Evolving ReLU Approximation e
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Evolving ReLU Approximation e
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Evolving ReLU Approximation e
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Loss Function UL

A model is usually trained in order to minimize the /oss on the training data.
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Loss Function UL

A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes f(@;0) using parameters 8, the mean square error is
computed as

D (f(w(i); 0) — y(i))z-

1
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A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes f(@;0) using parameters 8, the mean square error is
computed as

D (f(w(i); 0) — y(i)>2-

?

A common principle used to design loss functions is the maximum likelihood principle.
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Let X = {az(l), az(z), - w(m)} be training data drawn independently from the data-
generating distribution pgat.. We denote the empirical data distribution as Pgata. Let
Pmodel (5 @) be a family of distributions. The maximum likelihood estimation of parameters @
IS:

O\ = arg max Prodel (X; 0)
0

= arg ;nax Hz’:l pmodel(m(i); 0)

= arg 6}rnim Zil — 108 Prmoder (2V; 0)

= argmin Ey ;... [—10g Pmodel (x; 0)]
0

= argornin H(ﬁdatay DPmodel (w; 0))

= al’gemiﬂ DKL (ﬁdata| |pm0del(w; 9)) + H(ﬁdata)
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Easily generalized to situations where our goal is predict y given a.

O\, = arg max pmodel (Y |X; )
0
= g Hz‘:1 Pmodar (¥ |2; 0)

- argomin Zizl o 1Og pmodel(y(i) ,w(Z)a 9)

The resulting loss function is called negative log likelihood, or cross-entropy or Kullback-Leibler
divegence.
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Gradient Descent

Let a model compute f(a; @) using parameters 0. In order to compute

J(0) = arg min E(
0

we may use gradient descent:
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Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org
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Gradient Descent
We use all training data to compute J(8).

Online (or Stochastic) Gradient Descent

We estimate the expectation in J(@) using a single randomly sampled example from the
training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD

The minibatch SGD is a trade-off between gradient descent and SGD — the expectation in
J(0) is estimated using m random independent examples from the training data.
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Gradient Descent Pl

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Assume we want to compute partial derivatives of a given loss function J and let

known.

0J 0J 0z 0J 0g(y)

Oy; 0z0y;, 0z Oy
8J 0J 0z dy;  OJ dg(y) Of (x;)

8:132' f 0z 8yz (9ZBZ K 0z 8yz 8CBZ
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Simple Variant of Backpropagation
Inputs: The network as in the Forward propagation algorithm.

: (n) . '
(1) — gZ(i) of u(™ with respect to all u(¥.

Outputs: Partial derivatives g

® Run forward propagation to compute all ul?)

° g(n) —1
® Fort=n—1,...,1:

0 g\ D jieP(ul)) 9("')32—(53
® Return g

In practice, we do not usually represent networks as collections of scalar nodes; instead we
represent them as collections of tensor functions — most usually functions f : R®™ — R™. Then
%(;) is a Jacobian. However, the backpropagation algorithm is analogous.
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Stochastic Gradient Descent (SGD) Algorithm

Inputs: NN computing function f(a;0) with initial value of parameters 6.
Inputs: Learning rate a.

Outputs: Updated parameters 0.

® Repeat until stopping criterion is met: | |
O Sample a minibatch of m training examples (az(z), y(z))

0 g+ Vo> L(f(x;0),y")
00+ 60—ag
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Adaptive Optimizers Animations Uzt
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http://2.bp.blogspot.com/-q6120Vs4P_w/VPmIC7sEhnl/AAAAAAAACC4/g3UOUX2r_yA/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html|
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Adaptive Optimizers Animations Uzt
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Adaptive Optimizers Animations P&
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Adaptive Optimizers Animations
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Neural Networks Demos Pl

® TensorFlow Playground

® TensorFlow.js

® Sketch RNN Demo
® MetaCar
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Architecture

Activation func.

Output function

Loss function

Optimalization

Regularization

Classical ('90s)

tanh, o
none, o
MSE

SGD, momentum

L2, L1

Deep Learning

c oo oot CNN, RNN, VAE, GAN, ..
tanh, ReLU, PReLU, ELU, SELU, Swish, ..
none, o, softmax

NLL (or cross-entropy or KL-divergence)
SGD, RMSProp, Adam, ...

L2, Dropout, BatchNorm, LayerNorm, ...
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Regularization — Dropout e

How to design good universal features?

® |n reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.
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How to design good universal features?

® |n reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.

|dea of dropout by (Srivastava et al., 2014), in preprint since 2012.

When applying dropout to a layer, we drop each neuron independently with a probability of p
(usually called dropout rate). To the rest of the network, the dropped neurons have value of
zero.

Dropout is performed only when training, during inference no nodes are dropped. However, in
that case we need to scale the activations down by a factor of 1 — p to account for more

neurons than usual.

Alternatively, we might scale the activations up during training by a factor of 1/(1 — p).

Deep Neural Networks 28/57



Dropout Effect G
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(a) Without dropout (b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified

linear units.
Figure 7 of paper "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", http://jmlr.org/papers/volumel5/srivastaval4a/srivastaval4a.pdf

NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN 29/57



Convolutional Networks Pl

Consider data with some structure (temporal data, speech, images, ...).

Unlike densely connected layers, we might want:

® Sparse (local) interactions
® Parameter sharing (equal response everywhere)
® Shift invariance

L1 (-1x3)+(0x0)+(1x1)+
2 (-2x2)+(0x6)+(2x2)+
8] 7 (-1x2)+(0x4)+(1x1) =-3

Y/

e,

Convolution filter
(Sobel Gx)
Destination pixel

R

IR T

RN ST

I

TR

LR

]
L]
1
|1
L]
|

Image from https://i.stack.imgur.com/YDusp.png.
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High-level CNN Architecture et

We repeatedly use the following block:

1. Convolution operation
2. Non-linear activation (usually RelLU)

3. Pooling

Input layer Convolutional layers
%
bSO X 1 flatten
--------- 2 | 13 +—
5 ';I‘F' - .+
0 / %
/ Num of nodes in hidden layers:

512 256
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253, 40-186,624—64,896—64,896—43,264—
4096—4096—1000.
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Similarities in V1 and CNNs

Figure 9.18, page 370 of Deep Lea

The primary visual cortex recognizes Gabor functions.
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ning Book, http://deeplearningbook.org
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Similarities in V1 and CNNs

Figure 9.19, page 371 of Deep Learning Book, http://deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.
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CNNs as Regularizers — Deep Prior Ve

(c) Bicubic, Not trained (d) Deep prior, Not trained
Figure 1 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior L

tmd Ralins k= M‘ Nit LAY

(a) Original i 1rnage (b) Corrupted image (c) Shepard networks [26] (d) Deep Image Prior

(e) Original image | () Corrupted image (g) [’4] PSNR = 28.1 (h) Dep Img. Prlor PSNR = 30.9
Figure 7 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior L

Figure 5: Inpainting diversity. Left: original image (black pixels indicate holes). The remaining four images show results

obtained using deep prior corresponding to different input vector z.
Figure 5 of supplementary materials of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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Inception (GooglLeNet) — 2014 (6.7%
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Figure 2 of paper "Going Deeper with Convolutions",
https://arxiv.org/abs/1409.4842.
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ResNet — 2015 (3.6% error)
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Ficure 3 of paper "Deep Residual Learning for Image Recoenition". https://arxiv.ore/abs/1512.03385.
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Beyond Image Classification L
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Beyond Image Classification L
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Beyond Image Classification L

erson :

g o

Figure 3 of paper "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

Image segmentation

> : o>

"Mask R-CNN", https://arxiv.org/abs/1703.06870.

Figure 7 of paper
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Recurrent Neural Networks e

Single RNN celi

mput

state

output
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Recurrent Neural Networks e

Single RNN celi

mput

state

output

Unrolled RNN cells

output 1 output 2 output 3

NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN 41/57



Sequence-to-Sequence Architecture PR

Y X Y Z <EQOS>
A A A A A
——> ——> ——> ——> ——> > ——>
T T T Y Y A A A
A B C <EOS> w X | Y4

Figure 1 of paper "Sequence to Sequence Learning with Neural Networks", https://arxiv.org/abs/1409.0473.
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Image Labeling

A person riding a

motorcycle on a dirt road.

Two dogs play in the grass. A skateboarder does a trick

Two hockey players are A little girl in a pink hat is
fighting over the‘guc. ;blowing bubbles.

A close up of a cat laying

A red motorcycle parked on the
on a couch.

side of the road.”

Somewhat related to the image

Fig. 5. A selection of evaluation results, grouped by human rating.
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Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...

Neural Networks NN Training Deep Neural Networks

A dog is jumping to catch a
flsbee/./_ e

A refrigerator filled with lots of

food and drinks.

A yellow school bus parked
“=====in a parking lot.

" https://arxiv.org/abs/1609.06647.

CNN RNN

=L
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Visual Question Answering
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O
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What kind of flooring does

What vegetable is the dog  What kind of dog is this?
chewing on? MCB: husky the room have?
MCB: carrot GT: husky MCB: carpet
GT: carrot GT: carpet
r
i
‘ I
~

What color is the traffic Is this an urban area? Where are the buildings?
light? MCB: yes MCB: in background
MCB: green GT: yes GT: on left
GT: green

Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding", https://arxiv.org/abs/1606.01847.
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Lip Reading L

Figure 3. Top: Original still images from the BBC lip reading dataset — News, Question Time, Breakfast, Newsnight (from left to right).
Bottom: The mouth motions for ‘afternoon’ from two different speakers. The network sees the areas inside the red squares.

Figure 3 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.
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Lip Reading

NPFL054, 10 Jan 2019
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Figure 1 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.
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Figure 2 of "Lip Reading Sentences in the Wild", https://arxiv.org/abs/1611.05358.
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DL History

Method SNR | CER | WER | BLEU'
Lips only
Professional® - | 58.7% | 73.8% 23.8
WAS -1 599% | 76.5% 35.6
WAS+CL -1 47.1% | 61.1% 46.9
WAS+CL+SS - 1 42.4% | 58.1% 50.0
WAS+CL+SS+BS - 1 39.5% | 50.2% 54.9
Audio only
Google Speech API clean | 17.6% | 22.6% 78.4
Kaldi SGMM+MMI* | clean 9.7% | 16.8% 83.6
LAS+CL+SS+BS clean | 10.4% | 17.7% 84.0
LAS+CL+SS+BS 10dB | 26.2% | 37.6% 66.4
LAS+CL+SS+BS 0dB | 50.3% | 62.9% 44.6
Audio and lips
WLAS+CL+SS+BS clean 79% | 13.9% 87.4
WLAS+CL+SS+BS 10dB | 17.6% | 27.6% 75.3
WLAS+CL+SS+BS 0dB | 29.8% | 42.0% 63.1
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Lip Reading L

t frames STCNN + Spatial Pooling Bi-GRU  Linear CTC loss
(x3) (x2)
Figure 1 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.
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Lip Reading Fx

é?/\

N\

a7

t frames STCNN + Spatial Pooling Bi-GRU  Linear CTC loss
(x3) (x2)
Figure 1 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.

Unseen Speakers Overlapped Speakers

Method CER WER CER WER
Hearing-Impaired Person (avg) — 47.7% — —
Baseline-LSTM 38.4% 52.8% | 15.2% 26.3%
Baseline-2D 16.2% 26.7% | 4.3% 11.6%
Baseline-NoLM 6.7% 13.6% | 2.0% 5.6%
LipNet 6.4% 11.4% 1.9% 4.8%

Table 2 of "LipNet: End-to-end Sentence-level Lipreading", https://arxiv.org/abs/1611.01599.
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Deep Q Network G

Convolution Convolution Fully connected Fully connected
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Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Rainbow
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NPFL054, 10 Jan 2019 DL History Neural Networks
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200

NN Training

U=

Agent no-ops human starts
DQN 79% 68%
DDQN (*) 117% 110%
Prioritized DDQN (*) | 140% 128%
Dueling DDQN (*) 151% 117%
A3C (%) - 116%
Noisy DQN 118% 102%
Distributional DQN 164% 125%
Rainbow 223% 153%

Table 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.
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AlphaZero FX

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa — without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

A
Chess Shogi Go
AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AG0O
2 H E T ESSEHE
3 2/

5

555 5| 5| 5| 5

| B SR
Hir| | S

AEEREREEE

W:29.0% D:70.6% L:0.4% W:842% D:2.2% L:13.6% W: 68.9% L:31.1%

W: 2.0% D:97.2% L:0.8% W:98.2% D:0.0% L: 1.8% W: 53.7% L: 46.3%
Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero — Training L

A B C
Chess Shogi Go
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W //JJ_/\/,W
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Figure 1 of the paper “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Chess Shogi Go
Mini-batches 700k 700k 700k
Training Time %h 12h 13d
Training Games 44 million 24 million 140 million
Thinking Time 800 sims 800 sims 800 sims

~ 40 ms ~ 80 ms ~ 200 ms

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN 54/57



For the Win agent for Capture The Flag G

(a) FTW Agent Architecture (b) Progression During Training
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Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag F&

(a) Agent (b) Policy (e) Recurrent processing with LSTM
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Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

NPFLO054, 10 Jan 2019 DL History Neural Networks NN Training Deep Neural Networks CNN RNN 56/57



For the Win agent for Capture The Flag FaL

Phase 1 Learning the basics of the game Phase 2 increasing navigation, tagging, and coordination skills Phase 3 Perfecting strategy and memory
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Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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