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Lecture #10

Outline

e Model complexity, overfitting, bias and variance
e Regularization — Ridge regression, Lasso

e Linear regression
e Logistic regression
e SVM
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Model complexity

No universal definition

Here ... model complexity is the number of hypothesis parameters

O = by, ....0m)
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Model complexity

Finding a model that minimizes generalization error
. is one of central goals of the machine learning process

error

generalization error

WQ error

model complexity
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Model complexity

Complexity of decision boundary for classification
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Bias and variance

@ Select a machine learning algorithm
® Get k different training sets
© Get k predictors

e Bias measures error that originates from the learning algorithm
— how far off in general the predictions by k predictors are from the true

output value

e Variance measures error that originates from the training data
— how much the predictions for a test instance vary between k predictors
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Bias and variance

low variance high variance

high bias

low bias
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Bias and variance

Generalization error errorp(f) measures how well a hypothesis f generalizes
beyond the used training data set, to unseen data with distribution D. Usually it
is defined as follows

e for regression: errorp(f) = E(9; — yi)?
e for classification: errorp(f) = Pr (9 # vi)

Decomposition of errorp(f)

errorp(f) = Bias® + Variance

ie.,

(E[F(x] = £(x))* + E[f (x) = EF ()]

where f(x) is predicted value, E[f(x)] is average predicted value
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Bias and variance

e underfitting = high bias

e overfitting = high variance

error

optimum model complexity

(

generalization error

Variance
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Bias and variance

k-Nearest Neighbor

e 1 k — smoother decision boundary — | variance and 1 bias
e | k —1 variance and | bias

1-nearest neighbour 5-nearest neighbour
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Bias and variance

k-Nearest Neighbor

5-nearest neighbour 15-nearest neighbour
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Prevent overfitting

We want a model in between which is

e powerful enough to model the underlying structure of data
e not so powerful to model the structure of the training data

Let's prevent overfitting by complexity regularization,
a technique that regularizes the parameter estimates, or equivalently, shrinks the
parameter estimates towards zero.

NPFLO054, 2018 Hladka & Holub Lecture 10, page 12/32



Regularization

A machine learning algorithm

estimates hypothesis parameters © = (0g,01,...,0.,)

using ©* that minimizes loss function L

for training data Data = {{(x;,y;),Xi = (X1iy .-, Xmi), ¥i € Y}

©* = argmingL(©)

Regularization

®» = argmingL(©) + X - penalty(©), where A > 0 is a tuning parameter

Infact, the penalty is applied to 64, ..., 0, but not to 6y since the goal is to
regularize the estimated association between each feature and the target value.
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Regularization

Ridge regression

penalty(©) = 602 + - -- + 62, = lnorm

e Let 05 ,...,0% be ridge regression parameter estimates for a particular value
of A
e Let 07,...,0r be unregularized parameter estimates

2 2
o510t
0< —2n <]

07" 44057

When A\ =0, then 05 =0 fori=1,....m
e When ) is extremely large, then 63 is very small for i =1,..., m
e When )\ between, we are fitting a model and skrinking the parameteres
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Ridge regression
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Regularization

Lasso

penalty(©) = 01| + -+ + |Om| = ¢1norm

Let 6% ,...,0% be lasso regression parameter estimates
A1 'Y Am

Let 07,...,0%, be unregularized parameter estimates

When A =0, then 65 =6 for i=1,....,m

When ) grows, then the impact of penalty grows

When A is extremely large, then 65 =0fori=1,...,m
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Coefficients
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Ridge regression and Lasso

Ridge regression shrinks all the parameters but eliminates none, while the Lasso
can shrink some parameters to zero.
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Elastic net

Ok = argming[L(©) + A« (|61] + -+ [0m|) + (L= A) - (67 + -+ + 62,)]

0 < A < 1is a tuning parameter
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A loss function L(y, y) measures the cost of predicting  when the true value is
y € {—1,41}. Commonly used loss functions are

Zero-one (0/1) L(§.y) = I(yJ < 0)
indicator variable 1is 1 if yy < 0, 0 otherwise

Hinge L(y,y) = max(0,1 — y§)

Logistic L(§, y) = max(0, log(1 + e™¥))

Exponential L(y,y) = e
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Regularized linear regression

f(x) =00+ 01x1 + -+ + Omxm

L(©) = RSS = Y (F(x;) ~ yi)’

% = argming[RSS + X - penalty(©)]
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Ridge regression

Alternative formulation

subjectt00%+-~-+9,2n§s

e the gray circle represents the
feasible region for Ridge regression

e the contours represent different loss
values for the unregularized model
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Ridge regression

Alternative formulation

e If s is large enough so that the
minimum loss value falls into the
region of ridge regression
parameter estimates then the
alternative formulation yields the

primary solution.
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Lasso

Alternative formulation

©F% = argmin f(x;) — yi)?
R = argn ;(() ¥i)

subject to |01+ -+ |0m| <s

e the grey square represents the
feasible region of the Lasso

e the contours represent different loss
values for the unregularized model

o the feasible point that minimizes the
loss is more likely to happen on the
coordinates on the Lasso graph than
on the Ridge regression graph since
the Lasso graph is more angular
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Lasso

Alternative formulation

0@

o If s is large enough so that the C
minimum loss value falls into the
region of loss parameter estimates .
then the alternative formulation ) 9
yields the primary solution.

~S
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Regularized logistic regression

1

F(x) = ———
() 14+ e ©'x

L(®) = — ny log P(yilxi; ©) + (1 — yi) log(1 — P(yi|xi; ©))

% = argming[L(©) + A - penalty(©)]
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Regularized logistic regression

Ridge regression

©F = argming — [Zy,- log(f(x;)) + (1 — yi) log(1 — f(x;))] + )\292] =

—argmme[zy, log(f(x1))) + (1= yi)(~log(1 — F(x:))) + A Y 7] =

= argmln@[z Yil1i(©) + (1 — yi)Lo(®) + A Z @2]
i=1
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Regularized logistic regression

Ridge regression

Since 1
A+XB=CA+B,C= X

then

O = argmin@[z 91-2 + C[ZYiLl(e) + (1= yi)Lo(©)]]

j=1 i=1

where

Ll(e) = - |Og 1+e—6Tx

Lo(©) = —log(1 — o

NPFLO054, 2018 Hladka & Holub Lecture 10, page 28/32



Regularized logistic regression

Ridge regression

m n
% = argming [Z 07 + CZ log(1 + e 7© %]
j=1 i=1

where

— —1if y,:O
YiZ U 41if yi=1
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©* = argming i 9? + Czn:f,-
j=1 i=1

& > 0is equivalent to & = max(0,1 — y,© "x;), i.e.

o* = argmine[z 91-2 + CZ max(0,1 — y;0 "x;)]
= i—1

st. OTx; >1—-¢&ifyy=4+1and ©'x; < -1+ & ify;=—1

Hinge loss = max(0,1 — y;©"x)
® ;O x; > 1: no contribution to loss
® v, x; = 1: no contribution to loss
® y,0x; < 1: contribution to loss
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Soft-margin is equivalent to the regularization problem.
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Summary of Examination Requirements

e Model complexity, generalization error, Bias and variance
e Lasso and Ridge regularization for linear and logistic regression

e Soft margin classifier and regularization
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